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Abstract 

Background: Wrist-worn devices can keep track of a person’s daily health status, including 

those likely to become infected with the SARS-CoV-2 virus. Technological solutions using 

mobile devices are being developed to predict the time course of COVID-19.  

Objective: In this proof-of-concept study, we use heart rate data to detect the first sign of 

infection in people who have been diagnosed with COVID-19 and to monitor the time-course 

of the illness.  

Methods: The heart-rate data were analysed using a multiplicative cascade driven by a 

Gaussian process. This provides two parameters, mean and standard deviation, which when 

combined with similar parameters estimated from control series, provide a Health Index.  

Results: For 90% of 31 cases, the Health Index tracked COVID-19 infection with the virus 

and subsequent recovery. The first-sign of COVID-19 was detected on average nine days 

before symptoms were reported. 

Conclusions: Early detection of COVID-19 may lead to a reduction in the spread of the 

virus. The Heath Index’s potential use for the early detection of complications arising from 

Long COVID would be an important innovation. 
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Introduction 

Since late 2019, when it first emerged and spread rapidly throughout the world, the SARS-

CoV-2 virus has infected millions of people causing illness and sometimes death, while 

disrupting the social and working lives of many others. Despite the availability of tests for 

infection with the virus, it would be convenient if an alternate method was possible, one that 

uses commercially available technology to monitor people passively. Heart rate (HR) is a 

useful measure that is always available when a wearable device such as an Apple Watch or a 
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Fitbit is being worn. We will review previous research that has used smartwatch HR to detect 

infection for other diseases and then focus upon a study from the Stanford University 

Genome Laboratory that has shown promise for predicting the early sign of SARS-CoV-2 

virus infection. The example data analyses will use publicly available HR data from the first 

of these published studies, as for most of the COVID-19 patients the dates on which 

symptoms first appeared, their diagnosis and recovery are included. 

Several medical research organisations have long-term projects investigating the use 

of mobile and wearable devices for monitoring people’s health. For example, The Scripps 

Research Institute is conducting a large study using Fitbit and Apple Watch called Digital 

Engagement and Tracking for Early Control and Treatment (DETECT). Its aim is to use 

wearable variables to detect and predict the onset of infectious disease. We have shown that 

HR differences, a proxy for heart rate variability (HRV), can predict the early sign of mental 

health decline as a steady decrease in the Health Index similar to that used in this paper [1]. 

Wearable devices can have beneficial effects on health [2]. Short duration HRV 

measures were collected twice an hour over four weeks from 652 undergraduate students who 

were also asked to complete rating surveys of their mental health. When the data were 

analysed separately for day (0800–2400) and night (2400–0800) times using machine 

learning, correct classification was obtained with 65% success for stress ratings, 72% success 

for depression and sleep ratings, and 83% success for stomach discomfort, irrespective of the 

time of day. This result suggests that HR data might be all that is needed to track a person’s 

wellness over extended periods. HR, as measured by a Fitbit, was related to rated wellness 

among five of a sample of ten people recruited via the Internet who reported no chronic 

medical condition [3] using the same technology as was employed in the current study. 
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Using Wearable Devices to Monitor COVID-19 

About 16% of the US population use a smartwatch. In a population-level study involving 

Fitbit users from five US states [4], resting HR (RHR) and the incidence of influenza-like 

illness where these people lived were positively correlated. RHR tends to increase when a 

person is infected. People infected by the influenza virus show pre-symptomatic signs of an 

increase in RHR and sleep duration, measures provided by a wearable device linked to a 

smartphone. HR may be useful for monitoring pre-symptomatic infection in people diagnosed 

with COVID-19.  

  Recently, researchers have examined whether HR can be used to detect the early signs 

of COVID-19 prior to symptoms being reported [5-7], so that people can self-isolate before 

symptoms appear. Up to 50% of COVID-19 patients can be asymptomatic while 

infectious[5]. A recent study involved people who owned a smartwatch, such as a Fitbit or an 

Apple Watch, some of whom were eventually diagnosed with COVID-19 [5]. The data from 

each participant included their heart rate, steps taken and sleep data, as well as daily symptom 

reports obtained regularly via a mobile phone app. Of the 4642 participants, 72% wore a 

Fitbit, 21% wore an Apple Watch and the others wore another type of smartwatch. Of these 

people, 2.5% reported COVID-19 symptoms and 1% reported other respiratory symptoms.  

