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Abstract. In-depth multiomics phenotyping can provide a molecular understanding of complex 

physiological processes and their pathologies. Here, we report on the application of 18 diverse deep 

molecular phenotyping (omics-) technologies to urine, blood, and saliva samples from 391 participants 

of the multiethnic diabetes study QMDiab. We integrated quantitative readouts of 6,304 molecular 

traits with 1,221,345 genetic variants, methylation at 470,837 DNA CpG sites, and gene expression of 

57,000 transcripts using between-platform mutual best correlations, within-platform partial 

correlations, and genome-, epigenome-, transcriptome-, and phenome-wide associations. The achieved 

molecular network covers over 34,000 statistically significant trait-trait links and illustrates “The 

Molecular Human”. We describe the variances explained by each omics layer in the phenotypes age, sex, 

BMI, and diabetes state, platform complementarity, and the inherent correlation structures of 

multiomics. Finally, we discuss biological aspects of the networks relevant to the molecular basis of 

complex disorders. We developed a web-based interface to “The Molecular Human”, which is freely 

accessible at http://comics.metabolomix.com and allows dynamic interaction with the data. 

 

Keywords: Multiomics, Cross-omics analysis, Mutual best correlation hits (MBH), Gaussian Graphical 

Models (GGMs), Genome-wide (GWAS), Epigenome-wide (EWAS), Transcriptome-wide (TWAS), 

Molecular phenotype, Disease endpoints.  
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INTRODUCTION  

 

The quote “Learn how to see. Realize that everything connects to everything else” by Leonardo Da Vinci 

becomes substantive in the context of high-throughput deep molecular phenotyping technologies that 

enable the measurement of hundreds or even thousands of quantitative readouts of the genome, 

transcriptome, proteome, metabolome,  and glycome as well as related intermediate omics layers, such 

as the epigenome, and microRNA-ome (Chen et al., 2012; Dai et al., 2021; Hasin et al., 2017; Karczewski 

and Snyder, 2018; Sailani et al., 2020; Suhre et al., 2010)(de Haan et al., 2022). Integrated into a single 

study, these readouts simultaneously provide insight into the molecular interactions that define the 

physiological and the pathophysiological processes in the human body.  

 

Deep molecular phenotyping at large-scale using multiple platforms and matrices (“multiomics”) in large 

cohort studies is becoming increasingly attractive and is already being driven by the UK Biobank 

consortia, which genotyped 500,000 participants and are currently acquiring transcriptomics, 

proteomics, and metabolomics data for a large fraction of them. With many different technologies and 

platforms available, however, questions arise as to the choice of platform, platform complementarity, 

and most importantly, how to integrate the disparate and complex data sets once they have been 

captured as well as how to visualize and present the results outcomes. 

 

Here, we report on what is arguably one of the most deeply phenotyped cohort studies to date. The 

Qatar Metabolomics Study of Diabetes (QMDiab) (Mook-Kanamori et al., 2014) was originally designed 

as a diabetes case-control study in the multiethnic population of Qatar. We collected multiple aliquots 

of blood, urine, and saliva samples from 391 volunteers, with and without diabetes, of predominantly 

Arab, Filipino, or Indian ethnic backgrounds with the goal of acquiring sufficient material for multiomic 

analysis (see methods). The collected samples were subsequently characterized on 18 different high-

thruput omics platforms.  These included blood circulating micro-RNAs, proteins, molecular levels of 

IgG- and IgA- glycosylations, N-glycosylation of total protein, metabolites in urine, saliva and plasma 

measured on targeted and non-targeted Nuclear Magnetic Resonance (NMR)- and mass spectrometry 

(MS)-based metabolomics platforms, and lipid composition by size-resolved lipo-proteomics  as well as 

complex lipid profiles. Over 6,300 individual omics data points were collected for each study participant. 

In addition, samples were genotyped for 1.2 million genetic variants, the white blood cell transcriptome 
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was sequenced at a depth of 20 Mio reads to quantify the expression of 57,000 transcripts, and DNA 

methylation levels for 450,000 CpG sites were determined.   

We aimed to simultaneously answer technical questions related to omics platform complementarity, 

data integration, visualization, and accessibility, as well as biological questions related to 

interrelationships between these molecular traits and their association with complex disease. The 

ultimate goal was to draw, through these omics’ layers, an image of “The Molecular Human”.  

 

To achieve this goal, we connected all multiomics traits using appropriate measures, that is, mutual best 

hits (MBH) of between-platform correlations, partial correlations to construct Gaussian Graphical 

Models (GGMs) within individual omics-layers, and genome-wide (GWAS), epigenome-wide (EWAS) and 

transcriptome-wide (TWAS) associations between the high-dimensional genomics readouts and the 

other omics layers. Finally, we integrated all connections into a multiomics network with clinical 

endpoints through phenome- and genome-wide disease associations. We evaluate each omics layer for 

its potential to explain the variability of the study participants’ age, sex, BMI and diabetes state, and 

further quantified the between layer degree of shared mutual information. Finally, we present three 

distinct use cases to show the generalizability of the approach. To facilitate rapid sharing of our results, 

and also to provide the user with the possibility of testing the interactions of their own molecules of 

interest in the context of other omics layers, we developed a webserver called Connecting Omics 

(COmics) (http://comics.metabolomix.com). We also provide the full network in digital format 

(Cytoscape) for free download.  

 

RESULTS 

Deep molecular phenotyping of 391 individuals using 18 omics platforms in three sample matrices  

Urine, saliva, and blood samples from 391 subjects in the QMDiab study were analyzed on 18 technically 

distinct platforms (see Table 1 for platform abbreviation) relying on sequencing-, microarray-, MS-, 

NMR-, affinity binding-, chromatography-, and biochemistry assay-based technologies (see Methods, 

Table 1, Figure 1, and Supplementary Table 1 for all molecules measured on non-genomics platforms). 

The number of quantitative molecular traits determined by the non-genomics platforms ranged from 36 

to 1,201, and the number of samples shared between two platforms from 229 to 356 (Table 2). In total, 

we determined quantitative measures for up to 6,304 molecular traits per sample along with genotypes 
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for 1,221,345 autosomal SNPs, expression levels of 57,773 transcripts, and DNA methylation of 470,837 

CpG sites.  

 

Complex correlation structures within and between platforms pose major challenges to the integration 

of these datasets. For example, correlation between complex lipid species may be driven by the 

abundance of common precursor fatty acids, but also by factors determining interconversion between 

different classes. To cope with these challenges, and based on prior experience (Krumsiek et al., 2011; 

Suhre et al., 2017), we adopted a strategy using MBHs correlation between platforms, partial 

correlations within platforms, and linear model associations for genomics traits (GWAS, EWAS, and 

TWAS hits). In total we identified 2,103 unique MBHs, 6,183 partial correlations, as well as 768 GWAS, 

3,772 EWAS, and 1,660 TWAS hits at stringent Bonferroni significance levels (see methods).  

To simplify data access and result visualization we integrated all associations along with GWAS catalogue 

information into a molecular network and constructed a molecular network consisting of in excess of 

34,000 edges and 6,304 nodes, which we  made available in the form of the freely accessible COmics 

webserver (http://comics.metabolomix.com). All associations and the server software are available for 

download as source code and a Docker image (https://github.com/karstensuhre/comics). 

 

Information content of the platforms: explained variance of age, sex, BMI, and diabetes state.  

The molecular composition of the body at different omics layers is usable to explore effects of sex 

(Krumsiek et al., 2015; Miike et al., 2010; Singmann et al., 2015), measure biological age  (Kristic et al., 

2014)(Bocklandt et al., 2011; Hertel et al., 2016; Lehallier et al., 2019; Peters et al., 2015; Robinson et al., 

2020; Tanaka et al., 2018), or study diabetes progression (Pena et al., 2016; Schrader et al., 2022; Wang-

Sattler et al., 2012). Here we investigated which of the molecular traits and platforms most accurately 

characterize phenotypes such as age, sex, BMI and type 2 diabetes (T2D). First, we determined 

molecules associated with the phenotypes age, sex, BMI and T2D and identified 194, 325, 60, and 129 

associated molecules, respectively (Supplementary Table 2 - 5). Next, we examined the percentage of 

age, sex, BMI and T2D variance, which may be explained in data from each individual platform. We 

trained a random forest model for two continuous (age and BMI) and two dichotomous traits (sex and 

diabetes state) on each platform and estimated the variation explained by the respective omics 

phenotype (Table 3). We found that both metabolomics and proteomics accurately describe the 

variation of all the investigated phenotypic traits. For instance, the variations in sex (95%) and T2D (86%) 

were most precisely captured by the HDF platform, age (54% and 52%) by the OLINK and SOMA 
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platforms respectively, and BMI (42%) by the SOMA platform. The molecules measured on clinical 

chemistry data (CLIN) were accurate towards age (55%), sex (93%) and T2D (92%).  

This data identifies individual platform capability to explain variance in age, sex, BMI and T2D 

phenotypes  

Mutual Best Hits between platforms assessment 

MBHs, also known as reciprocal or bidirectional best hits, are a hypothesis-free approach to identify 

molecular orthologs between platforms. Inspired by the use of MBHs to distinguish orthologous from 

paralogous genes in bacterial genome analysis (Overbeek et al., 1999; Tatusov et al., 2001), we use this 

approach here to identify ortholog readouts between two platforms. This can be challenging when the 

platforms capture related features using different techniques and at varying depth. Examples are 

differences in resolution of lipid side chains or protein glycosylation. Examining these individual MBHs 

pairs may also provide insight into the measurement quality of the specific molecule on each individual 

platform, reveal potential issues with molecule annotations, and help define the general overlap 

between platforms. 

The number of MBHs between every two platforms (�) is presented in Table 2, and the correlation 

levels of all statistically significant MBHs are provided in Supplementary Table 6. The number of traits 

determined by each platform varies, so the relative information content provided by one platform 

compared to another is also different. For example, 60 urine metabolites were measured using the 

NMR-based Chenomx platform (CM; see Table 1 for platform abbreviations) and 805 molecules were 

quantified on the MS-based Metabolon HD2 platform (UM). We identified 43 significant MBHs between 

the two platforms, accounting for 72% of the traits determined by the CM platform but only 5% by the 

UM platform. 

Given the technological similarity, the largest number of MBHs was found between successive 

generations of the Metabolon platforms (HDF � PM) with 369 hits. Out of these, 291 paired identically 

annotated metabolites, 57 MBHs linked an unknown metabolite measured on the older platform to an 

annotated molecule measured on the more recent platform (e.g. X-18601 � androstenediol 

(3beta,17beta)-monosulfate), and 21 MBHs linked apparently differing molecules in related pathways (7 

molecules; e.g. threonate � oxalate) or unknowns (14 molecules). As the Metabolon platforms differ 

with respect to the technology employed, this shows a robust concordance of platform performance 

and progressing component identification over time. 
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Detailed IgG glycosylation was determined by two independent platforms depicted as IgG and IgA.  In 

the results, 29 out of 31 identified MBHs mapped to the same glycan structure, showing excellent 

agreement between both platforms.  

Two different affinity proteomics platforms were used, one based on aptamers (SOMA, 1129 traits), the 

other based on antibody pairs as binders (OLINK, 184 traits). Out of 72 proteins that overlapped 

between both platforms, 52 were linked by MBH. We further investigated the correlations of 

overlapping proteins (Supplementary Table 7). We further focused on those proteins, which were not 

captured by a MBH and showed low correlation to further explore its impact on molecular network 

(Supplementary Information Note 1). We found different molecular networks around those proteins 

which suggests that proteins showing low correlation should be validated with alternative technical 

platform to ensure the correctness of the measurement.   

Overall, the technologically different platforms, deployed to cover same omics, display concordance in 

respect of detected molecules, which underscores good quality of selected methods.    

Evaluation of platform performance through the strength of GWAS hits. 

The strength of a genetic association depends on sample number, the effect size, as well as the technical 

and biological variability of the phenotype. Replication of genetic signals across platforms provides an 

independent assessment of the strength of that platform, especially when evaluated on sample aliquots 

from the same study, where technical variability is the only factor that differs between platforms. Thus, 

comparing association p-values for QTLs with different omics phenotypes on an identical genetic variant 

provides an objective measure for comparing readouts from two platforms.  

Exploiting this property (see Supplementary Information Note 2), we found none of the platforms 

employed to generally outcompete the alternatives regarding strength of genetic association, but 

individual platforms showed superior performance for certain molecules. 

  

Deploying platform complementarity to provide further insight into the structure of complex lipids. 

The composition of fatty acid (FA) side chains in complex lipids such as phosphatidylcholine or 

triacyclglycerols play a role in a broad range of biological processes and it is thus critical to determine FA 

composition in measured lipids. This information is, however, not provided for phosphatidylcholines 

measured on the BM platform or triacyclglycerols measured on the LD platform. We previously showed 

that the composition of phosphatidylcholines measured on the BM can be resolved by LD platform 
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(Quell et al., 2019). Here, we investigated whether MBH may support more accurate determination of 

the structural composition of complex lipids. Indeed, after examining MBH between the two lipidomics 

platforms (LD � BM) and between the metabolomics and lipidomics platforms (HDF � BM) and (HDF 

� LD), we resolved the FA side chain composition for a number of complex lipids. The side chain 

composition of phosphatidylcholines measured on the BM platform, for instance,  were delineated using 

MBH (e.g. PC_aa_C32:1 � PC(16:0/16:1), PC_aa_C40:6 � PC(18:0/22:6)) (Figure 2A), in line with our 

previous study (Quell et al., 2019). The characterization of fatty acid chains in triacylglycerol was 

similarly refined (TAG48:2-FA14:0 � myristoyl-linoleoyl-glycerol (14:0/18:2); TAG54:6-FA22:6 � 

palmitoyl-docosahexaenoyl-glycerl (16:0/22:6)) (Figure 2B).  

These examples indicate how combining two technologically similar platforms can add valuable 

information, making them complimentary rather than redundant.  

