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Highlights 

• We detected the emotional state of participants in the absence of visible changes in facial 

expressions 

• We identified distinct facial movement maps for happy and sad emotions 

• We developed a highly sensitive, noninvasive, noncontact emotional state assessment 

tool 
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Abstract 

Background: Research into mood and emotion has often depended on slow and subjective self-

report, highlighting a need for rapid, accurate, and objective assessment tools. 

Methods: To address this gap, we developed a method using digital image speckle correlation 

(DISC), which tracks subtle changes in facial expressions invisible to the naked eye, to assess 

emotions in real-time. We presented ten participants with visual stimuli triggering neutral, 

happy, and sad emotions and quantified their associated facial responses via detailed DISC 

analysis. 

Results: We identified key alterations in facial expression (facial maps) that reliably signal 

changes in mood state across all individuals based on these data. Furthermore, principal 

component analysis of these facial maps identified regions associated with happy and sad 

emotions.   Compared with commercial deep learning solutions that use individual images to 

detect facial expressions and classify emotions, such as Amazon Rekognition, our DISC-based 

classifiers utilize frame-to-frame changes. Our data show that DISC-based classifiers deliver 

substantially better predictions, and they are inherently free of racial or gender bias. 

Limitations: Our sample size was limited, and participants were aware their faces were recorded 

on video. Despite this, our results remained consistent across individuals. 

Conclusions: We demonstrate that DISC-based facial analysis can be used to reliably identify an 

individual’s emotion and may provide a robust and economic modality for real-time, noninvasive 

clinical monitoring in the future. 
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Introduction 

The ability to accurately assess the internal states of the human mind remains one of the grand 

challenges of modern neuroscience. In recent years, considerable research has been devoted to 

discovering new methods for identifying moods and emotions. There are a number of tools used 

to assess mood psychometrically in the field of mood disorders research. Some are inventories, 

such as the Patient Health Questionairre-9 (PHQ-9) [1], the Remission Evaluation and Mood 

Inventory Tool (REMIT) [2], and the Ecological Momentary Assessment (EMA) [3], while 

others are symptom scales, including the Hamilton Rating Scale for Depression (HAM-D) [4], 

the Montgomery-Asburg Depression Rating Scale (MADRS) [5], and the Young Mania Rating 

Scale (YMRS) [6]. These tools are helpful in evaluating mood disorders in individuals with 

depressive or manic symptoms, but their validity and reliability are potentially compromised by 

methods of self-report or observer assessment [7–10]. Moreover, research into neurobiological 

mechanisms of mood requires temporal precision that survey-based instruments lack. The same 

applies to emotions. The subjectivity of existing scales has thus created a demand for objective 

measures of mood and emotional state.  

Previous attempts at objective affective assessment have employed biosignal detection as 

a means of differentiating emotions. Some measures have targeted physiological markers of the 

stress response and emotional distress such as changes in facial skin temperature or color [11–

13]. Other studies have investigated existing diagnostic tools, such as electrocardiography [14], 

electroencephalography [15], and electromyography (EMG) [16,17]. Recently, the proliferation 

of wearable biosensor technology such as fitness trackers and smartwatches has yielded yet 

another potential tool for ambulatory mood assessment [18,19]. Analysis of the vast quantities of 

body-sensing data provided by such devices may be helpful in understanding the mechanistic 

foundations of mood and emotion. However, the validity and reliability of these measures 

compared to more traditional questionnaire-based methods have yet to be ascertained. 

The face offers another promising avenue for real-time emotional assessment. Well over 

a century ago, William James observed that the affective state is usually reflected in facial 

movement (“. . . [the] neck is bent, the head hangs (‘bowed down’ with grief), the relaxation of 

the cheek- and jaw-muscles makes the face look long and narrow, the jaw may even hang open 

and the eyes appear large”) [20]. Since then, methods for correlating facial movement to the 
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underlying emotional state were developed [21–23]. Popularized by Ekman and Friesen, the 

Facial Action Coding System (FACS) codifies facial movements based on the action units 

(muscles or groups of muscles) that create them. This system functions on the premise that the 

representation of emotions through facial movement are conserved across cultures and peoples 

[24]. Other studies have used facial EMG to detect purposeful changes in facial expression [25], 

as well as involuntary movements in response to affective touch [26]. Thus, quantitative analysis 

of facial movements may provide an intriguing modality for studying emotion and mood states.  