 Using differences in RHR as one of their main dependent variables, the first signs of 

infection, based on a significant increase in an index derived from RHR differences, occurred 

on average four days before symptoms were reported and seven days before a formal 

diagnosis of COVID-19. Detection of COVID-19 infection employed a cumsum method that 

summed the residual RHR measures until a critical value was reached. Using this method, 

63% of known COVID-19 infections were detected. A post-hoc analysis of four patient’s HR 

data showed lingering COVID-19 symptoms long after recovery [5]. So a methodology based 

on HR might be useful for long-term monitoring of patients diagnosed with Long COVID, a 
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debilitating condition that affects up to 15% of people diagnosed with COVID-19 and can 

last many months [25-27]. 

 A follow-up investigation [6] developed a real-time COVID-19 infection warning 

system using HR and step data from a smartwatch. For 80% of the 34 COVID-19 positive 

patients, pre-symptomatic detection of infection was possible. A novel signal with 80% 

sensitivity to detect possible infection used deviations from the average RHR recorded 

overnight. In some cases, these NightSignal deviations occurred from 3 to 10 days before 

COVID-19 symptoms were reported, thus serving as a suitable warning signal. Of the 18 

people who tested positive but had experienced no COVID-19 symptoms, 14 were provided 

with infection warning signals that had a modal alert time four days before symptoms 

appeared. However, some of the alarms produced from NightSignal might reflect other 

causes, different physical conditions, stress and possibly the effects of mental illness episodes 

[1,6]. 

We apply a slightly different data analysis method to analyze HR data from Fitbit 

devices available from [5]. We assume that good health is characterized by a high level of 

complexity in physiological measures recorded over time, whereas a gradual reduction in 

complexity signals a decline in health due to infection, as has been shown for mental health 

relapse [1,8]. Each day’s data for people diagnosed with COVID-19 were analysed using a 

Gaussian Multiplicative Cascade Model. Technical details of the computations and the 

statistical method used to detect change over days in parameter estimates are provided in the 

supplementary files from the OSF Archive for this paper. 

Application of the Multiplicative Cascade Model to Wearable Data 

Complexity can be defined in terms of the predictability of a sequence of observations, such 

as heart rate recorded by a wearable device over a day. Throughout any 24-hr period, HR 

fluctuates from one moment to the next, the extent of these fluctuations providing 
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information about the complexity of the associated physiological processes. Regular 

fluctuations indicate a low level of complexity, the least complex example being the regular 

tick of a clock. As a process becomes more complex its fluctuations become more erratic, a 

good example being random noise. Most physiological systems exhibit behaviour somewhere 

between these two extremes. Importantly, research in several domains has found that it is 

worthwhile monitoring changes in complexity as significant decreases may suggest the onset 

of pathology [9]. 

Some medical disorders are characterized by a reduction in the complexity of at least 

one associated measurement, such as HR in the case of heart dysfunction, EEG amplitude and 

frequency for epileptic seizures, and mood rating variability for people with unipolar 

depression [9]. In epileptic seizures, for example, the pre-ictic period prior to the seizure 

onset is characterized by an increase in slow-wave activity detectable as a reduction in 

complexity of the corresponding EEG waveform. Using this information, a warning signal 

can be presented to the person and procedures adopted to avoid a fully expressed epileptic 

seizure [10]. We propose that a similar diagnostic signal be used to detect changes in a 

person’s COVID-19 health status using HR data. 

Quantifying Entropy 

Entropy is commonly defined as the amount of disorder in a dynamical system. As large 

values of entropy reflect an increase in the complexity of the underlying dynamic process, 

quantitative entropy indices serve as useful proxies for complexity in biological systems. 

Detrended Fluctuation Analysis (DFA) has been used to quantify the fractal nature of a time 

series, such as a series of heart rate measurements. A fractal is a mathematical object that is 

scale-invariant [11], so that no matter what time scale we choose to measure it, a fractal 

object always appears the same. We assume that the mathematical form of a HR time series, 

HR(t), does not depend on the time scale used to measure it, so it satisfies                   
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𝐻𝑅(𝑐𝑡) = 𝑐!𝐻𝑅(𝑡), where c is a scale constant and H is the Hurst Exponent. The latter is a 

constant in this monofractal case. This self-similarity property has been observed in many 

physiological time series including HR [12]. 

A multifractal process involves a generalization of DFA to include processes for which 

the Hurst exponent is no longer constant over all time scales [13]. Examples from the 

physical world include atmospheric turbulence and water flowing over a waterfall. While 

travelling in an aircraft, we experience the effects of atmospheric turbulence on several time 

scales, moving up and down in your seat, your coffee level bouncing around and the wing 

ailerons performing a complicated dance to keep the aircraft in level flight. 