Molecular associations within and between omics represent biological process 

Connection within and between distinct omics layers may reveal biological interactions via the 

molecules showing association and various computational strategies may be applied to provide such 

insight. One such example are Gaussian Graphical Models (GGMs), based on partial correlation 

coefficients, which we previously employed to reconstruct pathways from metabolomics data (Krumsiek 

et al., 2011). GWAS with intermediate phenotypes such as metabolomics, proteomics, or epigenomics 

have already been numerously conducted across different populations providing insight into  human 

physiology and various pathophysiological processes (Gilly et al., 2020; Huan et al., 2019; Kettunen et al., 

2016; Suhre et al., 2021; Suhre et al., 2011).  For instance, our previous EWAS lead to identification of  

associations between epigenetic variations and different biological traits (Li et al., 2019)(Zaghlool et al., 

2020; Zaghlool et al., 2018).  

Here we will discuss multiple examples showing how the computed associations between various omics, 

reflect on the underlying biology. This includes GGMs (Supplementary Table 8); MBH between omics 

(Table 2 and Supplementary Table 6); associations of SNPs with methylation levels (meQTL’s) (1,381 

meQTL’s see Supplementary Table 9); association of methylation levels with mRNA expression levels 

(eQTM’s) (15,991 eQTM’s see Supplementary Table 10); association of  SNPs with mRNA  expression 

(eQTL’s) (17 eQTL’s see Supplementary Table 11); GWAS with multiomics (mo) (768 omicQTLs at 586 

independent genetic loci presented in Supplementary Table 12); EWAS with multiomics (moEWAS) 

(3,772 omicQTMs presented in Supplementary Table 13); and TWAS with multiomics (moTWAS) (1,660 
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omicQTRs presented in Supplementary Table 14). Prior to the evaluation of the biological relevance of 

computed associations, we checked whether the GWAS, EWAS, and TWAS resulted in the identification 

of previously reported hits. Our study replicates multiple previous findings as outlined in Supplementary 

Information Note 3. TWAS studies focus mainly on gene–trait associations from GWAS datasets 

(Gamazon et al., 2015; Gusev et al., 2016; Wainberg et al., 2019). To the best of our knowledge, this our 

moTWAS study is the first conducted so far. Examples highlighting biologically relevant findings are 

described below, and more general findings included in Supplementary Information Note 3-7. 

 

Examples of biological processes within various omics data captured by GGM’s. 

The number of identified partial correlations vary according to platform. For instance, 2,689 metabolite-

metabolite associations were identified for the LD platform while only one glycan-glycan association was 

found for the IgG platform (Supplementary Table 7). GGM associations help explain biochemical 

processes by connecting chemical reactions (e.g. association between cortisone � cortisol; fumarate � 

malate; glutamate � alpha-ketoglutarate). GGM also help in the understanding of physiological 

processes such as the association between Luteinizing hormone (LHB) and follicle stimulating hormone 

(FSHB), which synergistically stimulate follicular growth and ovulation (Filicori et al., 1999), as well as the 

metabolism and excretion of aspirin (Figure 3A). Therefore, GGMs provide a simplified overview of the 

actual biological processes and can be graphically explored for each integrated omics layer in our 

COmics server. 

Example of crosstalk between metabolites of different matrices: urine, saliva and plasma.   

MBH between urine, saliva and plasma metabolites, all measured on the Metabolon HD2 platform, 

inform on  crosstalk between these matrices. We found 174, 24, and 14 MBHs between urine and 

plasma metabolites, plasma and saliva metabolites, and urine and saliva metabolites, respectively. Most 

MBHs connected identical molecules, reflecting on homeostasis between saliva and plasma, as well as 

the detoxification processes that occur in the kidney. As for the MBHs we found between metabolites 

from different matrices, this can be used to inform on physiological metabolism as well as  disease 

related pathological processes. For instance, caffeine metabolism may serve as an example showcasing 

metabolic interactions between saliva, blood, and urine (Figure 3B). Paraxanthine is the main caffeine 

metabolite in the body (Lelo et al., 1989). We found a MBH between plasma and salivary paraxanthine, 

in addition to a MBH between paraxanthine in saliva and its metabolic product, 1,7-dimethylurate 

(Nehlig, 2018) in urine. This shows how data between different sample matrices can be integrated and 

interpreted.  
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Examples of biological interactions identified by MBH 

MBHs can represent simple relationships such as molecular transport as well as more complex 

relationships pertaining to disease. For example, we found a MBH between thyroxine and SERPINA7, a 

thyroxine-binding globulin, which in the bloodstream carries thyroxine and triiodothyronine into thyroid 

gland (Contreras et al., 1981). This MBH between protein and metabolite was found independently of 

proteomic platform used Figure 3 C. A further MBH association found between creatinine, a marker of 

kidney function, and Insulin-like growth factor-binding protein-6 (IGFBP6), previously identified at 

elevated levels in children with chronic renal failure (Powell et al., 1997) potentially sheds light on that 

pathophysiology. Interestingly, we also found a MBH between IGFBP6 and N,N,N-trimethyl-alanylproline 

betaine, which was recently shown to be a signature of compromised kidney function (Velenosi et al., 

2019) (Figure 3 D). For more examples of biological interactions captured by MBHs, see Supplementary 

Note 4. Associations represent the underlying biological processes emphasize the complementarity 

between platforms measuring different omics. 

 

Examples of biological interactions identified by novel GWAS association 

A description of the GWAS association is included in Supplementary Information Note 5 & 6. While 

analyzing our GWAS hits, we found previously unreported GWAS associations between multiple variants 

near ST3GAL1 (rs6995270, rs17721179, rs2945738, rs13264936), sialic acid and 11 different glycans, 

which all include N-acetylneuraminic acid (sialic acid) (Figure 3 E). ST3GAL1 is a glycosyltransferase that 

catalyzes the transfer of sialic acid from Cytidine-5S-monophospho-N-acetylneuraminic acid (CMP-sialic 

acid) to galactosyl β(1,3)-N-acetylgalactosamine] Galβ1-3GalNAc (Lin et al., 2021; Wu et al., 2018). 

Previous studies suggested that ST3GAL1-mediated sialylation plays a role in the cancer cell strategy to 

evade immune attack making ST3GAL1 a potential treatment target (Lin et al., 2021), on which our study 

expands. With this example we further underscore importance of molecular traits like e.g. glycans, 

which serve as intermediate phenotypes for various pathological conditions and thus provide insight on 

genetic background and potential mechanistic link to clinical outcomes.   

 

Examples of biological interactions identified by GWAS and EWAS with microRNA 

Genetic and epigenetic association with miRNA may provide further insight into regulatory mechanisms 

of microRNA transcription and elucidate roles of microRNA in mediating complex disease (Huan et al., 

2015). We identified 10 mirQTLs of which four (miR-181a-5p, miR-133a-3p, miR-133b ,and miR-1) 
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replicated previous findings (Huan et al., 2015; Nikpay et al., 2019). Interestingly, we also observed 

association between three miR’s (miR-133b,miR-1, and miR-133a-3p), among which two (miR-133b and 

miR-1) showed association with rs45552131 (near C20orf166-AS1), and all three with  cg11682508 

(C20orf166) (Figure 3F) potentially suggesting their interplay in a regulatory process. The observed 

association between cg11682508 and rs45552131 replicates previous findings (Bonder et al., 2017). 

Expression of miR-1 and miR-133a is modulated by insulin and may be involved in insulin signaling. 

Given that both miRNA’s are derived from introns of protein-coding transcripts (C20orf166) (Granjon et 

al., 2009) it may be reasoned that cg11682508 identified here is also involved in insulin signaling. 

Interestingly, cg11682508 was previously described as one of the methylation sites being dysregulated 

in pancreatic islets of T2D subjects (Volkmar et al., 2012). Additional interesting findings from our EWAS 

can be found in Supplementary Information Note 7. This example shows not only replication of 

previous findings but is pointing towards novel CPG – miRNA axis.    

 

Examples of biological interactions identified by TWAS associations 

The vast majority of identified TWAS associations (1,114 out of 1,660) were found with lipids and 

lipoproteins, while only a few with proteins (300) and metabolites (157). Of these the association 

between ENSG00000254415_SIGLEC14 � SIGLEC14 (SOMA), and ENSG00000115523_GNLY � GNLY 

(SOMA), for example, reflect on translation processes, where the expressed gene serves as a guide for 

the protein synthesis. Other associations like the one found between prednisolone, a corticosteroid, and 

the FKBP5 gene transcript previously described as elevated under oral corticosteroid (Bigler et al., 2017), 

may indicate medication-triggered treatment responses.   

Our lipidomics TWAS (lTWAS) results feature prominently a group of five molecules with extensive 

networks of associations: GATA2 with 590 lipids, HDC with 516 lipids, FCER1A with 36 lipids, PDK4 with 

18 lipids, as well as MS4A3 with 18 lipids. An overlap between molecules associated with gene 

transcripts of GATA2, HDC, MS4A3, and FCER1A but not with PDK4 (Figure 4A) reproduces ingenuity 

pathway analysis (IPA) that suggests potential interaction between GATA2, HDC, MS4A3, and FCER1A 

but not PDK4 (Figure 4B). Lipids associated with PDK4 were largely fatty acids with various chain lengths 

(Figure 4C). Changes in PDK4 expression were shown to play a role in lipid-related metabolic adaptation 

by stimulating fatty acids oxidation (Pettersen et al., 2019), which may explain the observed 

associations. GATA2, HDC, MS4A3 and FCER1A as group showed positive association with various high-

density (HDL) and low-density lipoproteins (LDL), as well as negative association with triacylglycerols 

(TAG) and very-low-density lipoproteins (VLDL). GATA2 and HDC additionally showed positive 
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association with phosphatidylcholines, lysophosphatidylcholines and apolipoprotein A (APOA) as well as 

negative association with diacylglycerols and apolipoprotein E (APOE) (Figure 4D). The negative 

association between both GATA2 and HDC and TG as along with the positive association between GATA2 

and HDC and HDL have been reported previously (Inouye et al., 2010). They may indicate a role of 

GATA2 and HDC gene transcripts in regulation of APOA and APOE metabolism, as well as a potential 

involvement in the pathology of various diseases related to dysregulated lipid metabolism such as e.g. 

cardiovascular diseases. Please see Supplementary Information Note 8 for additional examples 

describing our EWAS findings. 

The Molecular Human - insight into architecture of complex diseases via COmics server.  

Diseases such as cancer, diabetes or autoimmune disorders are multifactorial (Cho and Gregersen, 2011; 

Pearson et al., 2003; Wu et al., 2018). Thus, molecular interactions, as defined by the correlation across 

different omics and reported here, may substantiate previous discoveries related to any single molecule 

(gene, protein metabolite) or the interactions between them, defined by e.g. pQTLs or mQTLs. We used 

COmics to provide an overview on these molecular interactions and thus further insight into complex 

disease. We focused on T2D (BOX1); cancer (BOX2); and cardiovascular diseases (BOX3), for which we 

prepared linked to a molecular network located in COmics server along with the brief description in the 

BOX, designated for each disease. By giving those examples we would like to encourage you to utilize 

COmics server (http://comics.metabolomix.com) as a resource to explore molecular interactions related 

to physiological processes but also to complex diseases.  

 

DISCUSSION 

Understanding platform correlation and complementarity is central to working with large genetic and 

epidemiological meta-analyses, evaluation of data integration options, as well as exploring  additional 

information in already measured datasets. By investigating MBH between omics platforms covering 

overlapping molecules we found that metabolomics and glycomics platforms are characterized by 

multiple MBH linked identical molecules, which underscores quality of the measurements conducted 

and suggest feasibility of data integration. For the two affinity-based platforms used for proteomics, 

approximately 20% of common protein targets were not detected by the MBH and suggest that 

integration of the measurement approaches may be challenging and require special attention, especially 

for the molecules which were not identified by MBH. Our observations are in line with previous study 
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assessing proteomics methods in multiple cohorts (Raffield et al., 2020), and could be linked with e.g. 

different sensitivity of aptamer/antibody towards the protein target.  

We previously showed that further insight into the complex lipid structures such as 

phosphatidylcholines is achievable by combining data sets which integrate measurements of various 

lipids from different platforms (Quell et al., 2019). Here, using MBH we replicated that finding as well as 

provided further insight into composition of triglycerides, which is of relevance for future lipidomics 

studies.  

Integration of multiomics layers may contribute to identification of processes relevant to human 

physiology and pathophysiology and thus to the integrative representation of the Molecular Human. 

GWAS or EWAS with intermediate phenotypes e.g. miRNA, protein, glycan or metabolite have shown 

potential in providing insight into human physiology and complex diseases in the past (Chen et al., 2012; 

Dai et al., 2021; Hasin et al., 2017; Karczewski and Snyder, 2018; Sailani et al., 2020; Suhre et al., 2010). 

The integration of additional multiomics layer resulted in identification of processes relevant for human 

physiology and pathophysiology including instances mirroring biochemical reactions and metabolism of 

the components involved, as well as molecular interactions previously identified by multiomics GWAS, 

EWAS and TWAS. We reproduced a plethora of literature reported hits, provingrobustness of our 

approach, as well as identified new associations shedding new light on a range of biological processes.  

Finally, we provided showcase examples for molecular networks relevant to complex disease such as 

T2D, cancer and cardiovascular disease. Those revealed previously unreported molecular associations 

beyond molecular events known to be related to the conditions investigated and provide promising 

candidate mechanisms to explore in future work in the study of the respective disease. 

Our study has strengths and weaknesses. Participants were enrolled continuously on an availability basis 

(i.e. without selection for diabetes state, age, sex, BMI or ethnicity) at the dermatology department of 

the major public hospital in Doha, Qatar, using identical collection kits and protocols, in order to avoid 

any possible batch effects between cases and controls. The large diversity of the QMDiab participants 

provides access to a wide range of individuals from a broad range of lifestyles, which may be 

advantageous when investigating correlations between omics layers, as the signal to noise ratio may 

increase. Similarly, the fact that study participants were not fasting implies further biological variation in 

the data, which may strengthen correlation signals that are related to processes confounded by fasting 

when case-control studies are conducted.  
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Taken together, we have drawn an image of the Molecular Human by providing a comprehensive 

description of biologically relevant molecular interactions in the human body based on the integrated 

data generated by 18 technologically diverse platforms in human samples obtained from 391 subjects. 

We provide access to this resources via the COmics web-server and Github. Our study describes the 

complementarity of various omics layers, demonstrates the capacity for integrated omics data to mirror 

biological processes, and is further setting the stage for future studies which may utilize this resource to 

understand the molecular network surrounding molecules of interest, with the potential of linking it to 

the disease end points.  

