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Abstract

A critical factor in infectious disease control is the risk of an outbreak overwhelming
local healthcare capacity. The overall demand on healthcare services will depend on disease
severity, but the precise timing and size of peak demand also depends on the time interval (or
clinical time delay) between initial infection, and development of severe disease. A broader
distribution of intervals may draw that demand out over a longer period, but have a lower
peak demand. These interval distributions are therefore important in modelling trajectories of
e.g. hospital admissions, given a trajectory of incidence. Conversely, as testing rates decline,
an incidence trajectory may need to be inferred through the delayed, but relatively unbiased
signal of hospital admissions.

Healthcare demand has been extensively modelled during the COVID-19 pandemic, where
localised waves of infection have imposed severe stresses on healthcare services. While the
initial acute threat posed by this disease has since subsided from immunity buildup from
vaccination and prior infection, prevalence remains high and waning immunity may lead to
substantial pressures for years to come. In this work, then, we present a set of interval
distributions, for COVID-19 cases and subsequent severe outcomes; hospital admission, ICU
admission, and death. These may be used to model more realistic scenarios of hospital
admissions and occupancy, given a trajectory of infections or cases.

We present a method for obtaining empirical distributions using COVID-19 outcomes data
from Scotland between September 2020 and January 2022 (N = 31724 hospital admissions,
N = 3514 ICU admissions, N = 8306 mortalities). We present separate distributions for
individual age, sex, and deprivation of residing community. We show that, while the risk of
severe disease following COVID-19 infection is substantially higher for the elderly or those
residing in areas of high deprivation, the length of stay shows no strong dependence, suggesting
that severe outcomes are equally severe across risk groups. As Scotland and other countries
move into a phase where testing is no longer abundant, these intervals may be of use for
retrospective modelling of patterns of infection, given data on severe outcomes.

1 Introduction

The threat posed by an infectious disease on a human population depends critically on the risk of
developing severe illness, and the burden that may place on healthcare systems. During the early
stages of transmission or a new wave of infection, it is important to understand when and how to
expect that future demand on healthcare systems to come. Depending on the natural history of
a particular disease, this may be immediate and acute, or be drawn out over a longer period of
time.

Such estimation of future healthcare burden has been particularly important during the COVID-
19 pandemic, where severe curbs on everyday life were imposed globally, in order to control the
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spread of infection and prevent the overwhelming of hospital capacity. Now over two years from
the first known case, the acute threat posed by the virus has subsided, from the build-up of
population immunity via effective vaccination and prior infection. However, future pressures on
healthcare services due to COVID-19 may still be considerable, with a continuing circulation of
infection and waning immunity on timescales of order six months [1].

In prior waves of COVID-19 infection, the peak demand on healthcare services has followed,
with a delay, after a peak in incidence. Our work here focuses on the length of this delay and
its dependence on age and sex; risk factors that are known to be important for determining the
likelihood of severe infection. For modelling future waves of infection, the delay between infection
and developing of severe disease (and variation in that delay from person to person) introduces
uncertainty on the timing and size of the future peak demand on healthcare services, even if an
overall infection-hospitalisation rate is well estimated.

The COVID-19 pandemic has been unique in the volume and granularity of data recorded for
a human disease. This is not just for hospital admissions and deaths (for which data are already
routinely collected for many illnesses), but on proactive testing for the disease. Using such data,
the aim of this work is to then obtain empirical distributions of the time intervals between different
outcomes at the individual level. We use data collected across Scotland, between September 2020
and January 2022. In this period, COVID-19 tests were widely and freely available, with reported
results collected in central databases.

The Scottish COVID-19 data are advantageous for our study as they include additional iden-
tifiers in the data, allowing us to show how these distributions differ by a person’s age, sex, and
deprivation in their area of residence, of which all are known risk factors for poor COVID-19
outcomes [2, 3, 4, 5, 6, 7]. Our distributions build on length-of-stay distributions obtained from
the first year of the pandemic [8, 9, 10, 11, 12, 13, 14], as well as inferred distributions of intervals
from the initial infection stage [15], and from onset of symptoms to diagnosis or mortality [16].