A major drawback of the aforementioned methods is that they rely on detection of overt 

facial movements, however, individuals may attempt to conceal their emotions under certain 

circumstances. Even so, Ekman has argued that people unconsciously reveal their emotion 

through microexpressions, facial movements so brief that they are unrecognizable in real-time 

but can be decoded during close examination of videos [27,28]. Several methods have been 

developed to measure dynamic facial characteristics based on video recording of participants, 

including the central difference method [29]. The central difference method is an analytical 

approximation of a derivative, which in this case, Shreve and colleagues used to track the rate of 

change of facial movement as individuals displayed various emotions. This technique proved 

capable of detecting microexpressions, thus highlighting the potential utility of facial expression-

based quantitative emotion detection methods. Whereas the authors of this prior study attempted 

to detect the occurrence of facial expressions [29], we sought to investigate whether we could 

predict an individual’s underlying affective state by simply looking at the face. The ability to 

ascertain an individual’s emotion or mood through facial analysis not only offers an objective 

tool for use in research settings, but also highlights the utility of such a tool in the clinical 

evaluation of affective disorders and monitoring treatment response.  

Digital image speckle correlation (DISC) is a technique originally proposed for use in 

stress analysis of solid engineering materials. DISC tracks the geometric features of an object’s 

surface as it undergoes deformation [30]. More recently, researchers have discovered 

applications of this method to the fields of dermatology and reconstructive surgery [31–33]. By 

tracking the displacement of skin pores, DISC objectively quantifies facial movements in real-

time [31].  Applying DISC to the human face has proved superior at facial recognition when 

compared with the traditional combined principal component analysis (PCA) and linear 
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discriminant analysis method [32]. Other applications include studying changes in facial 

mechanical properties with aging [33] and after botulinum toxin treatment [34,35], as well as 

assessing facial nerve deficits in patients with vestibular schwannomas [36].  

In the current study, we use DISC as a novel, real-time emotional assessment tool to track 

extremely subtle facial movements in order to reliably differentiate happy and sad emotions in 

healthy individuals. Unlike Ekman’s microexpressions, the minute changes in facial movement 

we observed are not discernable to the naked eye until after DISC analysis. Our results highlight 

the intriguing utility of this technique in emotion and mood detection as well as in more broad 

clinical monitoring settings. 

 

Methods 

Ethics Statement 

This study was conducted under the supervision of the Stony Brook University Committee on 

Research in Human Subjects (IRB2019-0199). All volunteers gave their written informed 

consent before participation in the study. 

 

Participants and Videotaping 

This pilot study included ten healthy volunteers (seven males and three females) aged 23-56 

years (mean age: 31).  Participants were initially instructed to fill out a baseline self-assessment 

manikin (SAM) form with respect to their current mood state. The SAM is a pictorial mood 

reporting method often used in conjunction with the international affective picture system 

(IAPS), the set of images used to elicit happy and sad moods in this study [37,38].  

Study participants were asked to rest their chins on an apparatus consisting of a chinrest 

connected to a specially designed platform with a camera mount to keep the camera at a fixed 

distance from the face (Supplementary Figure 1).  In this position, they were videotaped using 

a Canon EOS 60D camera while viewing an automated slideshow of images from the 

international affective picture system (IAPS). This set of images is designed to elicit emotional 

reactions in the viewer [37,38]. The slideshow consisted of ten consecutive images intended to 
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elicit pleasant or happy emotions followed by ten consecutive images meant to evoke sad 

emotions; each image was shown for ten seconds. These images were selected at the discretion 

of the research team. A blank (white) screen was shown for ten seconds at the beginning, as well 

as between the two sets of images to provide the baseline facial expression. After image viewing, 

participants were instructed to fill out two additional SAMs, each with respect to their mood state 

while viewing each set of images. 