 

METHODS 

Cohort characteristics 

The subjects were enrolled in the framework of the Qatar Metabolomics Study on Diabetes (QMDiab), a 

cross-sectional diabetes case-control study at the Dermatology Department of HMC in Doha, Qatar as 

previously described (Mook-Kanamori et al., 2014). The study was approved by the Institutional Review 

Boards of HMC and Weill Cornell Medicine, Qatar (WCM-Q) (research protocol #11131/11). Written 

informed consent was obtained from all participants. The study enrolled 391 participants with at least 

one omics phenotype and includes 17 additional subjects that were not a part of Mook-Kanamori et al. 

The cohort consists of 198 females and 193 males. The average participants age was 46.5 years (s.d. = 

12.9) and the average BMI was 29.7 kg/m2 (s.d. = 6.0).  This cohort includes 195 participants with T2D 

and 196 without T2D.  

 

Sample collection 

Non-fasting blood, saliva and urine were collected according with standard protocols as previously 

described (Mook-Kanamori et al., 2014). Blood was collected using EDTA, Heparin, citrate and PAXgene 

Blood RNA tubes. Blood collected in EDTA and Heparin was centrifuged at 2,500 g for 10 min, plasma 

was collected aliquoted and stored at -80°C until analysis. The blood collected into PAXgene Blood RNA 

tubes was centrifuged for 10 min at 4,000 g. The supernatant was removed, and the pellet was used for 

the RNA extraction. The saliva was collected using Salivette system (Salivette®, SARSTEDT AG & Co. KG) 

according with manufacturer’s protocol. Collected saliva samples were centrifuged at 2000 × g for 2 

minutes, aliquoted and stored at -80°C until analysis. The urine was collected into the URINE CAPS mixed 

transferred into the falcon tube, centrifuged at 2,500 g for 10 min, aliquoted and stored at -80°C. 
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Deep molecular phenotyping 

The obtained samples were submitted for deep molecular phenotyping which utilized clinical chemistry 

parameters along with omics measurements across 18 technically diverse platforms. We determined: 41 

clinical chemistry parameters (CLIN); genotype data of 1,221,345 variants  (DNA) ; 450k DNA 

methylation sites (MET); 4) 57,942 transcriptomic traits, including 57,773 RNA transcripts (RNA) using 

RNA-sequencing (Illumina, 20M reads), and 169 microRNA profiles (miRNA) with multiplex qPCR 

(Exicon); 1,313 blood circulating proteins using two different technologies  1129 proteins (SOMA) from 

aptamer-based technology (SomaLogic) and 184 proteins (OLINK) from high-multiplex immunoassays 

(Olink); 274 glycan traits including 36 total plasma N-glycosylation (PGP) using HILIC-UPLC and 60 IgG-

glycopepdides (IgG) deploying LC-MS, both profiled at Genos Ltd.  as well as 178 IgA and IgG-

glycopeptides (IgA) measured with LC-MS in Wuhrer lab; 225 plasma lipoproteins (BRAIN) quantified 

with 1H NMR (Nightingale), 1494 lipids including 1,331 plasma lipids (LD) quantified using Lipidyzer 

deploying LC-MS system (Metabolon), and 163 plasma lipids and other metabolites (BM) quantified with 

FIA-MS (Biocrates p150 kit); 3,415 metabolic traits profiled with different approaches and matrixes 

including 1,104 plasma metabolites (HDF) determined with HILIC-MS and UPLC-MS on HD4 platform 

(Metabolon), 2,251 metabolites (758 in plasma (PM), 602 in saliva (SM) 891 in urine (UM),) measured 

using GC-MS and UPLC-MS on HD2 platform (Metabolon), and 60 urine lipids (CM) quantified with 1H 

NMR deploying Chenomx (University Greifswald). For the cross-platform analyses we limited the RNA 

profiles to 1239 transcripts, which were also assayed by SOMA and OLINK platforms.  

Clinical chemistry data 

The obtained blood samples were analyzed within four hours of blood collection at the Department of 

Laboratory Medicine and Pathology of HMC with the Cobas® 6000 (Roche Diagnostics, Basel, 

Switzerland). 

Transcriptomics (RNA-seq) 

The obtained pellets from the PAXgene Blood RNA tubes were used for the isolation of total RNA with 

PAXgene Blood miRNA Kit (Qiagene). In brief, the obtained pellets were mixed with RNaze-free water, 

and vortexed until the pellets dissolved. The samples were centrifuged for 10 min at 4000 x g and pellet 
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was formed. The supernatant was removed and 350 µL of BM1 buffer provided with the kit was added 

into the pellet. The samples were vortexed until the pellet dissolved, and mixed with 300 µL of BM2 

buffer as well as 40 µL of proteinase K, provided with the kit. The samples were incubated for 10 min. at 

55°C under constant shaking followed by transfer onto the PAXgene shredder spin column placed in a 

processing tube.  The samples were centrifuge for 3min at 15,000 x g and the supernatant was placed 

into the fresh tube, mixed with 700 µL of 100% isopropanol and transferred onto PAXgene RNA spin 

column. The samples were centrifuged for 1 min at 15,000 x g the flow-throw was removed, and 350 µL 

of BM3 buffer was placed onto PAXgene RNA spin column. The samples were centrifuged for 15 sec. at 

15,000 x g, the PAXgene RNA spin column was placed in the fresh collection tube and 80 µL of RDD 

buffer containing DNase-I was placed onto PAXgene RNA spin column followed by 15 min. incubation at 

room temperature. 350 µL of BM3 buffer was placed onto PAXgene RNA, the samples were centrifuged 

for 15 sec. at 15,000 x g, the flow-throw was removed, and 500 µL of BM4 buffer was added. The 

samples were centrifuged    for 15 sec. at 15,000 x g, the flow-throw was removed, and additional 500 

µL of BM4 buffer was added.  After centrifugation for 2 min. at 15,000 x g, the PAXgene RNA spin 

column was placed into the fresh collection tube, and the samples were eluted from the column with 

80uL of BR5 buffer. The obtained eluent was incubated for 5 min at 60°C, and afterwards chilled on ice. 

The integrity and quantity of the isolated RNA was measured using Qubit RNA HS Assay Kit (high 

sensitivity, 5 to 100 ng quantification range) Assay Kit and Qubit 3.0 fluorometer (Life Technologies) 

according to the manufacturer’s protocol. The samples were kept at -80 °C until measurements.  

The samples containing total RNA (400 ng) were submitted to the Genomics Core at WCMQ for the RNA-

sequencing. The total RNA was depleted of rRNA and Globin using the NEBNext rRNA & Globin 

Depletion Kit for Human/Mouse/Rat (New England BioLabs, Ipswich, MA). The depleted RNA was used 

to generate strand-specific libraries with BIOO NEXTflex Rapid Directional RNA-Seq Kit (Bioo-Scientific, 

Austin, TX). Library quality and quantity were analyzed with the Bioanalyzer 2100 (Agilent, Santa Clara, 

CA) on a High Sensitivity DNA chip.  10 libraries were then pooled in equimolar ratios and paired-end 

sequenced at 75bp on one lane of an Illumina HiSeq 4000 (Illumina, San Diego, CA). Total of 57,773 RNA 

transcripts were measured in 320 subjects.   

microRNA quantification 

RNA extraction: The miRNAs were isolated from 200µL EDTA-plasma sample using the miRNeasy 

serum/plasma kit (Qiagen) following the manufacturer's instructions. Briefly, the samples were lyzed 

using QIAzol Lysis Reagent and spiked with 3.5 μl miRNeasy Serum/Plasma Spike-In Control included in 
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the kit. The chloroform was added, samples were mixed and the centrifuged. The obtained after 

centrifugation upper aqueous phase was transferred into the fresh tube, mixed with 1.5 volume of 100% 

ethanol, and transferred into an RNeasy MinElute spin column in a 2 ml collection tube, provided in the 

kit. The samples were centrifuged, the flow-throw was removed, and RWT buffer provided with the kit 

was added onto the RNeasy MinElute spin column. The samples were centrifuged, the flow-throw was 

discarded, RPE buffer, provided with the kit, was added onto the RNeasy MinElute spin column. The 

samples were centrifuged and flow-throw was removed. The 80% ethanol prepared in RNaze-free water 

was placed onto the MinElute spin column, the samples were centrifuged until the spin column 

membrane dried. The MinElute spin column was placed in fresh collection tube and the total RNA 

including miRNA was eluted with 14 μl RNase-free water. 

 

miRNA profiling: Prior the profiling, the isolated RNA samples were reverse transcribed to cDNA using 

the Exiqon Universal cDNA Synthesis Kit II (Exiqon Inc., MA, USA) according with the manufacturer 

instruction. Briefly, 2 μL of total RNA (5 ng/μL) were used for cDNA synthesis. All processes were 

conducted in 384 well plate format. The quality and integrity of the synthesized cDNA was assessed 

using the miRNA QC PCR Panel (V4.M; Exiqon Inc.). Obtained cDNA was 50-fold diluted and mixed with 

2x Exilent SYBR Green master mix (Exiqon Inc.), and ROX reference dye (4 μl/2 ml) (Thermo Fisher 

Scientific, MA, USA). The samples were loaded onto human serum/plasma focus miRNA PCR panels, and 

quantitative real-time PCR was performed using the QuantStudio 12 K Flex real-time PCR System 

(Applied Biosystems, CA, USA). The PCR data were processed using Exiqon GenEx qPCR analysis software 

(version 6). The inter-plate calibration was performed using the mean value of UniSp3 interplate 

calibrator. The samples with a high degree of hemolysis were identified after monitoring of calculated 

ΔCt between hsa-miR-23a-3p and hsa-miR-451a. The samples with ΔCt >7 were removed from the 

analysis. Only microRNA assays with Ct ≤ 35, expressed in at least 60% of the samples were counted and 

the remaining samples were removed from the analysis. The global average of all expressed microRNAs 

with Ct <35 was used to normalize individual assays. Total of 169 miRNAs were profiled in 339 subjects.  

 

Proteomics measurements using SOMAscan technology 

The EDTA-plasma samples were used for proteomics analysis based on SOMAscan assay (version 1.1) 

technology, which was conducted at the WCM-Q Proteomics Core (Suhre et al., 2017). The method 

employed protein-capture by Slow Offrate Modified Aptamers (SOMAmer) (Gold et al., 2010). Briefly, 

undepleated EDTA-plasma was diluted and the following assay steps were performed: 1) Binding: 
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analytes and SOMAmers, carrying a biotin moiety via a photocleavable linker were equilibrated; 2) Catch 

I: analyte/SOMAmer complexes were immobilized on streptavidin-support, followed by washing steps to 

remove proteins not stably interacting with SOMAmers; 3) Cleave: release of analyte/SOMAmer 

complexes from streptavidin beads through  exposure to long-wave ultraviolet light resulting in linker 

cleavage; 4) Catch II: biotinylation of proteins in analyte/SOMAmer complexes and subsequent repeated 

immobilization on streptavidin support followed by washing steps to select against non-specific 

analyte/SOMAmer complexes; 5) Elution: denaturation of analyte/SOMAmer complexes and SOMAmer 

release; 6) Quantification: hybridization to custom arrays of SOMAmer-complementary 

oligonucleotides. The primary data were submitted to Somalogic for normalization of raw intensities, 

across-batch calibration and steps of quality control. In total 1129 molecules were quantified in 356 

samples.  

 

Proteomics measurements using Olink technology 

Heparin-plasma samples were used for the proteomics measurements based on the Olink® technology 

(Olink Proteomics AB, Uppsala, Sweden) at the WCM-Q Proteomics Core. The technology is based on a 

proximity extension assay (PEA) (Assarsson et al., 2014), and enables for simultaneous analysis of 92 

analytes in 1 µL of sample. We used two different Olink® panels, namely Cardiometabolic and 

Metabolism, for measurements of 184 unique proteins. The samples were processed along with 8 

control samples according to the manufacturer’s protocol using the following steps: 1) Immunoassay: 

the sample was mixed and incubated with 92 supplier-provided  optimized antibody pairs labeled 

individuallywith oligonucletotides (PEA probes). Pair coupled oligonucleotides carry unique annealing 

sites that allows specific hybridization of matching probes; 2) Extension: Target binding by antibody pairs 

brings the corresponding probe oligonucleotides in close proximity and allows for hybridization. 

Hybridized templates are extended by DNA polymerase, which generates a DNA template for 

amplification; 3) Preamplification: Universal primers enable parallel preamplification of all 92 DNA 

templates by PCR; 4)  Detection: The resulting DNA sequence is subsequently detected and quantified 

using a microfluidic real-time PCR instrument (Biomark HD, Fluidigm, South San Francisco, CA, USA). The 

data obtained were normalized using an internal extension control and an inter-plate control, to adjust 

for intra- and inter-run variation. In total 184 proteins were quantified in 328 samples.  

Total Plasma N-Glycosylation (Genos platform) 
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Sample processing: he EDTA-plasma samples were analyzed by Genos Ltd. (Zagreb, Croatia) using ultra-

performance liquid chromatography (UPLC) glycoprofiling as previously described (Suhre et al., 2019; 

Trbojević Akmačić et al., 2015). Briefly, the sample processing for total plasma N-glycosylation 

measurements was conducted in 96-well plate format out of 10 μL of plasma sample in following steps: 

1) Release of N-glycans from plasma proteins: The plasma proteins were denaturated with 20 µl of 

sodium dodecyl sulfate (SDS) 2% (w/v) (Invitrogen, USA) for 10 min at 65°C, followed by cooling to room 

temperature for 30 min, and mixing with 10 µl of 4% (v/v) Igepal-CA630 (Sigma-Aldrich, USA) under 

constant shaking for 15 min. N-glycans were released after incubation of samples with enzyme, N-

glycosidase-F (1.2 U of PNGase F (Promega, USA)) overnight at 37°C; 2) Fluorescent labeling of released 

plasma glycans: The obtained N-glycans were mixed with freshly prepared labeling mixture containing 

(70 : 30 v/v) 2-aminobenzamide and 2-picoline borane in dimethylsulfoxide (Sigma-Aldrich) and glacial 

acetic acid (Merck, Germany) for 15 min followed by 2 h incubation at 65°C; 3) Cleaning and elution of 

labeled N-glycans: The excess free label and reducing agent were removed from the samples using 

hydrophilic interaction liquid chromatography solid-phase extraction (HILIC-SPE). The samples were 

loaded into the wells of 0.2 µm 96-well GHP filter-plate (Pall Corporation, USA), which was used as 

stationary phase, and were washed 5 times with cold 96% acetonitrile (ACN). Glycans were eluted with 2 

× 90 μL of ultrapure water under constant shaking for 15 min at room temperature. The eluates were 

combined and stored at −20 °C until use.  