The first set of distributions we describe are between COVID-19 cases, and three different severe
outcomes: hospital admission, intensive care unit (ICU) admission, and mortality. These affect
the shape of the trajectory of severe outcomes, given a trajectory of cases. Interval distributions
with a higher mean value will lead to a greater delay between cases and following severe outcomes,
whereas a higher variance will lead to a more drawn-out trajectory, with a lower peak.

The second set of distributions are those between different severe outcomes. These relate to
hospital occupancy; how long an individual spends in hospital once admitted. While the data
do not specify recoveries or discharges, we also estimate the distribution of intervals between
admission and discharge, for patients admitted that go on to survive, using public data on hospital
occupancy. We infer that over time, an increasing proportion of COVID-19 hospital burden in the
period studied was of individuals that eventually went on to be discharged, and the mean time
spent in hospital shortened.

2 Data

COVID-19 data are provided by Public Health Scotland’s (PHS) electronic Data Research and
Innovation Service (eDRIS) under a data sharing agreement, and specify COVID-19 tests and
severe outcomes. Each entry has an associated date, and de-identified patient ID with age (in five-
year windows, up to 75+), sex, and residing data zone (DZ). DZs are non-overlapping Scottish
census areas, each with a residing population of order 500–1,000. There are 6,976 DZs in total,
covering the full area and population of Scotland. A subpopulation of a certain DZ, age range, and
sex (e.g., men aged between 50–54 living in a particular DZ) will typically have 0–50 individuals,
allowing us to analyse outcomes at this same resolution.

The test data contain results from both rapid lateral flow device (LFD) tests and polymerase
chain reaction (PCR) tests. In the period studied, public health policy was that those exhibiting
COVID-19 symptoms or testing positive on an LFD should report the result, and take a confir-
matory PCR test (usually at a local testing centre). We define a case as a new positive test result,
taken at least 60 days from any previous positive test by the same individual. For those with
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repeat positive tests within 60 days (such as a LFD positive followed by a PCR positive), we use
the date of the first PCR positive, or the first LFD positive if there is no PCR positive. The case
date is the date on which the test is taken.

A severe COVID-19 outcome — a hospital admission, intensive care unit (ICU) admission, or
mortality — is one where “coronavirus” or “COVID-19” appears within the underlying causes
for that outcome. This analysis therefore includes severe outcomes “with” COVID-19. The date
associated with hospitalisation and ICU admission is the date of first admission, and the date
associated with mortality is the day the individual dies. We assume that if an individual dies after
a hospitalisation or ICU admission, then they died in hospital, and were in hospital for the whole
time.

Outcomes between September 10 2020 and January 6 2022 were considered. In this period of
the epidemic testing was both free, and widely available to the whole population in Scotland. We
exclude data for those aged under 20, owing to a scarcity of severe outcomes. Presented values
draw from the version of the eDRIS data dated October 27 2022.

Data on overall COVID-19 hospital occupancy are obtained from PHS, with daily figures on
patients in hospital with confirmed COVID-19, throughout the period studied [17].

In our analysis we define an interval ∆tAB as the elapsed time between two different outcomes
A and B. This is given as a whole number of days. We obtain distributions for:

• Case intervals, between cases and more severe outcomes: Case-to-Hospitalisation (∆tCH),
Case-to-ICU admission (∆tCI), Case-to-Mortality (∆tCM), and;

• Nosocomial intervals, between different outcomes while in hospital, affecting length of stay:
Hospitalisation-to-ICU admission (∆tHI), Hospitalisation-to-Mortality (∆tHM), ICU admission-
to-Mortality (∆tIM).

We detail in Appendix A how the high resolution of the data allows different outcomes to be
associated.

3 Results

3.1 Interval distributions

Fig. 1 summarises all empirical interval distributions, alongside parameters for distribution fits
(detailed in Appendix B).