 

DISC analysis of facial movement  

DISC was originally intended for stress analysis of various solid engineering materials [30]. By 

tracking geometric features of a specimen surface before and after deformation, DISC derives the 

corresponding displacements of the points on the surface. To track a point (pixel) with 

coordinates of ��, �� on the nondeformed image (Supplementary Figure 2), a neighborhood 

���,�� of the pixel is defined that consists of a number of pixels, in which ��, �� are the 

coordinates of the center of that neighborhood. Then, this neighborhood is compared with an 

equal-sized one on the deformed image. Given the coordinates ���, ��� of the center point of a 

neighborhood ����,��� on the deformed image, the similarity (S) of these two subsets can be 

evaluated using the cross-correlation function: 

                                   ��,����, ��� �
∑ ���	,�	����	�,�	 �����,����	��,�� ����,�����	���,���


∑ ����	,�	����,����	��,��
∑ ����	�,�	 ������,�����	���,���

                              �1�  

Where ����, ��� and �����, ���� represent the gray-scale intensities (from 0 [black] to 255 [white]) of 

the corresponding pixels, and the summations are across the corresponding neighborhoods. DISC 

uses two frames as inputs and for every pixel with coordinates ��, �� in the first frame, it finds a 

pixel with coordinates ���, ��� in the second frame with the highest similarity ��,����, ���. 

Therefore, DISC provides a displacement vector ���, ���  ��, �� for every pixel ��, ��, yielding 

a vector field of displacement vectors for the whole image. This vector field characterizes 

movements on the specimen surface as defined by Peters and Ranson, and the length of the 

corresponding vectors corresponds to the intensity on the heatmaps used in our analysis [30]. 

By letting u and v correspond to the vertical and horizontal components of displacement, 

respectively: 
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�� � � � �
 �� � � � �#�2�  

The displacement vector (��) of the point (x, y) can be expressed as: 

                                                                 ����, �� � ��, ��                                                                   �3� 

DISC analysis relies on tracking and characterizing “speckles” on the specimen surface [30]. As 

interpreted in Equation (1), each individual neighborhood within the image provides a distinct 

intensity profile. When applied to the human face, DISC utilizes skin pores that create ideal 

natural speckles to derive reliable displacement vectors of the face between two frames of a 

video [31,32]. Videos were split into individual frames.  We categorized the frames based on the 

emotional valence (neutral, happy, or sad) of the image that the participant was viewing at that 

moment. One frame per second was used for analysis.  Pairs of frames were analyzed via DISC1, 

with the first frame of both happy and sad image-viewing portions of the slideshow serving as 

the baseline to which all other happy and sad frames were compared. Using these frames of 

maximum proximity as a baseline minimized image misalignment, as participants may move 

their heads subtly throughout the slideshow. Resultant files containing displacement vectors for 

each point were then generated. Each point was located at the center of an 85 × 85-pixel subset 

with 20 pixels separating two given points. 

 

Heatmaps 

Heatmaps in Figures 1 and 2 demonstrate the varying magnitude of pixel displacement within 

each participant’s face. Heatmaps for both happy and sad emotions were generated from the 

average displacement throughout the viewing period for both happy and sad images. We then 

averaged these heatmaps from all participants to build composite heatmaps for happy and sad 

emotions and assess for spatial trends in facial expression changes (Fig 3). We analyzed the 

same number of pixels across individuals for comparison purposes. 

 

Similarity Matrices 

                                                           

1 We modified the following publicly available code for our analysis: https://gitlab.com/damien.andre/pydic 
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Frames from each participant’s video were individually compared, one against another, both 

within an emotion category and between emotions (e.g.  happy-to-happy, sad-to-sad, and happy-

to-sad), using the similarity values obtained from Equation (1). This was done to compare the 

frames of each video throughout the happy and sad image-viewing portions.  Similarity values 

can range from zero (absence of any similarity) to one (identical frames). We then organized the 

calculated similarities into a matrix to visually demonstrate how similar each frame was to every 

other frame of a given participant. This was performed for all ten participants. To compare the 

average similarity among Happy-Happy and Sad-Sad quadrants to the Happy-Sad/Sad-Happy 

quadrants of each similarity matrix, we performed two-tailed t-tests using the SciPy library in 

Python. 

 

Principal Component Analysis 

Principal component analysis (PCA) is a common method of converting high-dimensional data 

into lower-dimensional data. It is used to find a small subset of components that captures as 

much of the variance of the original data as possible [39]. In other words, it approximates the 

original information but in a compressed form. The principal components are defined as the 

eigenvectors of the covariance matrix of the original dataset, which in the context of this study, 

refers to a 500-dimensional vector for each frame of a video. For our analysis, we chose the two 

eigenvectors with the highest eigenvalues, as they are the two most informative components of 

the original, multidimensional vectors. 