Sample measurements: Total plasma N-glycans were measured using HILIC-UPLC as previously described 

(Trbojević Akmačić et al., 2015)  .  Briefly, the labeled N-glycans were gradient eluted from Waters BEH 

Glycan chromatography column (Waters UPLC BEH particles 2.1S×S150Smm, 1.7Sμm) using 100 mM 

ammonium formate at pH 4.4, and ACN. The flow rate was 0.56 ml/min in a 23 min of the analytical run. 

The fluorescence was measured at 420 nm with excitation at 330 nm using Waters Acquity UPLC H-class 

system consisting of a fluorescence (FLR) detector set with 250 nm  excitation and 428 nm emission 

wavelengths.  

The data processing was performed using an automatic processing method enabling to obtain 

chromatograms separated into 39 peaks. The data was further quantified and annotated into 36 primary 

glycan traits (Trbojević Akmačić et al., 2015). All N-glycans have core sugar sequence consisting of two 

N-acetylglucosamines (GlcNAc) and three mannose residues; F indicates a core fucose α1–6 linked to the 

inner GlcNAc; Ax indicates the number of antennas (GlcNAc) on trimannosyl core; Gx indicates the 

number of β1–4 linked galactoses on antenna; G1 indicates that the galactose is on the antenna of the 
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α1–6 mannose; Sx indicates the number (x) of sialic acids linked to galactose. In total 36 total plasma N-

glycans were measured in 345 subjects.  

IgG glycosylation (Genos platform) 

Sample processing: The IgG isolation and measurements were conducted by Genos, Ltd as previously 

described (Pučić et al., 2011; Sharapov et al., 2019). Briefly, the sample processing for plasma IgG-

glycosylation measurements was conducted in the following steps: 1) Preparation of protein G 

monolithic plates:  the 96-well protein G monolithic plate (BIA Separations, Ajdovščina, Slovenia) was 

washed with 10 column volumes of ultrapure water, 10 column volumes of binding buffer (1 x PBS), and 

5 column volumes of 0.1 M formic acid (pH 2.5). The protein G plate was equilibrated with 10 column 

volumes of 10 x binding buffer and 20 column volumes of 1 x binding buffer; 2) Isolation of IgG from 

human plasma: For the IgG isolation the protein G monolithic plate was used. The IgG were obtained 

from 70 - 100 µl of plasma. The samples were diluted 10 times with binding buffer and filtered through 

GHP AcroPrep 96-well filter plates. The samples were applied onto the protein G monolithic plates and 

instantly washed three times with PBS to remove the unbound proteins; 3) Elution of IgGs: The IgG were 

eluted from the protein G monoliths into 96-well plate with 5 column volumes of 0.1 M formic acid 

(Merck, Germany) followed by immediate neutralization with 1 M ammonium bicarbonate (Merck, 

Germany) (Menni et al., 2013); 4) IgG digestion and purification: Aliquots of 40 µl from the obtained 

samples, containing isolated IgG, were used for further processing. The samples were incubated with 2% 

SDS [20 µL (w/v)] for 10 min at 60°C, and followed by overnight incubation with 200 ng trypsin at 37°C. 

The obtained IgG tryptic glycopeptides samples were purified by reverse phase solid phase extraction 

using Chromabond C18 beads applied to each well of an OF1100 96-well polypropylene filter plate. The 

beads were activated with 80% ACN containing 0.1% trifluoroacetic acid (TFA); 5) IgG elution: The tryptic 

digests were diluted 10 times in 0.1% TFA, loaded onto the C18 beads in vacuum manifold and washed 3 

times with 0.1% TFA.  IgG glycopeptides were eluted into an PCR 96 well plate with 120 µl of  20% ACN 

containing 0.1% TFA by 5 min centrifugation at 15-105 x g. Eluates containing glycopeptides were dried 

by vacuum centrifugation and  - 20°C until analysis by MS.  

 

Sample measurement: Purified tryptic IgG glycopeptides were analyzed as previously described (Pučić et 

al., 2011). For the separation and measurements nanoACQUITY UPLC system (Waters, Milford 

Massachusetts, USA), consisting of binary pump, auxillary pump, autosampler maintained at 10 °C and 

column oven compartment set at 30 °C coupled to and the Bruker Compact Q-TOF-MS were used.   9 μL 
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of purified IgG glycopeptides sample was applied to a Thermo Scientific PepMap 100 C8 (5 mm × 300 

μmi.d., 5 μm) SPE trap column. After sample loading the trap column was switched in-line with the 

gradient and C18 nano-LC column (150 mm x 100 μm i.d., 2.7 μm HALO fused core particles; Advanced 

Materials Technology, Wilmington, Delaware, USA) for 9.5 min while sample elution took place. IgG 

glycopeptides were reconstituted in 20 µl MQ water before nano-LC-ESI-MS analysis. Separation was 

achieved at 1 ml/min using the following gradient of mobile phase A and mobile phase B (80 % ACN  and 

20 % 0.1 % TFA): 0.5 min 12 % B, 0.5 - 4 min 12 % B - 17 % B, 4 - 5 min 17 % B. The column outlet tubing 

was directly applied as sprayer needle. Quadrupole and collision energy was set at 4 eV. Spectra were 

recorded from m/z 600 to 1900 with 2 averaged scans at a frequency of 0.5 Hz. Per sample the total 

analysis time was 15 min.  

The nanoACQUITY UPLC system and the Bruker Compact Q-TOF-MS were operated under HyStar 

software version 3.2. 

Glycan data was first normalized (total area normalization) and then batch corrected using Combat. 

Batch correction was performed on the log-transformed normalized data. After batch correction, the 

data was inverse transformed so all values were between 0 and 100. Finally the data was z-scored. 

Glycan structural features are given in terms of number of galactoses (G0, G1 and G2), fucose (F), 

bisecting N-acetylglucosamine (N) and N-acetylneuraminic acid (S). Total of 60 IgGs were measured in 

341 samples.  

 

IgA and IgG glycosylation (Univ. Leiden platform) 

Sample processing: The purification, separation and measurements of IgA and IgG was conducted at 

Leiden University Medical Center as previously described (Dotz et al., 2021; Momcilovic et al., 2020). 

Briefly, 2 μL and 5 μL of plasma was used for IgG and IgA analysis, respectively. The samples were 

diluted with PBS to obtain final volume of 200 μL. The samples purification was conducted in duplicate 

on separate plates using affinity bead chromatography. The samples designated for IgG analysis were 

purified using 15 μL/well of Protein G Sepharose 4 Fast Flow beads (GE Healthcare) on an Orochem filter 

plate, followed by three washing steps with PBS. The samples designated for IgA analysis were purified 

using 2 μL/well of CaptureSelect IgA Affinity Matrix beads (Thermo Fisher Scientific). The plates were 

incubated for 1 h under constant shaking. 

The samples were washed three times with PBS followed by three additional washes with purified water 

using vacuum manifold. The IgGs and IgAs were eluted from the beads using 100 mM formic acid under 
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constant shaking for 10 min, followed by 1 min centrifugation at 100 x g. The obtained eluates were 

dried for 2 h at 60°C in a vacuum centrifuge. 

The samples designated for IgG analysis, were resolubilized by addition of ammonium bicarbonate (50 

mM) under constant shaking for 5 min. The samples were digested by overnight incubation with tosyl 

phenylalanyl chloromethyl ketone (TPCK)-treated trypsin at 37°C. 

The samples designated for IgA analysis were reduced and alkylated prior to digestion to obtain 

peptides covering all glycosylation sites. The samples resolubilization was conducted with ammonium 

bicarbonate (30 mM) containing 12.5% of acetonitrile under constant shaking for 5 min. The samples 

were mixed with dithiothreitol (35 mM) and incubated for 5 min at room temperature followed by 

additional incubation for 30 min at 60°C. The samples were cooled to room temperature, mixed with 

iodoacetamide (125 mM), incubated in the dark under shaking for 30 min and mixed with dithiothreitol 

(100 mM) to quench the iodoacetamide. The samples were digested with TPCK-treated trypsin by the 

incubation over night at 37°C.  

Sample measurement: The samples designated for IgG and IgA were measured at different days. The 

sample separation and measurements were conducted on Ultimate 3000 RSLCnano system 

(Dionex/Thermo Scientific) equipped with an Acclaim PepMap 100 trap column (particle size 5 μm, pore 

size 100 Å, 100 μm × 20 mm) and an Acclaim PepMap C18 nano analytical column (particle size 2 μm, 

pore size 100 Å, 75 μm × 150 mm) coupled to a quadrupole-TOF-MS (Impact HD; Bruker Daltonics). 250 

μL of sample was injected into the flow (25 μL/min) of aqueous solvent and was trapped on the trap 

column (Dionex Acclaim PepMap100 C18, 5 mm × 300 μm; Thermo Fisher Scientific, Breda, The 

Netherlands).  The analytes were eluted on the analytical column (Ascentis Express C18 nanoLC column, 

50 mm × 75 μm, 2.7 μm fused core particles; Supelco, Bellefonte, PA) under flow rate of 0.9 μL/min and 

separated in linear gradient from 3% to 30% solvent containing 95% (v/v) ACN. The samples were 

measured in positive-ion mode using a CaptiveSprayer (Bruker Daltonics) electrospray source at 1300 V. 

The mass spectra were acquired with a frequency of 1 Hz and the MS ion detection window was set at 

mass-to-charge ratio (m/z) 550–1800. Fragmentation spectra were recorded with a detection window of 

m/z 50–2800. 

Obtained LC-MS data were examined according with pipeline developed by Manfred Wuhrer lab as 

previously described (Dotz et al., 2021; Momcilovic et al., 2020)  . In total 178 molecules including IgGs 

and IgAs were measured in 344 samples.   

 

Untargeted metabolomics – Metabolon HD2 platform  
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The EDTA-plasma, saliva, and urine samples were used for untargeted metabolic profiling as we 

previously described (Mook-Kanamori et al., 2014; Yousri et al., 2015). The measurements were 

conducted at Metabolon Inc, deploying HD2 platform based on ultra-high-performance liquid 

chromatography-mass spectrometry (UPLC-MS) and gas chromatography-mass spectrometry (GC-MS) 

technology (Evans et al., 2009). In brief, the sample was mixed with the recovery standards prior to the 

extraction for quality control (QC) purposes.  The resulting sample extract was divided into aliquots 

designated for the analysis using the following: 1) UPLC-MS/MS with positive ion mode electrospray 

ionization (ESI); 2) UPLC-MS/MS with negative ion mode ESI; 3) hydrophilic interaction chromatography 

(HILIC)/UPLC-MS/MS; 4) GC-MS. The sample extract was dried under nitrogen flow and reconstituted in 

solvents compatible with each of the four analytical methods.  

Three out of the four sample aliquots were designated for LC-MS measurements and were reconstituted 

in acidic or basic solvents. The first sample aliquot was reconstituted in acidic conditions, and gradient 

eluted from a C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) with water and methanol 

containing 0.1% formic acid (FA). The second sample aliquot was reconstituted in basic solvent, and 

gradient eluted from C18 column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) with water and methanol 

containing 6.5mM ammonium bicarbonate. The third aliquot was gradient eluted from a HILIC column 

(Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using water and acetonitrile with 10mM ammonium 

formate.  The flow rate was 350 μL/min, and the sample injection volume was 5 μL.  

The separation and measurements of the sample aliquots designated for LC-MS were performed on 

Waters ACQUITY UPLC in-line to Thermo Scientific Q-Exactive high resolution/accurate mass 

spectrometer interfaced with a heated electrospray ionization (HESI-II) source and an Orbitrap mass 

analyzer.  In the MS analysis, the scan range varied between methods but fell within the range of 70-

1000 m/z.   

The remaining fourth sample aliquot was designated for GC-MS measurements. The sample aliquot was 

derivatized with N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) followed by drying  under nitrogen 

flow. Separation was conducted under temperature ramp from 60 – 340°C over a period of 17.5 min, 

using a 5% diphenyl / 95% dimethyl polysiloxane fused silica column (20 m x 0.18 mm ID; 0.18 um film 

thickness) and helium at flow rate of 1 ml/min as the carrier gas. The measurements were performed on 

a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole mass spectrometer using electron impact 

ionization (EI), and the MS scan range was from 50-750 m/z.   

The number of measured metabolites in given sample matrix was following: 758 metabolites in 358 

EDTA-plasma samples, 602 metabolites in 283 saliva samples, and 891 metabolites in 360 urine samples.  
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Untargeted metabolomics – Metabolon HD4 platform 

The EDTA-plasma samples were used to conduct metabolic profiling at Metabolon Inc on technologically 

advanced, in comparison with HD2, HD4 platform enabling for increased sensitivity and accurate 

detection of more metabolites. The main technical difference between HD2 and HD4 platforms was 

replacement of GC-MS with hydrophilic interaction chromatography (HILIC) method. The method was 

described in great detail previously (Evans, 2014). In brief, sample processing was conducted as we 

described in “Untargeted profiling - HD2 platform: LC-MS and GC-MS” section, except of the sample 

dedicated for GC-MS measurement. This sample aliquot instead was gradient eluted from a HILIC 

column (Waters UPLC BEH Amide 2.1S×S150Smm, 1.7Sμm) using water and acetonitrile with 10SmM 

ammonium formate at pH 10.8. The measurements were conducted using Waters ACQUITY ultra-

performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high-resolution/accurate 

mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass 

analyzer (Evans, 2014). Total of 1,104 metabolites were measured in 309 plasma samples. 