For outcomes where a corresponding case was found, we first note that for hospital admissions
and ICU admissions, a significant proportion (28% and 11% respectively) of these were dated the
same day as the case. This proportion remains broadly consistent throughout the period studied
(Fig. D.4(b)). Excluding these same-day events, the mean case-to-hospitalisation interval (∆tCH)
was 6.9 days (with 90% of all admissions within the range [1, 15] days). Similarly, the mean case-
to-ICU admission interval was 7.3 days [1, 15] and the mean case-to-mortality interval was 11.9
days [2, 24]. 24% of hospital admissions (7,580/31,724), 11% of ICU admissions (398/3,514) and
17% of mortalities (1,399/8,306) had no associated case. These “no-case” entries likely include
instances where the individual age/sex/DZ were inconsistent across the data, as well as instances
where COVID-19 was identified as a cause, but without a positive test being reported on or before
admission.

The same distributions are presented by age, sex, and deprivation of an individual’s residing
DZ in Fig. C.1, and Tbls. 1, 2. These reveal that case intervals shorten in older age groups.
Focusing on case-to-hospitalisation intervals, 39% (3,814/9,743) of hospital admissions amongst
those aged 70+ were on the same day as testing, falling to 16% (936/5,866) for those aged 20–49.

There is a smaller difference considering the level of local deprivation, with the proportion of
same-day admissions increasing from 25% (1,374/5,439) in the least deprived third of DZs, to 30%
(3,484/11,560) in the most deprived third. By sex, 27% (3,237/11,878) of admissions amongst
women were on the same day, compared to 29% (3,600/12,266) for men.
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Figure 1: Interval distributions across all ages 20+, comparing time between a (C)ase, (H)ospial admission, (I)CU
admission, and (M)ortality. The “no case” entries represent instances where no associated case was found for that
severe outcome. Fit parameters are for gamma distributions (with zero inflation for case intervals), detailed in
Appendix B.

Tbl. 2 summarises nosocomial intervals, relating to hospital time of stay. The overall mean
interval from hospitalisation to ICU admission ∆tHI was 2.1 days [0, 9], with younger age groups
having shorter intervals. The mean hospitalisation-to-mortality interval ∆tHM was 9.6 days [1,
20]. For those that died after admission to an ICU, the mean interval ∆tIM was 8.9 days [1, 19].

3.2 Variability in outcomes across different timeframes

During the period studied between September 2020 and January 2022, the epidemic in Scotland
evolved in several characteristic ways. First, the dominant coronavirus variant switched three
times (the initial wild type, followed by the Alpha variant introduced around November 2020,
followed by the Delta variant introduced around May 2021, finally being replaced by the Omicron
(BA.1) lineage, introduced around November 2021). Additionally, Scotland’s COVID-19 vaccina-
tion programme began in December 2020, and by January 1 2022 over 11 million doses had been
administered to a population of 5.5 million, with high uptake across all age groups [18]. This was
in addition to the introduction of novel antiviral treatments, available to the most vulnerable [19].
The corresponding change in intervals throughout the period are then presented in Fig. 2. Case
intervals remain broadly consistent, as do the proportion of “same-day” admissions (Fig. D.4).
∆tIM falls slightly.

3.3 Estimated hospitalisation-to-discharge interval

The analysis so far considers explicit intervals between across serial outcomes of increasing severity.
The data do not specify date of recovery or discharge, for those admitted to hospital with COVID-
19 but later discharged (and assumed to recover). Using a standard approximate Bayesian compu-
tation (ABC) algorithm, we estimate a distribution P (∆tHD) for the nosocomial hospitalisation-
to-discharge intervals ∆tHD for admissions that do not have an associated death, by comparing to
the trajectory of hospital occupancy, for those with confirmed COVID-19 [17].

Our methodology is detailed in Appendix D. Briefly, we use the eDRIS data to infer admis-
sions of patients that specifically go on to survive (i.e. admissions without an associated mortal-
ity) (Fig. D.3(e)), and public occupancy data to infer the occupancy of those patients specifically
(Fig. D.3(f)). We then fit a distribution of hospitalisation-to-discharge intervals that best re-

4

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281769doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281769
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2: Time evolution of the interval distribution, with points indicating individual instances (taking date of the
first outcome, e.g., a case-to-hospitalisation interval is plotted on the date of the case), and the line representing
the rolling mean of intervals in a 28-day window centered around that date. The approximate times of introduction
of the Alpha, Delta and Omicron variants into Scotland (November 1 2020, May 1 2021 and November 15 2021
respectively) are marked.

produce this occupancy. To account for changes in the epidemic during the period studied, we
divide the fit into two periods, with data up to April 30 2021 preceding the first major wave of the
Delta variant termed the “pre-Delta” period, and data from May 1 2021 onwards the “post-Delta”
period.