 

Machine Learning-Based Mood Classifiers 

Facial analysis is an intensive area of research. There exist numerous algorithms that detect, 

analyze, and read emotions from human faces. Big tech companies such as Amazon, Google, and 

Facebook develop many of these algorithms in-house and use them in their products. Chouinard 

and colleagues [40], evaluated several techniques in facial analysis primarily focusing on facial 

recognition and emotion detection. They concluded that Amazon Rekognition2 has the best 

performance for both face recognition and facial expression recognition. Amazon Rekognition is 

                                                           

2 Software is available at: https://aws.amazon.com/rekognition 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.28.22276059doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22276059
http://creativecommons.org/licenses/by-nc-nd/4.0/


a commercial software that utilizes proprietary deep learning technology developed by Amazon 

Web Services (AWS). It is a static method, in other words, it takes an individual image as an 

input, and performs facial analysis—including the detection of eight different emotions (happy, 

surprised, confused, calm, angry, fear, disgusted, and sad).  

Compared with static methods that use a single image, DISC employs a different set of 

predictors for categorizing emotion. It is a dynamic method that tracks subtle changes in facial 

movement in real-time between two frames of a video. In the final part of the next section, we 

demonstrate the out-of-sample performance of three different classifiers constructed with 

machine learning models that use DISC displacement data as features. We then compare these 

models to Amazon Rekognition.  

The three classifiers are (i) a Multiclass Sparse Logistic Regression (MSLR); (ii) a Multi-

Layer Perceptron (MLP); and (iii) a 3D-Convolutional Neural Network (CNN). MSLR is an 

extension of a well-known logistic regression method that allows for more than two categories of 

the predicted variable (see, e.g., Kim et al. 2006). It embeds feature selection into the 

classification framework using the ℓ1-norm regularization, and is attractive in many applications 

involving high-dimensional data. MLP is a class of feed-forward artificial neural networks from 

Pedregosa and colleagues (2011). It is a more flexible model than MSLR because it can capture 

nonlinear relationships between predictors. 3D-CNNs are a type of deep convolutional neural 

network that extracts features by performing 3D convolutions [41,42]. It captures the spatial 

information encoded in neighboring pixels in one heatmap, as well as the temporal information 

from the multiple adjacent frame heatmaps of a given participant.  

The architecture of our 3D-CNN classifier is summarized in Table S1. It consists of two 

3D convolution layers with a leaky ReLU activation function, max pooling in the convolution, 

and a batch normalization after each convolution for better numerical properties during the 

training of the network. Then, the network was flattened using global average pooling. It has two 

additional dense layers that shape the classifier into three final states that give the probabilities of 

each state.  These probabilities were compared using a binary cross entropy function against the 

true labels (“Happy,” “Sad,” and “Neutral”). We experimented with different network 

architectures and shapes of the layers in the network. The out-of-sample results were robust 
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against these modifications. Importantly, the confusion matrices and the classification errors 

were very similar for all the networks that we used. 

 

Results 

Facial Heatmaps 

To visualize spatiotemporal facial expression changes associated with happy and sad emotions, 

we generated heatmaps demonstrating magnitude and direction of movement via DISC analysis 

of participant videos. The three images in the top panel of Figure 1, taken when the participant 

was exposed to neutral, happy, and sad-triggering stimuli, are virtually indistinguishable to the 

naked eye, making it difficult to discern what they are looking at. However, the differences 

among these affective states become more evident following DISC processing, where facial 

movement in response to happy and sad images localizes to distinct areas on the face, forming 

happy and sad facial maps.  Importantly, these facial maps are conserved across participants. 

Examining the average heatmaps of all participants demonstrates a pattern whereby movement in 

response to happy images is concentrated in the lower face, around the angles of the mouth, and 

movement in response to sad images is concentrated in the brow area (Fig 2).  

 We next averaged facial movement across all participants to see if the patterns of happy 

and sad emotions observed earlier persisted (Fig 3). The composite heatmaps of average facial 

movement from all participants further demonstrated the differential localization of movement to 

the corners of the mouth during happy image-viewing and to the brow during sad image-

viewing, consistent with our observations in Figures 2 and 3. Taken together, these results 

suggest that happy and sad images evoked subtle, yet spatially distinct changes in facial 

expression that are reliably detectable via DISC analysis and invariant of participants’ gender 

and age.  
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Fig 13: Heatmaps derived from the results of DISC analysis of representative frames for each emotion in a single 

participant. The top three panels are the original images, whereas the bottom three are the same images with 

superimposed heatmaps showing magnitude of movement from the baseline (neutral) frames. Units are in pixels. 