 

Targeted metabolomics – Biocrates p150 platform 

The EDTA-plasma samples were used for targeted metabolomics analysis. The samples were measured 

at the Metabolomics Platform of the Helmholtz Center Munich using AbsoluteIDQTM kit p150 (Biocrates 

Life Science AG, Innsbruck, Austria) as previously described (Illig et al., 2010; Römisch-Margl et al., 

2012). The AbsoluteIDQ p150 kit assay enables the quantification of up to 163 molecules, predominantly 

lipids including phospatidylcholines (PCs), lysoPCs, sphingomyelines (SM), and acylcarnitines (AC), as 

well as amino acids. Total of 10 µL of plasma was used to conduct the assay. The samples were applied 

on the assay kit 96-well plate consisting of filters with internal standards and were dried under a 

nitrogen stream at room temperature (RT). The samples were derivatized with a reagent containing 5% 

phenylisothiocyanate (PITC), dryed under a nitrogen stream at RT, and extracted with 300 μL of 5 mM 

ammonium acetate in methanol. Next, the samples were filtered by centrifugation, the resulted flow-

through was diluted 1:6 with running solvent and placed into fresh deep-well plate. The plate was 

covered with the silicone mat, and mixed. Sample handling was performed by a Hamilton Microlab 

STARTM robot (Hamilton Bonaduz AG, Bonaduz, Switzerland) and a Ultravap nitrogen evaporator 

(Porvair Sciences, Leatherhead, U.K.), beside standard laboratory equipment. Metabolites were 

measured in positive and negative multiple reaction monitoring (MRM) scan mode by direct infusion to 

an API 4000 triple quadrupole system (SCIEX Deutschland GmbH, Darmstadt, Germany) equipped with a 
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1200 Series HPLC (Agilent Technologies Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto 

sampler (CTC Analytics, Zwingen, Switzerland) controlled by the software Analyst 1.6.2. The metabolite 

concentrations were calculated using internal standards and the MetIDQ software provided with 

AbsoluteIDQTM kit, and are reported in μmol/L. For the lipid molecules including PC, lysoPC, SM, and AC, 

measured with AbsoluteIDQTM kit the information on the sum of the carbons of the fatty acid chains is 

provided but not the fatty acid chain actual composition. For example, PC.aa.36.1 describes 

phosphatidylcholine (PC) where two glycerol residues are bound in diacyl (aa) binding into the fatty acid 

moiety; the sum of carbons of both fatty acid chains is 36, and there is one double bound (.1). Total of 

163 metabolites were quantified in 356 samples.  

 

 

Lipidomics – Lipidyzer platform 

The EDTA-plasma samples were used for in depth profiling of lipids, which was conducted at Metabolon 

Inc. deploying LipidyzerTM platform of AB Sciex Pte technology as previously described (Löfgren et al., 

2012; Quell et al., 2019). In brief, the samples were extracted in the presence of internal standards using 

butanol:methanol (BUME) mixture (3:1) followed by two-phase extraction into 300 µl heptane:ethyl 

acetate (3:1) using 300 µl 1% acetic acid as buffer. The obtained extracts were dried under nitrogen flow 

and reconstituted in ammonium acetate dichloromethane:methanol. The samples were analyzed in 

both positive and negative mode electrospray using Sciex SelexIon-5500 QTRAP.  The molecules were 

detected in MRM mode with a total of more than 1,100 MRMs.  Individual lipid species were quantified 

by the ratio of the signal intensity of each target compound to that of its assigned internal standard, 

followed by the multiplication of the concentration of internal standard added to the sample.  Lipid class 

concentrations were calculated from the sum of all molecular species within a class, and fatty acid 

compositions were determined by calculating the proportion of each class comprised by individual fatty 

acids. Total of 1,331 lipids were measured in 324 samples.  

 

NMR metabolomics - urine  

1H-NMR spectra analysis of urine samples was conducted at Institute of Clinical Chemistry and 

Laboratory Medicine, University of Greifswald, Germany as previously described (Budde et al., 2016; 

Zaghlool et al., 2018).In brief, Bruker DRX-400 NMR spectrometer (Bruker BioSpin GmbH, Rheinstetten, 

Germany) operating at 400.13 MHz 1H frequency equipped with 4 mm selective inverse flow probe 
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(FISEI, 120 µL active volume) was used to record the spectra. 500 µL of sample volume was delivered via 

automatic flow injection. The sample acquisition temperature was 300 K. A standard one-dimensional 1H 

NMR pulse sequence with suppression of water peak (NOESYPRESAT) was used (Budde et al., 2016). The 

free induction decays (FIDs) were collected into data points using spectral width of 20.689 ppm. The 

FIDs were multiplied by an exponential function corresponding to 0.3 HZ line-boarding prior to  Fourier-

transformed  (FT).  For the assessment of the spectra quality, the line width and signal-to-noise ration of  

Trimethylsilylpropanoic acid (TSP) signal, used as a reference, was analyzed. Additionally, quality control 

was carried out by analyzing the standard error of creatinine concentration and the potential variability 

of selected signals. The obtained spectra were processed within TOPSPIN 1.3 (Bruker BioSpin GmbH) and 

the metabolites annotation and quantification was conducted in semi-automated manner by spectral 

pattern matching using Chnomx NMR suit 7.0 (Chenomx Inc.).  Total of 60 lipid molecules were 

measured in 353 samples. 

 

NMR metabolomics - plasma 

The EDTA-plasma (300 µL) was used for metabolite quantification by a high-throughput NMR 

metabolomics platform (Nightingale Ltd, Helsinki, Finland) (Soininen et al., 2009; Zaghlool et al., 2018). 

The sample preparation was conducted automatically using Gilson Liquid Handler 215. Each sample after 

brief centrifugation was transferred to SampleJet NMR tubes and mixed with 300 µL of sodium 

phosphate containing 0.08% of TSP. The measurements were conducted on Bruker AVANCE III 500 MHz 

and Bruker AVANCE III HD 600 MHz spectrometers. The lipoprotein (LIPO) and low-molecular-weight 

metabolites (LMWM) were measured in the samples using either 500 MHz or 600 MHz spectrometers. 

The same samples were further extracted with multiple extraction steps as previously detailed (Soininen 

et al., 2015).  The extracted lipid (LIPID) data was evaluated in full automation with the 600 MHz 

instrument using a standard parameter set (Soininen et al., 2015). The FT and automated phasing of 

NMR spectra was  conducted followed by automated spectral processing and quality control  steps 

(Soininen et al., 2009). The subclasses for the lipoproteins are categorized according to size following 

this classification: chylomicrons and extremely large VLDL particles (average particle diameter at least 75 

nm); five VLDL subclasses—very large VLDL (average particle diameter of 64.0 nm), large VLDL (53.6 nm), 

medium VLDL (44.5 nm), small VLDL (36.8 nm) and very small VLDL (31.3 nm); intermediate-density 

lipoprotein (IDL; 28.6 nm); three LDL subclasses—large LDL (25.5 nm), medium LDL (23.0 nm) and small 

LDL (18.7 nm); and four HDL subclasses—very large HDL (14.3 nm), large HDL (12.1 nm), medium HDL 

(10.9 nm) and small HDL (8.7 nm). Total of 225 molecules were measured in 350 samples.  
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Statistical data analysis 

All statistical analyses were conducted using R (version 4.1.0 and above) and Rstudio (version 1.4.1717 

and above). If not otherwise stated, the omics data was converted “as-received” into R Summarized 

Experiment format, representing processed final data. The saliva metabolomics data has been further 

normalized by saliva osmolality, and the urine metabolomics data has been normalized by urine 

creatinine. 

 

 

 

Cross-platform correlations (omicsMBHs) 

Spearman correlation coefficients between unscaled raw omics data were computed and mutual best 

hits were identified. Platform-pairwise Bonferroni significance cutoffs (p < 0.05 / ( nPLTA1 * nPLAT2 / 2) ) 

were used. 

 

Within-trait partial correlations (GGMs) 

Partial correlations within platforms were computed as follows: Saliva and urine metabolites were 

normalized by saliva osmolality and urine creatinine obtained from the respective platform, 

respectively. The omicsdata was then inverse-normal scaled. Metabolites and then samples with more 

than 50% missing values were removed. Association statistics and residuals were then computed using 

the linear model “lm( OMICS ~ AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3 + somaPC1 + 

somaPC2 + somaPC3)”. Missing values were imputed using the K-nearest-neighbors method (Do et al., 

2018).  Partial correlation coefficients were computed using the pcor function from the R-package 

GeneNet (version 1.2.15). Platform-wise Bonferroni significant correlations (p-value < 0.05 / 

(NPLAT*(NPLAT-1)/2) ), where NPLAT represents the number of traits measured on the respective 

platform, were retained. 

Association between DNA – RNA – METH (eQTLs, eQTMs, meQTLs) 

Genetic variants (SNPs) were coded 0, 1, 2 for major allele homozygotes, heterozygotes, and minor 

allele homozygotes, respectively. Expression data was log-scaled, with all values off-set by the smallest 

occurring value in the dataset in order to avoid taking the log of zero, and z-scored. Methylation d(CpG) 

were b-values. The following linear models were used to compute the associations: 
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eQTL: lm( transcriptomics ~ SNP + AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3) 

meQTL: lm( CpG ~ SNP + AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3) 

eQTM: lm( transcriptomics ~ CpG + SNP + AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3) 

A significance cut-off of p-value <5x10-8 was used. 

Genetic variation – omicsdata associations (omicsQTLs) 

Omicsdata was inverse-normal scaled and residual were computed using the linear model “lm( 

Omicsdata ~ sex + age + bmi + diab + genoPC1 + genoPC2 + genoPC3 + somaPC1 + somaPC2 + 

somaPC3)”. After QC, excluding non-autosomal SNPs, MAF<5%, HWE pvalue<10-6, or genotyping rate 

<98% (Suhre et al., 2017), 1,221,345 SNPs for 353 samples were available. Additive linear models using 

Plink version 1.9 (Chang et al., 2015) were computed. Genomic inflation was lambda<1.04 for all traits. 

All associations with p<5x10-8 were lumped, treating variants with R2 < 0.1 as independent(Suhre et al., 

2017). Phenoscanner ((Kamat et al., 2019), accessed 9 April 2019) was used to annotate the sentinel 

variants with GWAS hits, metabolomics and proteomics QTLs, and genes encodes at the locus, using 

R2>0.8 (LD from EUR), and limiting associations to p-value < 5x10-8. Genetic variants were annotated to 

human genome build 37. 

Methylation – omicsdata association (omicsQTMs) 

Residuals of methylation beta values (CpG) were computed using the linear model “lm ( CpG ~ AGE + 

SEX + BMI + DIAB + Gran + NK + CD4T + CD8T + Mono + Bcell + genoPC1 + genoPC2 + genoPC3 )” and 

then z-scored. Saliva and urine metabolites were first normalized by saliva and urine osmolality, 

respectively. All omics variables were then inverse normal-scaled and residuals computed using the 

linear model “lm ( Omicsdata ~ AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3 )” and then z-

scored. Association statistics were then computed using the linear model “lm( CpG_residual ~ 

Omicsdata_residual )”. Associations reaching an ad hoc significance level of 5x10-8 were retained. CpG 

sites were annotated for gene names and CpG position relative to the genes using the Illumina provided 

HumanMethylation 450k annotation file. 

RNA expression – omicsdata association (omicsQTRs) 

RNA expression data with less than 100 valid data points or median expression levels below 1 TPM were 

removed. Expression data was log-scaled, with all values off-set by the smallest occurring value in the 

dataset in order to avoid taking the log of zero, and z-scored. Saliva and urine metabolites were 
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normalized by saliva osmolality and urine creatinine obtained from the respective platform, 

respectively. The omicsdata was then inverse-normal scaled. Metabolites and then samples with more 

than 50% missing values were removed. Association statistics were then computed using the linear 

model “lm( OMICS ~ transcriptomics + AGE + SEX + BMI + DIAB + genoPC1 + genoPC2 + genoPC3 + CD8 + 

CD4 + NK + Bcell + Mono + Gran + Eos )”. Associations reaching an ad hoc significance level of 5x10-8 

were retained. 

Disease/trait associations from the GWAS catalog 

We downloaded the GWAS catalogue (gwas_catalog_v1.0.2-associations_e100_r2021-01-14.tsv) and 

identified 6,694 variants that are in LD (r2>0.8) with one of the 587 sentinel SNPs (incl. the SNPs 

themselves). We then identified 2,294 records in the GWAS catalogue that reported on one of the 6,694 

SNPs. Where multiple associations with a same trait were reported for a same locus, we kept only the 

strongest association. 

Tables 

Table 1. Overview on applied omics technologies. 

Omics Measurement Technique/Platform Matrix Label 

GENOMICS Genotype 
Infinium Human Omni 
2.5-8 v1.2 BeadChip kit 

DNA extracted 
from buffy coat 

fraction from 
whole blood  

DNA 

METHYLOMICS DNA methylation 

Illumina Infinium 
HumanMethylation450 

BeadChip kit 

DNA, same as 
for genomics  

MET 

TRANSCRIPTOMICS 

Gene expression 
RNA-sequencing based 

Illumina ~20M reads 

RNA extracted 
from PaxTube 

RNA 

microRNA 
expression 

microRNA profiling 
based multiplex qPCR, 

Exiqon 

RNA extracted 
from EDTA 

plasma 

miRNA 

PROTEOMICS 

Protein 
abundance 

Slow Off-rate Modified 
Aptamer (SOMAmer), 

Somalogic 1,1k 

EDTA plasma SOMA 

Relative protein 
abundance 

Proximity Extension 
Assay (PEA) based 

Olink Target 96 
Metabolism & 

Cardiometabolism 
panels 

Heparin plasma OLINK 

GLYCOMICS 
Total plasma 

N-glycosylation 

Hydrophilic interaction 
ultra-performance 

liquid chromatography 
EDTA plasma PGP 
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(HILIC-UPLC) based 
Genos pipeline 