The posterior distributions (for a zero-inflated exponential distribution with rate β and inflation
ν) are given in Fig. D.2. In the “pre-Delta” period, the mean interval (across all accepted P (∆tHD))
was E(∆tHD) ∼ 13.2 ± 0.8 days, falling to E(∆tHD) ∼ 9.5 ± 0.5 days in the “post-Delta” period.

Figures D.3(g–h) also show a consistently high proportion of hospital burden (both admissions
and occupancy) was from individuals that were eventually discharged (and assumed survived).
This proportion is a distinct metric from hospitalisation survival rates, as the occupation propor-
tion may also change if the mean length of hospitalisation stay by outcome changed substantially.

We note that in this analysis, hospital admissions obtained from the eDRIS data are marginally
lower than the public PHS data across the period. As we discuss further in Appendix D, this may
lead to an overestimation of the intervals of each stay.

4 Discussion

The COVID-19 pandemic has seen an unprecedented level of consistent, voluntary, recorded test-
ing, in effort to detect and control the spread of infection. This volume of testing, in combination
with precise data routinely collected on hospitalisation and mortality, allows us to analyse the nat-
ural history of COVID-19 disease at the level of the individual. The monitoring of other infectious
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diseases in comparison is usually far more rudimentary; the endemic prevalence of influenza in the
UK for example is regularly estimated by the volume of phone calls to GPs citing influenza-like
symptoms [20]. With the volume of recorded COVID-19 testing since falling to a fraction of that
in the period studied here, this period is a unique window for studying intervals of an infectious
disease at such detail.

Our work here uses COVID-19 outcomes data in Scotland to draw empirical distributions
of intervals between cases and subsequent severe outcomes, as well as intervals between those
severe outcomes (e.g., the time between hospital admission and death). The case-to-hospitalisation
intervals in particular (Fig. 1) inform, given a surge in COVID-19 cases, how delayed and drawn
out a corresponding trajectory in hospital admissions may be. This is important for estimating the
timing and size of peak demand on healthcare services (and whether that could exceed capacity),
given a surge in cases.

These intervals have a clear age structure (Fig. C.1, Tbl.1). Notably, this variation is largely
seen in the proportion of “same-day” events; 16% of all age 20–49 admissions were on the same
day compared to 39% for ages 70+, whereas the mean interval for those not admitted on the
same day only fell slightly, from 7.4 days to 6.5 days. This larger same-day variation is also seen
with respect to deprivation. This suggests a difference in risk profiles between those testing prior
to admission (where severe symptoms develop later), and those testing on the same day or on
admission. A likely influencing factor is admissions from those admitted to hospital for a non-
COVID-19 reason, but tested positive on a routine test on admission. Prior to the introduction of
the Omicron variant the proportion of COVID-19 admissions being “with” COVID-19 remained
at approximately 25% (Fig. D.4(a)).

As well as age, deprivation and sex have been highlighted as risk factors for poor COVID-19
outcomes, with higher rates associated with men [21, 22, 23], and individuals living in more de-
prived communities [2, 24, 25]. Our analyses confirm this in the overall number of severe outcomes
per group, and reveal modest variation in their intervals (Tbl. 1), with a slightly higher proportion
of same-day admissions from both men, and individuals living in more deprived communities.

Compared to cases (dated to when a test is taken), the delay from infection or onset of
symptoms to these severe outcomes will be longer, taking into account the incubation period of
the disease (estimated to have a median of order five days [26, 27]), and potential delay between
onset of symptoms and taking a test. In light of this, our results are then broadly consistent
with intervals presented by a UK study [15], which infers the mean interval from infection to
hospitalisation prior to January 2021 to have been of order 8–10 days (as compared with our
mean case-to-hospitalisation interval of 6.9 days), and time from infection to mortality to have
been of order 9–16 days (compared to our mean case-to-mortality interval of 11.9 days). A more
recent work in Reference [16] studies intervals in South Korea over a similar period to that studied
here, and finds a longer mean interval from symptom onset to death of 20.1 days, and from
symptom reporting to death of 16.7 days. The measured interval from cases or onset to more
severe outcomes will have several influencing factors. These include but are not limited to the
frequency of testing (in turn the mean time after infection that a test is taken), the properties
of the virus and differences across different variants and, as highlighted here, the structure of the
population with respect to age. It is therefore reasonable to expect variation in absolute values,
but trends such as a shortening in intervals with increasing age appear to be consistent across
studies [15, 16].