 

Fig 24: Heatmaps showing magnitude of facial movement in response to happy and sad images for each participant. 

Heatmaps were generated from the averaged DISC-calculated displacement across all happy and sad frames for that 

individual. Numbers represent each participant in the study. Participant 1 declined to have their face included in the 

publication of this data.  

 

 

Fig 3: Average magnitude of facial movement in response to happy and sad images across all participants. Units are 

in pixels. 

 

In order to assess whether a given participants responses to one image were consistent 

throughout the viewing period, we constructed similarity matrices. These similarity matrices 

                                                           

3 This figure was removed from the manuscript because it contains images of our participants’ faces, per medRxiv 
policy. Please contact the corresponding author for access to these images. 
4 This figure was removed from the manuscript because it contains images of our participants’ faces, per medRxiv 
policy. Please contact the corresponding author for access to these images. 
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compare the frames of each video throughout the happy and sad image-viewing portions to all 

other frames (Fig 4). Matrices were organized into four quadrants based on the category of the 

two frames being compared. Among all participants, the average similarity in both the Happy-

Happy and Sad-Sad quadrants was significantly higher than that of the Happy-Sad and Sad-

Happy quadrants (two-tailed t-test, p < 0.001). Therefore, these similarity matrices assert not 

only that the facial responses to happy and sad images are distinct, but that they are conserved 

across images. 

 

Spatial and Temporal Exploratory DISC Data Analysis 

The use of PCA for facial recognition and analysis was first developed by Turk and Pentland 

[43]. Our files are large and high-dimensional, with each frame containing vectors with more 

than 500-dimensions. We applied PCA to the DISC-processed displacement data files to 

understand if a lower dimensional representation can still capture the salient mood information 

from our participants’ faces. 

 

Fig 4:  Similarity matrices of DISC results from each frame of each participant’s video. Matrices are numbered 1-

10, corresponding to each participant’s ID. The matrix for Participant 1 is enlarged to show matrix organization. A 

value of 1.0 signifies 100% similarity between two frames and a value of 0 signifies the absence of any similarity.  
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Dimensionality reduction via PCA is displayed in 2-D with every displacement vector 

represented as a pair of two numbers, corresponding to a point on the scatter plot shown in 

Figure 5. Although each frame contains greater than 500 displacement vectors associated with it, 

reducing this data to two values allows us to visually interpret our data while still representing 

over 50% of the total variance. Neutral frames cluster around the origin as they elicit almost no 

facial movement. This clustering also suggests that neutral frames are relatively similar within 

and across individuals.  With respect to the non-neutral frames, a general trend exists whereby 

happy frames are more concentrated in the lower half of the plot and sad frames in the upper 

half.  However, there is also a slight intermixing of happy and sad frames in the 2-D PCA. This 

observation demonstrates that although a gross trend separates these two emotions, a single 

frame’s first two principal components may not be sufficient to predict the participant’s affective 

state at that specific moment.  
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Fig 5:  Plot of first and second principal components of DISC-processed displacement across all participants. Red 

squares represent frames from the happy image-viewing period, whereas blue diamonds represent frames from the 

sad image-viewing period. Black circles signify neutral frames. Large shapes indicate the averages for each 

participant. Gray lines serve to connect the averages for happy and sad for individual participants.  

 

We reduced our data into two dimensions via PCA to not only compare our displacement 

data across participants, but also to determine whether the information captured by the first two 

principal components allows us to distinguish between happy and sad emotions.  When 

considering the average principal component for each participant, two trends emerge. The first is 

that the happy frame average for all but one participant exhibited a larger first principal 

component than that of the sad frame average (Fig 5; rightward on the x-axis). Secondly, the sad 

frame average for all but one participant displays a higher second principal component than that 
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of the average happy frame (upward on they-axis).  Taken together, these trends suggest that 

PCA could distinguish the average DISC-detected facial movement in response to happy and sad 

images for eight of our ten participants.  