IgG glycosylation 

Liquid chromatography 
mass spectrometry 

(LC-MS) based Genos 
pipeline 

EDTA plasma IgG 

IgA & IgG 
glycosylation 

LC-MS based 
(Momcilovic et al., 

2020) pipeline 

EDTA plasma IgA 

LIPOPROTEOMICS Lipoproteins 

Proton nuclear 
magnetic resonance 

(1H NMR) based 
Nightingale technology 

EDTA plasma BRAIN 

LIPIDOMICS 

Lipid 
concentration 

LC-MS based on 
Lipidyzer technology at 

Metabolon 

EDTA plasma LD 

Lipids and other 
metabolite 

concentration 

Flow injection analysis 
(FIA)- MS based 

Biocrates technology 

EDTA plasma BM 

METABOLOMICS 

Metabolite level 
 (HILIC-MS) & (UPLC-

MS) based HD4 
Metabolon 

EDTA plasma HDF 

Metabolite level 
Gas chromatography 
(GC)-MS (UPLC-MS) 

based HD2 Metabolon 

EDTA plasma 
 

PM 

Metabolite level 
 (GC-MS) & (UPLC-MS) 
based HD2 Metabolon 

Saliva SM 

Metabolite level 
GC-MS & UPLC-MS 

based HD2 Metabolon 
Urine UM 

Metabolite level 

1H NMR deploying 
Chenomx for 

annotation, based on 
(Budde et al., 2016) 

pipeline 

Urine CM 

CLINICAL 

Clinical 
biochemistry and 

blood counts 

Cobas 6000; Roche 
Diagnostics 

Blood/Urine CLIN 
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Table 2: Mutual best hits (MBH) between platforms. The upper triangle of this matrix indicates the 

number of mutual best hits identified between the respective platforms, the diagonal contains the 
number of traits evaluated for that platform, and the lower triangle reports the number of samples for 

which data was available for both platforms in parallel. Platform abbreviations are explained in Table 1. 

  miRNA SOMA 
OLIN

K 
PGP IgG IgA&IgG BRAIN UM PM SM HDF BM CM LD RNA CLIN 

miRNA 169 6 2 1 0 1 2 0 2 0 7 0 2 0 0 2 

SOMA 337 1129 73 14 8 19 20 26 32 0 36 17 5 18 12 16 

OLINK 309 323 184 10 1 7 18 12 18 0 23 20 1 15 8 12 

PGP 326 344 313 36 10 14 7 3 8 0 7 4 2 4 4 6 

IgG 326 340 310 331 60 31 5 4 4 0 7 2 2 3 3 4 

IgA&IgG 325 341 322 330 291 178 5 9 9 2 11 7 3 4 2 7 

BRAIN 333 350 317 339 337 335 224 15 19 1 28 18 5 8 1 10 

UM 314 331 301 319 316 319 325 805 174 14 214 26 43 22 2 8 

PM 321 339 308 327 323 326 333 347 600 24 369 45 21 43 3 15 

SM 254 267 242 258 250 252 262 273 281 434 21 1 7 0 0 4 

HDF 295 308 290 300 299 306 307 285 292 229 1020 75 21 96 1 14 

BM 319 337 306 326 322 324 331 345 356 279 290 163 5 44 0 6 

CM 308 324 296 313 310 313 318 353 340 269 281 338 60 4 1 4 

LD 310 323 303 313 312 320 322 300 307 241 302 305 293 1201 0 5 

RNA 296 311 287 301 299 301 306 297 300 235 270 299 291 285 1239* 7 

CLIN 321 339 307 327 323 323 332 358 357 274 293 355 351 306 304 41 

*Note: Genotype (DNA) and methylation (MET) data were not included in the MBH computation. 
Transcriptome (RNA) was limited to 1,239 transcripts that are also covered by the two proteomics 

platforms (SOMA, OLINK). 
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Table 3. Percentage of the variance explained in age, sex, BMI and diabetes state by platform. 

 
  

 

 

 
 

 
 

 
 

 
 

 
 

AGE [%] SEX [%] BMI [%] DIAB [%]

CLIN 54.9 92.5 17.7 92

RNA 24.6 70.6 9.4 67.2

miRNA 9.7 61.4 3.2 58.4

OLINK 53.8 85.4 22.1 79.6

SOMA 52.4 93.3 41.7 82.3

PGP 44.2 73.3 26.6 72.5

IgG 46.3 63.9 4.3 71.8

IgA 45.1 73 7 73

BRAIN 28.7 77.4 16.5 76.6

LD 26.4 76.8 18.9 68.2

BM 22.4 77.5 23.9 83.1

HDF 50.9 95.1 28.6 86.4

PM 51.7 91.6 24.7 86.3

SM 20.7 64.3 5.1 71

UM 50.3 89.4 27.3 81.9

CM 37 83.8 16.3 81.9
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Graphical Abstract.  

Understanding of omics complementarity, molecular interactions within and between various omics 
layers, and their link as interactive network into complex diseases is limited. With the current study we 

addressed this gap by deploying 18 technically diverse deep molecular phenotyping (omics-) platforms 
analyzing urine, blood, and saliva samples from up to 391 participants of the multi-ethnic diabetes case-

control study QMDiab. We integrated quantitative readouts of 6,304 molecular traits with data on 
1,221,345 genetic variants, DNA methylation at 470,837 CpG sites and gene expression of 57k 
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transcripts into a molecular network including over 34,000 statistically significant associations. We 

constructed COmics (Connecting Omics) server (http://comics.metabolomix.com) to enable dynamic 

interaction with the data. With this study we draw Molecular human and COmics is a tool providing 

access into it. 

 

Text BOX 

BOX 1. Molecular networks related to T2D generated with COmics.  

 

 

 

We analyzed various T2D diabetes phenotypes using our COmics webserver and created a network around this 

phenotype (http://comics.metabolomix.com/?focus=STAT:%20DIAB). This network consists of 129 molecules 

(Supplementary Table S5) of which the majority were previously associated with T2D. Comics aids in the 

exploration of molecular interactions for individual  molecules by the creation of a separate network centered on it.  

We then analyzed the molecular network of HbA1C, which is considered a marker for long-term glycemic control: 

http://comics.metabolomix.com/?focus=CLIN%3A%20HbA1c%20(%25)&maxnodes=1 & we also investigated the 

adiponectin network a hormone possessing insulin-sensitizing properties and capacity for regulation of glucose and 

lipid metabolism: 

http://comics.metabolomix.com/?focus=SOMA%3A%20ADIPOQ%20%3A%20Adiponectin&maxnodes=1. 

 

The adiponectin was previously found to be decreased in subject with T2D (Tabák et al., 2012). We identified 

multiple molecular associations across various omics levels with apparent relevance to the processes related to 

HbA1C and adiponectin as outlined in Supplementary Information Note 9. Interestingly, both networks revealed 

previously unreported associations. For instance, the glycans IgGI1H3N5F1 and IgG4-G0FN were linked with HbA1C, 

indicating a potential involvement in glucose metabolism. The association identified between adiponectin and 

phospholipid transfer protein (PLTP) [OLINK], previously identified as regulator of HDL metabolism (Huuskonen et 

al., 2000)and recognized as an emerging cardiometabolic risk factor in T2D patients (Dullaart et al., 2012), further 

suggest potential interaction between those two proteins in the regulation of lipid metabolism. 

These examples confirm the validity of the generated network, ensuring server functionality in describing 

molecular interactions related to T2D.  
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BOX2. Further insight into molecular network of tumor biomarker (rs17271883 near FUT6) revealed by 

COmics. 

 

 

 

 

 

 

The genetic rs17271883 near FUT6 was identified as a tumor biomarker (GWAS catalogue p-value = 5.0 x10
-132

) 

(He et al., 2014). We used COmics to assembled the associated molecular network  and explore the underlying 

mechanisms: 

http://comics.metabolomix.com/?focus=DNA%3A%20rs17271883%3Achr19%3A5834212%20FUT6&maxnodes=1 

This network revealed direct genetic association between rs17271883 and two proteins detected on the SOMA 

platform including 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase (FUT3) (p-value = 1.2x10
-20

), 

and 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase (FUT5) (p-value = 3.8x10
-13

), as well as two 

CPGs including cg25387410 near FUT3 (p-value = 6.0x10
-15

) and cg16859884 (p-value = 3.2x10
-26

) in its close 

proximity. Fucosyltransferase (FUT) family members transfer fucose from GDP-fucose to sugar chains of 

glycoproteins or glycolipids (oligosaccharides). The family members FUT3, FUT5 and FUT6 share more than 85% 

homology on the genomic level and encode three similar fucosyltransferases (Reguigne-Arnould et al., 1995). This 

may explain the observed associations to rs17271883. Interestingly, expression of FUT3, FUT5 and FUT6 were all 

related to cancer occurrence and metastasis (Ej et al., 2015) and shown to be critical for cancer cell proliferation, 

migration and invasion (Liang et al., 2017). The Cpg’s site cg16859884, which we found associated with 

rs17271883, was also previously described in the context of cancer. Differences in cg16859884 methylation 

between malignant and normal prostate tissue was reported (Aref-Eshghi et al., 2018). Methylation site 

cg25387410 near FUT3 was not previously reported in the context of cancer, but given its placement in the 

molecular network presented here, its potential regulatory role in tumor pathogenesis may render it a promising 

candidate for further exploration. Increasing the number of nodes in the rs17271883 network revealed proteins 

involved in immune regulation including immunoglobulin lambda constant 2 (IGLC2), leukocyte immunoglobulin-

like receptor B (LILRB) 5, complement factor H related 5 (CFHR5), Fc Gamma Receptor IIIb (FCGR3B), and tumor 

necrosis factor receptor superfamily member 17 (TNFRSF17) significantly associated with various glycans 

(Supplementary Information Note 10). Among those glycans we found multiple fucosylated molecules, which was 

expected given the function of fucosyltransferase.   The rs17271883 molecular network thus revealed an axis 

between the genetic variants, proteins and glycans with potential relevance to the pathogenesis of cancer and 

the role of immune regulation in the disease pathology more specifically.  

Another example pointing towards immune regulation based on the network constructed around rs103294 near 

AC010518.3 is described in Supplementary Information Note 11.  
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BOX 3. Molecular network generated by COmics shed a light on the interplay between smoking, 

inflammation driven cardiovascular disorders and glycans.    

 

 

  

Platelet activation is enhanced in patients with myocardial infarction and is a hallmark of acute coronary syndrome 

(Frossard et al., 2004). Recent study established a direct link between smoking-induced hypomethylation of F2R like 

thrombin or trypsin receptor 3 (F2RL3) and platelet activity, providing  further evidence for its contribution to smoking 

related cardiovascular risk (Corbin et al., 2022). Here, using the COmics webserver, we investigate the molecular 

network around the CpG cg05575921 at aryl hydrocarbon receptor repressor (AHRR) locus, a well-known smoking 

marker (Zaghlool et al., 2018), that is also significantly associated with arteriosclerosis, which is driven by 

inflammation, and carotid plaque (Ammous et al., 2022; Zhang et al., 2017). In depth investigation of this network 

http://comics.metabolomix.com/?focus=CPG%3A%20cg05575921%3Achr5%3A426378%20AHRR&maxnodes=1  

is provided in Supplementary Information Note 12.  

The generated molecular network suggests an involvement of glycans in the link between smoking and 

inflammation driven cardiovascular disorders with G0FB glycan as a particularly auspicious candidate. 
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Figure 1. Overview on the subject and data sets. A) Collected data and omics platforms used for data 
generation; B) Mutual best hit describing the significant associations identified per each omics platform. 
C) Multiomics GWAS, multiomics EWAS, and multiomics TWAS; D) Molecular network of interactions 
constructed after computation of within-trait partial correlations available in the form of  freely 
accessible server (https://littleswissriver.shinyapps.io/generate_network/) linking molecular networks 
with the genetic disease risks via GWAS server). CLIN: clinical chemistry parameters; DNA: genotype 
data of ; MET: DNA methylation sites; RNA:  RNA transcripts determined with RNA-sequencing; miRNA: 
microRNA profiles; SOMA: blood circulating proteins measured with aptamer-based technology 
(SomaLogic); OLINK: blood circulating proteins measured using high-multiplex immunoassays (Olink); 
PGP: glycan traits N-glycosylation; IgG: IgG-glycopepdides; IgA: IgA and IgG-glycopeptides BRAIN: plasma 
lipoproteins; LD: plasma lipids quantified using Lipidyzer; BM: plasma lipids quantified with Biocrates 
p150 kit; HDF: plasma metabolic traits profiled on HD4 platform (Metabolon); PM: plasma metabolic 
traits profiled on HD2 platform (Metabolon);  SM: saliva metabolic traits profiled on HD2 platform 
(Metabolon); UM: urine metabolic traits profiled on HD2 platform (Metabolon);  CM urine metabolites 
quantified with 1H NMR deploying Chenomx.  
 
 

 

Figure 2. Omics platforms overlap and complementarity. A) & B) The structure of complex lipids was 

revealed with by complementary platforms connected with MBH.  
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Figure 3. Biological processes reflected by connected omics with various strategies including: A) 

Gaussian Graphical Model (GGM). Observed associations potentially reflect on aspirin metabolism and 

excretion where salicylate is conjugated in the liver to form salicylurate and further metabolized to 

salicyluric glucuronide (Needs and Brooks, 1985); B) Between various matrix (saliva, blood, urine) 

Mutual Best Hit (MBH); C) & D) Between omics MBH; E) glycome GWAS reveled association between 

ST3GAL1 variants and IgA1 glycosylation; F) miRNA GWAS. 
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Figure 4. TWAS reveal interplay between GATA2, HDC and FCER1A but not PDK4. A) Venn diagram 

showing an overlap between molecules associated with gene transcripts of GATA2, HDC, MS4A3, and 

FCER1A but not PDK4. B) Ingenuity pathway analysis (IPA) revealed potential interaction between 

GATA2, HDC, MS4A3, and FCER1A but not PDK4. C) The molecules associated with PDK4. D) Associations 

between lipids structures and  GATA2, HDC, MS4A3 and FCER1A. 
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Supplementary Data 

Supplementary Table 1. List of non-genomic molecular traits measured along with list of RNA deployed 

to conduct MBH 

Supplementary Table 2. Molecules associated with age 

Supplementary Table 3. Molecules associated with sex 

Supplementary Table 4. Molecules associated with BMI 

Supplementary Table 5. Molecules associated with T2D 

Supplementary Table 6. Correlation levels of statistically significant MBH.  