While the nosocomial intervals — relating to time of stay in hospital — are routinely collected,
they are not often available to researchers at such detail, with the data used here an exception
owing to the need for modelling support in the acute stage of this pandemic. We see variation
in these intervals through the period studied. For those admitted to hospital that go on to die,
the interval from admission to death shortens over the period (Fig. 2). This is somewhat counter-
intuitive given improving rates of survival after admission (Fig. D.3(g–h)), but may be due to
individuals who recover and are discharged, that may have died if infected at an earlier stage of
the pandemic (where treatment of severe COVID-19 disease was less well understood). If one then
assumes that these “removed’ individuals are generally healthier and would have stayed alive in
hospital for longer, the removal of these individuals would reduce the mean interval overall.
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The programme of free community testing in Scotland has allowed the spread of the virus to
be tracked at remarkable spatio-temporal resolution [28, 29, 30, 2, 31, 32, 33]. Despite prevalence
remaining high throughout 2022 [34], Scotland has since entered a phase where testing is no longer
mandatory, nor generally free of charge. The proportion of COVID-19 infections being identified
is now very low. The absence of such testing data may result in future outbreak modelling relying
on the trajectories of severe outcomes only, or more basic estimates of incidence. Combined with a
reasonable understanding of the incubation period and potential case ascertainment, our interval
distributions may help infer routes of transmission and patterns of infection.
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A Associating outcomes

We define an interval ∆tAB ≥ 0 as the time difference between two different COVID-19 outcomes
A and B, given as a whole number of days. We do not differentiate by any intermediate outcomes;
for example, the case-to-mortality intervals includes both patients that were and were not admitted
to an ICU.

We link different events with one another. For example, consider a hospitalisation entry H,
for which we are attempting to associate a case C. To do this we:

1. Search for cases {C} from the eDRIS test data, where the DZ, age range and sex matches
with H, and occurred on the same day as, or up to 28 days before H.

2. If at least one one possible matching case is found, take the interval ∆tCH as the time
difference between H and and the median date of the candidate cases {C}. Otherwise, label
the hospitalisation entry H as unlinked.

We associate outcomes up to 21 days apart, with the exception of case-to-mortality intervals,
where we search over 28 days. For case intervals, unlinked instances are reports of more severe
outcomes, but without an associated prior case reported. For nosocomial intervals, unlinked
outcomes are common (such as a mortality without an ICU admission), and are not counted.

Finally, in the data we omit events with incomplete age/sex/DZ entries (as we use these to
associate different outcomes), as well as repeat admissions by the same individual within a window
of 60 days, taking only the first admission.
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B Distribution fits

For fitting the empirical distributions from Figures 1,C.1, we choose two-parameter gamma dis-
tributions P (∆t):

P (∆t) = λ (∆t′)
α−1

e−β∆t′ , (1)

for 0 ≤ ∆t ≤ 21 days (28 days for ∆tCM) and zero outside this range, with α determining the
characteristic shape of the distribution for smaller ∆t, and β determining the rate of exponential
decay as ∆t increases, and λ a normalising constant fixing

∫∞
0

d(∆t′)P (∆t′) = 1.
To account for instances where the case and a more severe outcome are on the same day

(∆t = 0), case intervals are fit across ∆t ≥ 1 only, with a zero-inflation ν fit separately, to reflect
the proportion of all “same-day” events:

P (∆t) =

{
ν 0 ≤ ∆t ≤ 1

λ′ (∆t′)
α−1

e−β∆t′ 1 < ∆t ≤ 21 (28 for ∆tCM)
(2)

where λ′ here fixes
∫∞
1

d(∆t′)P (∆t′) = 1−ν. These fit values are given alongside the distributions
in Figures 1, C.1.