Finally, because participants were successively shown a set of ten happy images followed 

by a set of ten sad images, we investigated the temporal features of facial movement during 

happy and sad emotions over the course of image presentation.  The average of the magnitude of 

facial movement of each participant was plotted with respect to time, as well as the average 

across all participants (Fig 6). Individual reaction patterns appear distinct, suggesting that some 

participants may be more sensitive to certain images, and others less sensitive. The averages for 

each emotion demonstrate a consistent increase in facial movement throughout the viewing 

periods. Therefore, the general trend among participants reveals that the manifestation of happy 

and sad emotions in response to these images does not occur immediately, but rather builds and 

increases in magnitude until the viewing period concludes. 

 

 

Fig 6:  Temporal changes of average facial movement for each individual (ghosted lines) and across all participants 

(prominent line) over the duration of (A) happy and (B) sad image presentation. Dashed vertical lines represent the 

presentation of a new image. 

 

DISC Emotion Classifier 
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We constructed three machine learning classifiers that use information from the heatmaps

generated by DISC to detect the emotional state of the individual. Each of the ten participants

has 100 happy, 100 sad, and 30 neutral frames. The classifiers were trained on seven participants

(7 × 230 = 1610 labeled images), and their performance was tested out-of-sample on the

remaining three participants (3 × 230 = 690 labeled images). The three participants used out-of-

sample had also provided informed consent for Amazon Rekognition analysis.  

The out-of-sample classification results for each classifier are summarized in Figure 7.

They consist of confusion matrices, where each row of the matrix represents the true emotion,

and each column represents the predicted emotion. The numbers in the matrices are the

percentage of the out-of-sample frames that an algorithm assigns to a given label. Each row sums

up to 100%, and a perfect classification algorithm would have 100% in the rows and columns

with the same labels. The trained classifiers performed a total of 690 (= 3 × 230) emotion

predictions on the three test-set participants with 100 happy, 100 sad, and 30 neutral frames. All

three DISC-based models were extraordinarily accurate, successfully predicting the participant’s

emotion on 94-100% of frames (Fig 7A-C).  

 

Fig 7: Confusion matrices of the two methods. (A)-(C): Different classifiers using the DISC method. (D): Amazon

Rekognition. On the y-axis are the true states for the images; on the x-axis are the predicted states by the respective
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methods. The numbers in the plots indicate percentages of predicted states for each true state. Abbreviations: DISC 

(digital image speckle correlation), SLR (sparse logistic regression), MLP (multi-layer perceptron), CNN 

(convolutional neural network). 

 

We also compared our three classifiers with the performance of Amazon Rekognition, a 

commercially available software that employs deep learning methods to analyze images of the 

face and detect emotions (Fig 7D). Interestingly, the Amazon Rekognition software classified a 

majority of the neutral, happy, and sad frames as calm or surprised. It was unable to both predict 

the correct mood and discriminate between happy, sad, or neutral frames, a distinction readily 

visible after DISC processing. Although the Amazon Rekognition method can classify images 

into eight different categories, it identified most of the frames as neutral. Hence, it is safe to 

conclude that DISC-based methods are more accurate in this case. Importantly, neither DISC nor 

Amazon Rekognition classifiers were trained on this data. We trained our DISC-based classifiers 

on frames from seven of our ten participants. Amazon Rekognition was pre-trained by AWS on a 

much larger database of images.  

Nevertheless, our results show that by analyzing changes in facial expressions, DISC 

detects features that a static, state-of-the-art commercial emotion recognition tool cannot, and 

that these features are predictive of the participant’s underlying emotion.  

 

Discussion 

In this study, we sought to establish proof-of-concept for DISC as a real-time emotional 

assessment tool. Research into the ability of various other biosignals [11–15,17–19] to measure 

emotion has gained popularity as these methods are dynamic and eliminate the need for self-

report. The chief benefit of these biosignals is that they are responsive to stimuli, thus providing 

robust information. However, many of them are vulnerable to variability in measurement and 

interpretation, or lack a response sufficiently specific to reliably identify the underlying emotion. 

Analysis of facial movement via DISC mitigates these concerns by noninvasively monitoring 

changes in emotion in real-time. Furthermore, this technique differs from methods that track 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.28.22276059doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.28.22276059
http://creativecommons.org/licenses/by-nc-nd/4.0/


facial expressions with the FACS in that our participants did not display evidence of facial 

expression changes visible on raw video.  

We presented healthy volunteers with a slideshow of images designed to trigger both 

happy and sad emotions while videotaping their faces. We utilized DISC to detect subtle facial 

movements during image viewing and we found that each image set reliably elicited spatially 

unique patterns of movement that were conserved across individuals. Moreover, the identified 

facial maps for happy- and sad-triggered emotions were invariant of participant age and gender. 