Supplementary Table 7. Correlation levels of molecules measured on both SOMA and OLINK 

Supplementary Table 8. GGM 

Supplementary Table 9. Associations between gene SNPs and methylation levels (meQTL’s) 

Supplementary Table 10. Associations between methylation levels and mRNA (eQTM’s) 

Supplementary Table 11. Associations between gene SNPs and mRNA (eQTL’s) 

Supplementary Table 12. Multiomics GWAS 

Supplementary Table 13. Multiomics EWAS 

Supplementary Table 14. Multiomics TWAS 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


43 
 

References  

 

Ammous, F., Zhao, W., Lin, L., Ratliff, S.M., Mosley, T.H., Bielak, L.F., Zhou, X., Peyser, P.A., Kardia, S.L.R., 
and Smith, J.A. (2022). Epigenetics of single-site and multi-site atherosclerosis in African Americans from 
the Genetic Epidemiology Network of Arteriopathy (GENOA). Clinical epigenetics 14. 
Aref-Eshghi, E., Schenkel, L.C., Ainsworth, P., Lin, H., Rodenhiser, D.I., Cutz, J.C., and Sadikovic, B. (2018). 
Genomic DNA Methylation-Derived Algorithm Enables Accurate Detection of Malignant Prostate Tissues. 
Frontiers in oncology 8. 
Assarsson, E., Lundberg, M., Holmquist, G., Björkesten, J., Thorsen, S.B., Ekman, D., Eriksson, A., Dickens, 
E.R., Ohlsson, S., Edfeldt, G., et al. (2014). Homogenous 96-plex PEA immunoassay exhibiting high 
sensitivity, specificity, and excellent scalability. PLoS ONE 9. 
Bocklandt, S., Lin, W., Sehl, M.E., Sanchez, F.J., Sinsheimer, J.S., Horvath, S., and Vilain, E. (2011). 
Epigenetic predictor of age. PLoS One 6, e14821. 
Bonder, M.J., Luijk, R., Zhernakova, D.V., Moed, M., Deelen, P., Vermaat, M., Van Iterson, M., Van Dijk, 
F., Van Galen, M., Bot, J., et al. (2017). Disease variants alter transcription factor levels and methylation 
of their binding sites. Nature genetics 49, 131-138. 
Budde, K., Gök, Ö.N., Pietzner, M., Meisinger, C., Leitzmann, M., Nauck, M., Köttgen, A., and Friedrich, N. 
(2016). Quality assurance in the pre-analytical phase of human urine samples by 1H NMR spectroscopy. 
Archives of Biochemistry and Biophysics 589, 10-17. 
Chang, C.C., Chow, C.C., Tellier, L.C., Vattikuti, S., Purcell, S.M., and Lee, J.J. (2015). Second-generation 
PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7. 
Chen, R., Mias, G.I., Li-Pook-Than, J., Jiang, L., Lam, H.Y., Chen, R., Miriami, E., Karczewski, K.J., 
Hariharan, M., Dewey, F.E., et al. (2012). Personal omics profiling reveals dynamic molecular and 
medical phenotypes. Cell 148, 1293-1307. 
Contreras, P., Generini, G., Michelsen, H., Pumarino, H., and Campino, C. (1981). Hyperprolactinemia 
and galactorrhea: Spontaneous versus iatrogenic hypothyroidism. Journal of Clinical Endocrinology and 
Metabolism 53, 1036-1039. 
Corbin, L.J., White, S.J., Taylor, A.E., Williams, C.M., Taylor, K., van den Bosch, M.T., Teasdale, J.E., Jones, 
M., Bond, M., Harper, M.T., et al. (2022). Epigenetic Regulation of F2RL3 Associates With Myocardial 
Infarction and Platelet Function. Circulation research 130, 384-400. 
Dai, C., Fullgrabe, A., Pfeuffer, J., Solovyeva, E.M., Deng, J., Moreno, P., Kamatchinathan, S., Kundu, D.J., 
George, N., Fexova, S., et al. (2021). A proteomics sample metadata representation for multiomics 
integration and big data analysis. Nat Commun 12, 5854. 
Do, K.T., Wahl, S., Raffler, J., Molnos, S., Laimighofer, M., Adamski, J., Suhre, K., Strauch, K., Peters, A., 
Gieger, C., et al. (2018). Characterization of missing values in untargeted MS-based metabolomics data 
and evaluation of missing data handling strategies. Metabolomics 14, 128. 
Dullaart, R.P., Vergeer, M., de Vries, R., Kappelle, P.J., and Dallinga-Thie, G.M. (2012). Type 2 diabetes 
mellitus interacts with obesity and common variations in PLTP to affect plasma phospholipid transfer 
protein activity. J Intern Med 271, 490-498. 
Ej, D., C, B., X, M., L, L.-B., E, W., Mc, B.-R., A, R., G, S., F, C., C, R., et al. (2015). Variation at ABO histo-
blood group and FUT loci and diffuse and intestinal gastric cancer risk in a European population. 
International journal of cancer 136. 
Evans, A.M. (2014). High Resolution Mass Spectrometry Improves Data Quantity and Quality as 
Compared to Unit Mass Resolution Mass Spectrometry in High- Throughput Profiling Metabolomics. 
Metabolomics 4. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


44 
 

Evans, A.M., DeHaven, C.D., Barrett, T., Mitchell, M., and Milgram, E. (2009). Integrated, Nontargeted 
Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry 
Platform for the Identification and Relative Quantification of the Small-Molecule Complement of 
Biological Systems. Analytical Chemistry 81, 6656-6667. 
Fagny, M., Platig, J., Kuijjer, M.L., Lin, X., and Quackenbush, J. (2020). Nongenic cancer-risk SNPs affect 
oncogenes, tumour-suppressor genes, and immune function. British journal of cancer 122, 569-577. 
Filicori, M., Cognigni, G.E., Taraborrelli, S., Spettoli, D., Ciampaglia, W., de Fatis, C.T., and Pocognoli, P. 
(1999). Luteinizing hormone activity supplementation enhances follicle-stimulating hormone efficacy 
and improves ovulation induction outcome. J Clin Endocrinol Metab 84, 2659-2663. 
Frossard, M., Fuchs, I., Leitner, J.M., Hsieh, K., Vlcek, M., Losert, H., Domanovits, H., Schreiber, W., 
Laggner, A.N., and Jilma, B. (2004). Platelet function predicts myocardial damage in patients with acute 
myocardial infarction. Circulation 110, 1392-1397. 
Gamazon, E.R., Wheeler, H.E., Shah, K.P., Mozaffari, S.V., Aquino-Michaels, K., Carroll, R.J., Eyler, A.E., 
Denny, J.C., Consortium, G.T., Nicolae, D.L., et al. (2015). A gene-based association method for mapping 
traits using reference transcriptome data. Nat Genet 47, 1091-1098. 
Gilly, A., Park, Y.C., Png, G., Barysenka, A., Fischer, I., Bjørnland, T., Southam, L., Suveges, D., Neumeyer, 
S., Rayner, N.W., et al. (2020). Whole-genome sequencing analysis of the cardiometabolic proteome. 
Nature Communications 11. 
Gold, L., Ayers, D., Bertino, J., Bock, C., Bock, A., Brody, E.N., Carter, J., Dalby, A.B., Eaton, B.E., Fitzwater, 
T., et al. (2010). Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5. 
Granjon, A., Gustin, M.P., Rieusset, J., Lefai, E., Meugnier, E., Güller, I., Cerutti, C., Paultre, C., Disse, E., 
Rabasa-Lhoret, R., et al. (2009). The microRNA signature in response to insulin reveals its implication in 
the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-
binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes 58, 2555-2564. 
Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., Jansen, R., de Geus, E.J., Boomsma, D.I., 
Wright, F.A., et al. (2016). Integrative approaches for large-scale transcriptome-wide association studies. 
Nat Genet 48, 245-252. 
Hasin, Y., Seldin, M., and Lusis, A. (2017). Multi-omics approaches to disease. Genome Biol 18, 83. 
He, M., Wu, C., Xu, J., Guo, H., Yang, H., Zhang, X., Sun, J., Yu, D., Zhou, L., Peng, T., et al. (2014). A 
genome wide association study of genetic loci that influence tumour biomarkers cancer antigen 19-9, 
carcinoembryonic antigen and α fetoprotein and their associations with cancer risk. Gut 63, 143-151. 
Hertel, J., Friedrich, N., Wittfeld, K., Pietzner, M., Budde, K., Van der Auwera, S., Lohmann, T., Teumer, 
A., Volzke, H., Nauck, M., et al. (2016). Measuring Biological Age via Metabonomics: The Metabolic Age 
Score. J Proteome Res 15, 400-410. 
Huan, T., Joehanes, R., Song, C., Peng, F., Guo, Y., Mendelson, M., Yao, C., Liu, C., Ma, J., Richard, M., et 

al. (2019). Genome-wide identification of DNA methylation QTLs in whole blood highlights pathways for 
cardiovascular disease. Nature Communications 10. 
Huan, T., Rong, J., Liu, C., Zhang, X., Tanriverdi, K., Joehanes, R., Chen, B.H., Murabito, J.M., Yao, C., 
Courchesne, P., et al. (2015). Genome-wide identification of microRNA expression quantitative trait loci. 
Nature Communications 6. 
Huuskonen, J., Olkkonen, V.M., Ehnholm, C., Metso, J., Julkunen, I., and Jauhiainen, M. (2000). 
Phospholipid transfer is a prerequisite for PLTP-mediated HDL conversion. Biochemistry 39, 16092-
16098. 
Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., Altmaier, E., Kastenmüller, 
G., Kato, B.S., Mewes, H.W., et al. (2010). A genome-wide perspective of genetic variation in human 
metabolism. Nature Genetics 42, 137-141. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


45 
 

Inouye, M., Silander, K., Hamalainen, E., Salomaa, V., Harald, K., Jousilahti, P., Männistö, S., Eriksson, 
J.G., Saarela, J., Ripatti, S., et al. (2010). An immune response network associated with blood lipid levels. 
PLoS genetics 6. 
Kamat, M.A., Blackshaw, J.A., Young, R., Surendran, P., Burgess, S., Danesh, J., Butterworth, A.S., and 
Staley, J.R. (2019). PhenoScanner V2: An expanded tool for searching human genotype-phenotype 
associations. Bioinformatics 35, 4851-4853. 
Karczewski, K.J., and Snyder, M.P. (2018). Integrative omics for health and disease (Nature Publishing 
Group), pp. 299-310. 
Kettunen, J., Demirkan, A., Würtz, P., Draisma, H.H.M., Haller, T., Rawal, R., Vaarhorst, A., Kangas, A.J., 
Lyytikäinen, L.P., Pirinen, M., et al. (2016). Genome-wide study for circulating metabolites identifies 62 
loci and reveals novel systemic effects of LPA. Nature Communications 7. 
Krumsiek, J., Mittelstrass, K., Do, K.T., Stuckler, F., Ried, J., Adamski, J., Peters, A., Illig, T., Kronenberg, F., 
Friedrich, N., et al. (2015). Gender-specific pathway differences in the human serum metabolome. 
Metabolomics 11, 1815-1833. 
Krumsiek, J., Suhre, K., Illig, T., Adamski, J., and Theis, F.J. (2011). Gaussian graphical modeling 
reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol 5, 21. 
Lehallier, B., Gate, D., Schaum, N., Nanasi, T., Lee, S.E., Yousef, H., Moran Losada, P., Berdnik, D., Keller, 
A., Verghese, J., et al. (2019). Undulating changes in human plasma proteome profiles across the 
lifespan. Nat Med 25, 1843-1850. 
Lelo, A., Kjellen, G., Birkett, D.J., and Miners, J.O. (1989). Paraxanthine metabolism in humans: 
determination of metabolic partial clearances and effects of allopurinol and cimetidine. J Pharmacol Exp 
Ther 248, 315-319. 
Li, M., Zou, D., Li, Z., Gao, R., Sang, J., Zhang, Y., Li, R., Xia, L., Zhang, T., Niu, G., et al. (2019). EWAS Atlas: 
a curated knowledgebase of epigenome-wide association studies. Nucleic acids research 47, D983-D988. 
Liang, L., Gao, C., Li, Y., Sun, M., Xu, J., Li, H., Jia, L., and Zhao, Y. (2017). miR-125a-3p/FUT5-FUT6 axis 
mediates colorectal cancer cell proliferation, migration, invasion and pathological angiogenesis via PI3K-
Akt pathway. Cell death & disease 8. 
Lin, W.D., Fan, T.C., Hung, J.T., Yeo, H.L., Wang, S.H., Kuo, C.W., Khoo, K.H., Pai, L.M., Yu, J., and Yu, A.L. 
(2021). Sialylation of CD55 by ST3GAL1 facilitates immune evasion in cancer. Cancer Immunology 
Research 9, 113-122. 
Löfgren, L., Ståhlman, M., Forsberg, G.-B., Saarinen, S., Nilsson, R., and Hansson, G.I. (2012). The BUME 
method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. 
Journal of Lipid Research 53, 1690-1700. 
Menni, C., Keser, T., Mangino, M., Bell, J.T., Erte, I., Akmačić, I., Vučković, F., Baković, M.P., Gornik, O., 
McCarthy, M.I., et al. (2013). Glycosylation of immunoglobulin G: Role of genetic and epigenetic 
influences. PLoS ONE 8. 
Miike, K., Aoki, M., Yamashita, R., Takegawa, Y., Saya, H., Miike, T., and Yamamura, K. (2010). Proteome 
profiling reveals gender differences in the composition of human serum. Proteomics 10, 2678-2691. 
Mook-Kanamori, D.O., Selim, M.M.E.-D., Takiddin, A.H., Al-Homsi, H., Al-Mahmoud, K.A.S., Al-Obaidli, A., 
Zirie, M.A., Rowe, J., Yousri, N.A., Karoly, E.D., et al. (2014). 1,5-Anhydroglucitol in Saliva Is a Noninvasive 
Marker of Short-Term Glycemic Control. The Journal of Clinical Endocrinology & Metabolism 99, E479-
E483. 
Needs, C.J., and Brooks, P.M. (1985). Clinical pharmacokinetics of the salicylates. Clin Pharmacokinet 10, 
164-177. 
Nehlig, A. (2018). Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine 
Consumption. Pharmacol Rev 70, 384-411. 
Nikpay, M., Beehler, K., Valsesia, A., Hager, J., Harper, M.E., Dent, R., and McPherson, R. (2019). 
Genome-wide identification of circulating-miRNA expression quantitative trait loci reveals the role of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