C Intervals by age, sex and local deprivation

Statistics on intervals are given in Tbl. 1 for case intervals, and Tbl. 2 for nosocomial intervals.
These are specified by age, sex and the relative deprivation of residing DZ (equally dividing the
DZs into three groups, based on the overall rank in the Scottish Index of Multiple Deprivation [35]).
We finally plot the intervals by age group in Fig. C.1.

D Estimation of hospitalisation-to-discharge intervals

In this section we detail the method to estimate a distribution for the interval between hospitalisa-
tion and discharge, for patients presumed to not die in hospital. This is a much broader estimate
across the whole population, as we do not have explicit times between admission and discharge.
We instead rely on public, national-level occupancy data, provided by PHS [17].

For those admitted with COVID-19 that go on to die, we first use the eDRIS data (and
associated intervals between hospital admission and death) to derive a partial occupancy timeseries
(Fig. D.3(d)). The difference between this occupancy and the overall PHS occupancy is then taken
as the occupancy of admitted individuals that are discharged (Fig. D.3(f)). Finally, knowing the
admission dates of patients that go on to survive (i.e., do not have an associated death) from the
eDRIS data, we estimate the hospitalisation-to-discharge interval distribution, and thus how much
surviving individuals on average contribute to the hospitalisation occupancy burden (Fig: D.3(h)).

Formally, the trajectory of hospital admissions A(t) includes those that go on to be discharged
(and we assume recover) AD(t), and those that die in hospital AM(t):

A(t) = AD(t) +AM(t) . (3)

Similarly, the trajectory of COVID-19 hospital occupancy O(t) includes the occupancy of those
that go on to recover and be discharged OD(t) and those that go on to die OM(t):

O(t) = OD(t) +OM(t) . (4)

To estimate the discrete distribution P (∆tHD) for the (H)ospital admission-to-(D)ischarge interval,
we first rewrite the occupancy of those eventually discharged

OD(t) ≈
∑
t′≤t

AD(t
′)

1−
t−t′∑

∆tHD=0

P (∆tHD)

 (5)
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Total Total linked Same-day events Median (d) Mean (d) [5%, 95%]

∆tCH

20-49 6895 5866 (85%) 936 (16%) 7 7.4 [1, 15]
50-59 5042 4243 (84%) 820 (19%) 7 7.2 [1, 15]
60-69 5358 4292 (80%) 1267 (30%) 6 6.8 [1, 15]
70+ 14429 9743 (68%) 3814 (39%) 6 6.5 [1, 16]
Total 31724 24144 (76%) 6837 (28%) 6 6.9 [1, 15]

∆tCI

20-49 868 748 (86%) 72 (10%) 7 7.7 [1, 15]
50-59 918 817 (89%) 85 (10%) 7 7.6 [1, 14]
60-69 990 909 (92%) 103 (11%) 7 7.0 [1, 15]
70+ 738 642 (87%) 77 (12%) 6 6.8 [1, 15]
Total 3514 3116 (89%) 337 (11%) 7 7.3 [1, 15]

∆tCM

20-49 234 179 (76%) <10 (2%) 12 12.6 [2, 25]
50-59 513 426 (83%) <10 (1%) 11 12.3 [2, 26]
60-69 1106 895 (81%) <10 (1%) 12 12.6 [2, 25]
70+ 6453 5407 (84%) 48 (1%) 11 11.8 [3, 24]
Total 8306 6907 (83%) 64 (1%) 11 11.9 [2, 24]

Total Total linked Same-day events Median (d) Mean (d) [5%, 95%]

∆tCH

Female 15498 11878 (77%) 3237 (27%) 6 6.9 [1, 15]
Male 16226 12266 (76%) 3600 (29%) 6 6.9 [1, 15]
Total 31724 24144 (76%) 6837 (28%) 6 6.9 [1, 15]

∆tCI

Female 1330 1202 (90%) 116 (10%) 7 7.3 [1, 15]
Male 2184 1914 (88%) 221 (12%) 7 7.3 [1, 15]
Total 3514 3116 (89%) 337 (11%) 7 7.3 [1, 15]