This observation is consistent with prior theories on the universal manifestation of emotions on 

the face [24,44]. In addition, PCA of our DISC movement data was capable of distinguishing 

happy and sad emotions in eight of our ten participants. This highlights the viability of our 

method in real-time emotion assessment simply by analyzing changes in facial expression 

undetectable to the naked eye. 

When we investigated the temporal features of these subtle changes in facial expression, 

we discovered that the magnitude of movement increased throughout the viewing period. The 

idea that subtle facial movements can build throughout the experience of a particular emotional 

state distinguishes our observations from Ekman’s microexpressions, which are thought to last 

only a fraction of a second [27,45]. Whereas microexpressions were generally seen as a way to 

identify deception [28], the facial responses invisible to the naked eye observed in our study can 

be used to assess the participant’s emotion. We also observed that individual participants 

exhibited unique reaction patterns, with some showing spikes in facial movement at various 

points throughout the viewing period. This may be due to variations in an individual’s prior 

experiences and perceptions that influence the way they react to the images. Ultimately, further 

investigation into the temporal manifestation of emotion on the face is required to determine 

whether this observation holds true in a larger sample.  

Finally, using the DISC-processed facial movement data, we built machine learning 

classifiers capable of predicting the emotion of individuals that they had not been trained on. The 

accuracy of our classifiers for any of the three emotion categories was between 94-100%. 

Comparison to the best commercially available emotion recognition software, Amazon 

Rekognition, revealed that DISC detects features that other deep learning methods simply 

cannot. Importantly, the features that our classifiers depend on for predictions are solely based on 
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DISC facial movement output, whereas methods such as Amazon Rekognition use actual facial 

characteristics present in the images. This makes our method inherently unbiased with respect to 

analyzing individuals of different races or genders.  

Other studies on tracking subtle changes in facial expression had participants falsely 

display or disguise their facial expressions or emotions [28,29,46]. In this study, we elicited 

organic reactions in the viewer through the presentation of images. These responses were then 

analyzed using DISC, followed by PCA and three different machine learning classifiers, thus 

maintaining the objectivity of our results. Aside from its objectivity, DISC analysis of emotion is 

exquisitely simple and cost effective, requiring only a digital camera and computer. Even the 

cameras on most smartphones can provide adequate resolution [32].  

Among limitations to the current study is the potential for inducing the Hawthorne effect [47]. 

Participants were aware that they were being videotaped, which provided the opportunity for 

them to enhance their reactions to the images they viewed. Even so raw videos did not 

demonstrate overt changes in facial expression. Further testing including interspersing happy and 

sad images throughout the slideshow as well as introducing jittering to vary the length of image 

viewing are warranted to validate this method beyond our proof-of-concept investigation. Our 

small sample size notwithstanding, early results suggest promising applications to the fields of 

affective research and in clinical settings. With increased awareness of the need for patient-

centered care, an objective tool for assessing emotions and mood would be immensely useful in 

monitoring the responses of patients with mood disorders to psychiatric treatment.  

 

Conclusion 

Here we have demonstrated that individuals display subtle facial movements indicative of 

underlying emotions that are detectable with DISC. Our methodology has identified consistent 

facial maps for happy and sad emotions that are invariant of age and gender. PCA of the results 

of our facial movement data suggests that happy and sad emotions could be distinguished in as 

few as two dimensions. Our own machine learning algorithms can also use this data to reliably 

and accurately predict an individual’s underlying emotions and elucidate features of facial 

movement undetectable by a state-of-the-art emotion recognition software. Thus, our method 
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demonstrates promise as an automated, noninvasive, quick-and-easy, affective assessment tool. 

We believe this tool can provide value in clinical monitoring settings as it has proven both robust 

and economical in predicting emotions.  

 

Data and code availability 

The data and code used for this manuscript are available upon request from the corresponding 

author. To protect our participants’ privacy, raw videos of our participants cannot be shared 
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Supplementary Figures  

Supplementary Fig 1. Schematic of the videotaping setup. Participants placed their chin on the chinrest, which is

attached to the camera mount to allow recording of the face from a fixed distance. Behind the camera is the screen

that presents the images during recording. 

 

Supplementary Fig 2.  Schematic diagram of the DISC algorithm. 
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