46 
 

several miRNAs in the regulation of cardiometabolic phenotypes. Cardiovascular Research 115, 1629-
1645. 
Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G.D., and Maltsev, N. (1999). Use of contiguity on the 
chromosome to predict functional coupling. In Silico Biol 1, 93-108. 
Pena, M.J., Mischak, H., and Heerspink, H.J. (2016). Proteomics for prediction of disease progression and 
response to therapy in diabetic kidney disease. Diabetologia 59, 1819-1831. 
Peters, M.J., Joehanes, R., Pilling, L.C., Schurmann, C., Conneely, K.N., Powell, J., Reinmaa, E., Sutphin, 
G.L., Zhernakova, A., Schramm, K., et al. (2015). The transcriptional landscape of age in human 
peripheral blood. Nat Commun 6, 8570. 
Pettersen, I.K.N., Tusubira, D., Ashrafi, H., Dyrstad, S.E., Hansen, L., Liu, X.Z., Nilsson, L.I.H., Løvsletten, 
N.G., Berge, K., Wergedahl, H., et al. (2019). Upregulated PDK4 expression is a sensitive marker of 
increased fatty acid oxidation. Mitochondrion 49, 97-110. 
Powell, D.R., Liu, F., Baker, B.K., Hintz, R.L., Durham, S.K., Brewer, E.D., Frane, J.W., Tonshoff, B., Mehls, 
O., Wingen, A.M., et al. (1997). Insulin-like growth factor-binding protein-6 levels are elevated in serum 
of children with chronic renal failure: a report of the Southwest Pediatric Nephrology Study Group. J Clin 
Endocrinol Metab 82, 2978-2984. 
Pučić, M., Knežević, A., Vidič, J., Adamczyk, B., Novokmet, M., Polašek, O., Gornik, O., Šupraha-Goreta, 
S., Wormald, M.R., Redžic, I., et al. (2011). High throughput isolation and glycosylation analysis of IgG-
variability and heritability of the IgG glycome in three isolated human populations. Molecular and 
Cellular Proteomics 10. 
Quell, J.D., Römisch-Margl, W., Haid, M., Krumsiek, J., Skurk, T., Halama, A., Stephan, N., Adamski, J., 
Hauner, H., Mook-Kanamori, D., et al. (2019). Characterization of Bulk Phosphatidylcholine Compositions 
in Human Plasma Using Side-Chain Resolving Lipidomics. Metabolites 9, 109-109. 
Reguigne-Arnould, I., Couillin, P., Mollicone, R., Fauré, S., Fletcher, A., Kelly, R.J., Lowe, J.B., and Oriol, R. 
(1995). Relative positions of two clusters of human alpha-L-fucosyltransferases in 19q (FUT1-FUT2) and 
19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19. Cytogenetics and cell 
genetics 71, 158-162. 
Robinson, O., Chadeau Hyam, M., Karaman, I., Climaco Pinto, R., Ala-Korpela, M., Handakas, E., Fiorito, 
G., Gao, H., Heard, A., Jarvelin, M.R., et al. (2020). Determinants of accelerated metabolomic and 
epigenetic aging in a UK cohort. Aging Cell 19. 
Sailani, M.R., Metwally, A.A., Zhou, W., Rose, S.M.S.F., Ahadi, S., Contrepois, K., Mishra, T., Zhang, M.J., 
Kidziński, Ł., Chu, T.J., et al. (2020). Deep longitudinal multiomics profiling reveals two biological 
seasonal patterns in California. Nature Communications 11. 
Schrader, S., Perfilyev, A., Ahlqvist, E., Groop, L., Vaag, A., Martinell, M., Garcia-Calzon, S., and Ling, C. 
(2022). Novel Subgroups of Type 2 Diabetes Display Different Epigenetic Patterns That Associate With 
Future Diabetic Complications. Diabetes Care 45, 1621-1630. 
Sharapov, S.Z., Tsepilov, Y.A., Klaric, L., Mangino, M., Thareja, G., Shadrina, A.S., Simurina, M., Dagostino, 
C., Dmitrieva, J., Vilaj, M., et al. (2019). Defining the genetic control of human blood plasma N-glycome 
using genome-wide association study. Human molecular genetics 28, 2062-2077. 
Singmann, P., Shem-Tov, D., Wahl, S., Grallert, H., Fiorito, G., Shin, S.Y., Schramm, K., Wolf, P., Kunze, S., 
Baran, Y., et al. (2015). Characterization of whole-genome autosomal differences of DNA methylation 
between men and women. Epigenetics Chromatin 8, 43. 
Soininen, P., Kangas, A.J., Würtz, P., Suna, T., and Ala-Korpela, M. (2015). Quantitative serum nuclear 
magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circulation: 
Cardiovascular Genetics 8, 192-206. 
Soininen, P., Kangas, A.J., Würtz, P., Tukiainen, T., Tynkkynen, T., Laatikainen, R., Järvelin, M.R., 
Kähönen, M., Lehtimäki, T., Viikari, J., et al. (2009). High-throughput serum NMR metabonomics for cost-
effective holistic studies on systemic metabolism. Analyst 134, 1781-1785. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


47 
 

Suhre, K., Arnold, M., Bhagwat, A.M., Cotton, R.J., Engelke, R., Raffler, J., Sarwath, H., Thareja, G., Wahl, 
A., DeLisle, R.K., et al. (2017). Connecting genetic risk to disease end points through the human blood 
plasma proteome. Nat Commun 8, 14357. 
Suhre, K., McCarthy, M.I., and Schwenk, J.M. (2021). Genetics meets proteomics: perspectives for large 
population-based studies (Nature Research), pp. 19-37. 
Suhre, K., Meisinger, C., Döring, A., Altmaier, E., Belcredi, P., Gieger, C., Chang, D., Milburn, M.V., Gall, 
W.E., Weinberger, K.M., et al. (2010). Metabolic Footprint of Diabetes: A Multiplatform Metabolomics 
Study in an Epidemiological Setting. PLoS ONE 5, e13953-e13953. 
Suhre, K., Shin, S.Y., Petersen, A.K., Mohney, R.P., Meredith, D., Wägele, B., Altmaier, E., Deloukas, P., 
Erdmann, J., Grundberg, E., et al. (2011). Human metabolic individuality in biomedical and 
pharmaceutical research. Nature 477, 54-62. 
Suhre, K., Trbojević-Akmačić, I., Ugrina, I., Mook-Kanamori, D.O., Spector, T., Graumann, J., Lauc, G., and 
Falchi, M. (2019). Fine-Mapping of the Human Blood Plasma N-Glycome onto Its Proteome. Metabolites 

9. 
Tabák, A.G., Carstensen, M., Witte, D.R., Brunner, E.J., Shipley, M.J., Jokela, M., Roden, M., Kivimäki, M., 
and Herder, C. (2012). Adiponectin trajectories before type 2 diabetes diagnosis: Whitehall II study. 
Diabetes care 35, 2540-2547. 
Tanaka, T., Biancotto, A., Moaddel, R., Moore, A.Z., Gonzalez-Freire, M., Aon, M.A., Candia, J., Zhang, P., 
Cheung, F., Fantoni, G., et al. (2018). Plasma proteomic signature of age in healthy humans. Aging Cell 
17. 
Tatusov, R.L., Natale, D.A., Garkavtsev, I.V., Tatusova, T.A., Shankavaram, U.T., Rao, B.S., Kiryutin, B., 
Galperin, M.Y., Fedorova, N.D., and Koonin, E.V. (2001). The COG database: new developments in 
phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29, 22-28. 
Trbojević Akmačić, I., Ugrina, I., Štambuk, J., Gudelj, I., Vučković, F., Lauc, G., and Pučić-Baković, M. 
(2015). High-throughput glycomics: Optimization of sample preparation. Biochemistry (Moscow) 80, 
934-942. 
Velenosi, T.J., Thomson, B.K.A., Tonial, N.C., RaoPeters, A.A.E., Mio, M.A., Lajoie, G.A., Garg, A.X., House, 
A.A., and Urquhart, B.L. (2019). Untargeted metabolomics reveals N, N, N-trimethyl-L-alanyl-L-proline 
betaine (TMAP) as a novel biomarker of kidney function. Sci Rep 9, 6831. 
Volkmar, M., Dedeurwaerder, S., Cunha, D.A., Ndlovu, M.N., Defrance, M., Deplus, R., Calonne, E., 
Volkmar, U., Igoillo-Esteve, M., Naamane, N., et al. (2012). DNA methylation profiling identifies 
epigenetic dysregulation in pancreatic islets from type 2 diabetic patients. The EMBO journal 31, 1405-
1426. 
Wainberg, M., Sinnott-Armstrong, N., Mancuso, N., Barbeira, A.N., Knowles, D.A., Golan, D., Ermel, R., 
Ruusalepp, A., Quertermous, T., Hao, K., et al. (2019). Opportunities and challenges for transcriptome-
wide association studies. Nat Genet 51, 592-599. 
Wang-Sattler, R., Yu, Z., Herder, C., Messias, A.C., Floegel, A., He, Y., Heim, K., Campillos, M., Holzapfel, 
C., Thorand, B., et al. (2012). Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst 
Biol 8, 615. 
Wu, X., Zhao, J., Ruan, Y., Sun, L., Xu, C., and Jiang, H. (2018). Sialyltransferase ST3GAL1 promotes cell 
migration, invasion, and TGF-β1-induced EMT and confers paclitaxel resistance in ovarian cancer. Cell 
Death and Disease 9. 
Yousri, N.A., Mook-Kanamori, D.O., Selim, M.M.E.-D., Takiddin, A.H., Al-Homsi, H., Al-Mahmoud, K.A.S., 
Karoly, E.D., Krumsiek, J., Do, K.T., Neumaier, U., et al. (2015). A systems view of type 2 diabetes-
associated metabolic perturbations in saliva, blood and urine at different timescales of glycaemic 
control. Diabetologia 58, 1855-1867. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


48 
 

Zaghlool, S.B., Kühnel, B., Elhadad, M.A., Kader, S., Halama, A., Thareja, G., Engelke, R., Sarwath, H., Al-
Dous, E.K., Mohamoud, Y.A., et al. (2020). Epigenetics meets proteomics in an epigenome-wide 
association study with circulating blood plasma protein traits. Nature Communications 11. 
Zaghlool, S.B., Mook-Kanamori, D.O., Kader, S., Stephan, N., Halama, A., Engelke, R., Sarwath, H., Al-
Dous, E.K., Mohamoud, Y.A., Roemisch-Margl, W., et al. (2018). Deep molecular phenotypes link 
complex disorders and physiological insult to CpG methylation. Human Molecular Genetics 27, 1066-
1121. 
Zhang, Y., Wilson, R., Heiss, J., Breitling, L.P., Saum, K.U., Schöttker, B., Holleczek, B., Waldenberger, M., 
Peters, A., and Brenner, H. (2017). DNA methylation signatures in peripheral blood strongly predict all-
cause mortality. Nature communications 8. 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


49 
 

Acknowledgements 

[please add as appropriate] 

 

Conflict of interest 

All data generated by a commercial company was obtained on a fee-for-service basis. Authorship has 

been offered to key scientific personnel of these companies for their individual scientific contributions 

to the interpretation of the data. 

[please add all conflicts other than just being an employee of a company ... that should be clear from the 

affilitations and the above sentence] 

 

 

 

 

Budde, K., Gök, Ö.N., Pietzner, M., Meisinger, C., Leitzmann, M., Nauck, M., Köttgen, A., and Friedrich, N. 
(2016). Quality assurance in the pre-analytical phase of human urine samples by 1H NMR spectroscopy. 
Archives of Biochemistry and Biophysics 589, 10-17. 
Cho, J.H., and Gregersen, P.K. (2011). Genomics and the multifactorial nature of human autoimmune 
disease. N Engl J Med 365, 1612-1623. 
de Haan, N., Pucic-Bakovic, M., Novokmet, M., Falck, D., Lageveen-Kammeijer, G., Razdorov, G., 
Vuckovic, F., Trbojevic-Akmacic, I., Gornik, O., Hanic, M., et al. (2022). Developments and perspectives in 
high-throughput protein glycomics: enabling the analysis of thousands of samples. Glycobiology 32, 651-
663. 
Dotz, V., Visconti, A., Lomax-Browne, H.J., Clerc, F., Hipgrave Ederveen, A.L., Medjeral-Thomas, N.R., 
Cook, H.T., Pickering, M.C., Wuhrer, M., and Falchi, M. (2021). O- and N-Glycosylation of Serum 
Immunoglobulin A is Associated with IgA Nephropathy and Glomerular Function. J Am Soc Nephrol 32, 
2455-2465. 
Illig, T., Gieger, C., Zhai, G., Römisch-Margl, W., Wang-Sattler, R., Prehn, C., Altmaier, E., Kastenmüller, 
G., Kato, B.S., Mewes, H.W., et al. (2010). A genome-wide perspective of genetic variation in human 
metabolism. Nature Genetics 42, 137-141. 
Kristic, J., Vuckovic, F., Menni, C., Klaric, L., Keser, T., Beceheli, I., Pucic-Bakovic, M., Novokmet, M., 
Mangino, M., Thaqi, K., et al. (2014). Glycans are a novel biomarker of chronological and biological ages. 
J Gerontol A Biol Sci Med Sci 69, 779-789. 
Momcilovic, A., de Haan, N., Hipgrave Ederveen, A.L., Bondt, A., Koeleman, C.A.M., Falck, D., de Neef, 
L.A., Mesker, W.E., Tollenaar, R., de Ru, A., et al. (2020). Simultaneous Immunoglobulin A and G 
Glycopeptide Profiling for High-Throughput Applications. Anal Chem 92, 4518-4526. 
Pearson, E.R., Starkey, B.J., Powell, R.J., Gribble, F.M., Clark, P.M., and Hattersley, A.T. (2003). Genetic 
cause of hyperglycaemia and response to treatment in diabetes. Lancet 362, 1275-1281. 
Raffield, L.M., Dang, H., Pratte, K.A., Jacobson, S., Gillenwater, L.A., Ampleford, E., Barjaktarevic, I., 
Basta, P., Clish, C.B., Comellas, A.P., et al. (2020). Comparison of Proteomic Assessment Methods in 
Multiple Cohort Studies. Proteomics 20, e1900278. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758


50 
 

Römisch-Margl, W., Prehn, C., Bogumil, R., Röhring, C., Suhre, K., and Adamski, J. (2012). Procedure for 
tissue sample preparation and metabolite extraction for high-throughput targeted metabolomics. 
Metabolomics 8, 133-142. 
Wu, S., Zhu, W., Thompson, P., and Hannun, Y.A. (2018). Evaluating intrinsic and non-intrinsic cancer risk 
factors. Nat Commun 9, 3490. 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted November 3, 2022. ; https://doi.org/10.1101/2022.10.31.22281758doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.31.22281758