∆tCM

Female 3890 3246 (83%) 26 (1%) 11 11.9 [2, 24]
Male 4416 3661 (83%) 38 (1%) 11 12.0 [2, 24]
Total 8306 6907 (83%) 64 (1%) 11 11.9 [2, 24]

Total Total linked Same-day events Median (d) Mean (d) [5%, 95%]

∆tCH

1 (High) 14952 11560 (77%) 3484 (30%) 6 6.8 [1, 15]
2 (Medium) 9416 7145 (76%) 1979 (28%) 6 7.0 [1, 15]
3 (Low) 7356 5439 (74%) 1374 (25%) 7 7.2 [1, 16]
Total 31724 24144 (76%) 6837 (28%) 6 6.9 [1, 15]

∆tCI

1 (High) 1719 1515 (88%) 187 (12%) 7 7.1 [1, 15]
2 (Medium) 1051 938 (89%) 89 (9%) 7 7.4 [1, 15]
3 (Low) 744 663 (89%) 61 (9%) 7 7.6 [1, 15]
Total 3514 3116 (89%) 337 (11%) 7 7.3 [1, 15]

∆tCM

1 (High) 3773 3120 (83%) 27 (1%) 11 11.8 [2, 24]
2 (Medium) 2522 2113 (84%) 23 (1%) 11 12.0 [2, 24]
3 (Low) 2011 1674 (83%) 14 (1%) 11 12.2 [3, 25]
Total 8306 6907 (83%) 64 (1%) 11 11.9 [2, 24]

Table 1: Case intervals. Total : Number of that outcome found in the eDRIS data. Total linked : Number of that
outcome found with an associated linked case. Same-day events: Number of linked events with where the case
was reported with the same date. Median/Mean interval : Of the linked events found, the median/mean time
interval between case and outcome (same-day events excluded). [5%, 95%] : Bounding the central 90% of intervals
(same-day events excluded).

writing OD(t) as a convolution of the admissions trajectory AD(t
′), and the proportion of indi-

viduals remaining in hospital after interval t − t′. (1− P (0)) is then the proportion of patients
that are in hospital for at least one full day. Knowing OD(t) and AD(t), what remains is to fit an
appropriate P (∆tHD).

We assume P (∆tHD) follows a zero-inflated exponential distribution, with the zero inflation
accounting for individuals admitted, but discharged without an overnight stay. We use a standard
Approximate Bayesian Computation (ABC) algorithm in a two-parameter space (exponential de-
cay rate β, and zero-inflation ν), and take two different fits for the periods September 10 2020 –
April 30 2021, and May 1 2021 – January 6 2022.

The prior (for ν: U(0, 1) and for β: U(0.05, 1)), allows for any zero-inflation, and restricts
the mean occupancy of those that stay at least one night between 1.1 and 20 days. We build a
posterior by accepting parameters that generate modelled occupancy trajectories ÕD(t) that best
fit OD(t). We sample 106 different pairs of parameters, from which we take the 1, 000 that produce
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Total linked Median (d) Mean (d) [5%, 95%]

∆tHI

20-49 696 0 1.5 [0, 6]
50-59 807 1 1.9 [0, 9]
60-69 877 1 2.2 [0, 9]
70+ 623 1 3.0 [0, 11]
Total 3003 1 2.1 [0, 9]

∆tHM

20-49 97 10 10.2 [1, 20]
50-59 275 9 9.5 [1, 19]
60-69 632 10 10.2 [2, 20]
70+ 3364 9 9.5 [1, 19]
Total 4368 9 9.6 [1, 20]

∆tIM

20-49 64 10 9.4 [1, 19]
50-59 147 10 10.1 [2, 19]
60-69 301 9 9.8 [1, 20]
70+ 357 7 7.6 [1, 17]
Total 869 8 8.9 [1, 19]

Total linked Median (d) Mean (d) [5%, 95%]

∆tHI

Female 1120 1 2.1 [0, 9]
Male 1883 1 2.2 [0, 9]
Total 3003 1 2.1 [0, 9]

∆tHM

Female 1957 8 9.2 [1, 20]
Male 2411 10 9.9 [1, 20]
Total 4368 9 9.6 [1, 20]

∆tIM

Female 295 7 8.3 [1, 19]
Male 574 9 9.2 [1, 19]
Total 869 8 8.9 [1, 19]

Total linked Median (d) Mean (d) [5%, 95%]

∆tHI

1 (High) 1479 1 2.0 [0, 8]
2 (Medium) 900 1 2.3 [0, 9]
3 (Low) 624 1 2.3 [0, 10]
Total 3003 1 2.1 [0, 9]

∆tHM

1 (High) 2118 9 9.3 [1, 19]
2 (Medium) 1338 9 9.7 [1, 20]
3 (Low) 912 10 10.2 [2, 20]
Total 4368 9 9.6 [1, 20]

∆tIM

1 (High) 417 8 8.7 [1, 19]
2 (Medium) 268 9 9.4 [1, 19]
3 (Low) 184 8 8.7 [1, 19]
Total 869 8 8.9 [1, 19]

Table 2: Nosocomial intervals. Total linked : Number of that outcome found with an associated prior event in the
period studied. Median/Mean interval : Of the linked events found, the median/mean time interval between source
and outcome. [5%, 95%] : Bounding the central 90% of intervals.

via Eq. (5) the timeseries Õ∗
D(t) that best fits OD(t), minimising the sum of absolute residuals

ϵ∗ =
∑
t

∣∣∣ÕD(t)−OD(t)
∣∣∣ . (6)

Between September 10 2021 and January 6 2022, PHS reported a total of 38,480 admissions,
whereas 32,718 were derived from the eDRIS data in the same period. With fewer admissions
(Fig. D.3(a)), we may then over-estimate the mean interval of each stay. There is also a clear time
dependence; in Fig. D.3, the admission peak of 241 on January 11 2021 preceded an occupation
peak of 2,053, 11 days later. However, a second admissions peak of 202 on September 7 2021
preceded a much lower occupation peak of 1,107, 14 days later, suggesting those admitted were
staying for less time. We have then separately fit two periods, but Fig. D.3(f) suggests further
variation within these periods. From December 2021 onward, hospital admissions are most likely
attributable to infection with the Omicron variant, where material changes in admissions trends
would be expected as compared to previous variants, owing to a lower observed severity [36].
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Figure C.1: Interval distributions, separated by age group. A “no-case” entry is logged in the case intervals when a
severe COVID-19 outcome (such as a hospitalisation) is identified, but has no associated case. α, β, are fit values
for the gamma distribution rate, shape and ν is the zero inflation parameter (if applicable).

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281769doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281769
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.00

0.05

0.10

0.15

0.20

0.00 0.25 0.50 0.75 1.00

ν

β

Posterior

0.0

0.2

0.4

0.6

6 8 10 12 14 16 18 20

E(∆tHD)

post−Delta pre−Delta

0 10 20 0 10 20
0.0

0.1

0.2

0.3

0.4

0.5

∆tHD

P(∆tHD)

model (pre−Delta) model (post−Delta)

Figure D.2: Posterior distributions, mean intervals and distributions for hospitalisation-to-discharge intervals ∆tHD,
across the “pre-Delta” (10 September 2020 – 30 April 2021) period, and “post-Delta” period (1 May 2021 – 6 January
2022).
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Figure D.3: Trajectories of hospital admissions, and occupancy, of COVID-19 patients in Scotland. Overall admis-
sions (a) and occupancy (b) are from Public Health Scotland (purple). PHS-published admissions are generally
higher than those derived from the eDRIS data stream (magenta). We then infer which of those admissions were
from patients that eventually died (c), and the hospital occupancy of those individuals (d). The remaining admis-
sions (e) and occupancy (f) are then taken to be from patients that go on to be discharged (and we assume survive).
Finally the proportion of admissions (g) and occupancy (h) by patient outcome.
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Figure D.4: 28-day rolling mean of proportion of COVID-19 hospital admissions by (a) whether COVID-19 was
the primary reason for admission, (b) whether the admission was on the same day as the related COVID-19 case
(for admissions with an associated case). The approximate times of introduction of the Alpha, Delta and Omicron
variants into Scotland (November 1 2020, May 1 2021 and November 15 2021 respectively) are marked.
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