  HR satisfies the mathematical properties of a multifractal process [12,14]. A narrow 

multifractal spectrum, indicating poor heart function, occurs for people diagnosed with heart 

failure whereas a wider multifractal spectrum is more likely for people with normal heart 

function. Long-term HR monitoring of otherwise healthy people may result in useful data 

related to fluctuations in wellness from one day to the next [14]. 

Representing a Multifractal Process as the Output of a Stochastic Multiplicative 

Cascade  

A multifractal process can be represented by a multiplicative cascade that operates on 

increasingly shorter time scales beginning by dividing the full temporal interval, T0, into two 

sections at time scale T1, and continuing this division by two at each successive time scale, 

T2, T3, …, Tk. The flow of information from one time scale to the next is determined by the 

same probability density function, p(x). Eventually, the hierarchical cascade process produces 

the HR activity recorded, for example, over a day. The Gaussian Multiplicative Cascade 

Model (GMCM) is defined when p(x) is the Gaussian pdf with mean, 𝜇, and variance, 𝜎", 

𝑝(𝑥) =
1

√2𝜋𝜎"
exp 4−

(𝑥 − 𝜇)"

2𝜎" 6																																		(1), 
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The multifractal spectrum for a binary multiplicative cascade driven by this Gaussian 

process is given by [17] 

𝑓(𝛼) = 1 − #
" $%&(")

:)*+
,
;
"
                                     (2) 

which attains its maximum value of 1 when 𝛼 = 𝜇, and its width at 𝑓(𝛼) = 0 is given by 

0.2355 𝜎. Estimates of the mean and variance of the Gaussian pdf can be obtained by fitting 

Eq. 2 to the multifractal spectrum to provide a simple test of the GMCM. 

 The probability associated with each branch of a multiplicative cascade process can 

be constructed by applying a logarithmic transform to the product of random variables that 

are associated with that branch. This results in a random variable equal to the sum of the 

logarithm of a Gaussian random variable, the latter being represented by a lognormal pdf 

with parameters 𝜇 and 𝜎	[17]. The continuous Shannon entropy, 𝐸(𝜇, 𝜎), for this lognormal 

pdf is given by 

𝐸(𝜇, 𝜎) = log(2𝜋𝜎") + 𝜇 + 0.5	                                       (3) 

𝐸(𝜇, 𝜎) is computed for each day’s HR data using the 𝜇 and 𝜎 parameter estimates computed 

from the best-fitting Gaussian multifractal spectrum. 

To detect nonlinearity in heart rate data, surrogate comparison series are obtained by 

computing the power and phase spectra of the original data series, randomly permuting the 

phase spectrum components, and using the inverse Fourier transform to produce a new time 

series. This surrogate time series has the same statistical properties as the original time series 

in terms of its mean, variance, pdf and autocorrelation function, but without any dynamic 

nonlinearity [18]. For each transformed activity time series, 30 surrogate comparison series 

were generated using the TISEAN surrogates routine [19], available in the 

nonlinearTseries package for R [20]. Evidence for nonlinearity based on the 

multifractal spectrum was provided by comparing the spectrum produced by the original HR 
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data with a comparison average multifractal spectrum computed using the surrogate data 

[21]. 

A Health Index for each day’s HR data can be obtained by computing the standardised 

Entropy relative to the distribution of Entropy values estimated from the surrogate series. The 

resulting standardised score, zEntropy, measures the multifractal contents of the heart rate 

series, as follows 

𝑧𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = 	
[𝐸𝐷𝑎𝑡𝑎 − 𝑚𝑒𝑎𝑛(𝐸𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑠)]

𝑠𝑑(𝐸𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑠) 	

where 𝐸𝐷𝑎𝑡𝑎 is the Entropy estimate from the HR data and 𝐸𝑆𝑢𝑟𝑟𝑜𝑔𝑎𝑡𝑒𝑠 are the 30 Entropy 

estimates obtained from the surrogate series [22]. 

Multifractal analysis can be conducted on HR differences for people diagnosed with 

COVID-19 using Multifractal Detrended Fluctuation Analysis [15,16], as described in more 

detail in SupplementaryNotes_GMCMDetails.pdf contained in the OSF Archive for this 

paper. Up to 10,000 HR differences per day were available for analysis to provide accurate 

estimates of the GMCM predictions. 

Estimating Change Points in a Time Series 

A commonly employed statistical technique for detecting change points in a time series 

estimates future values of the series using a small number of previous values. If the prediction 

error becomes too large, a change in the parameters governing the time series will have 

occurred. The method used for this analysis, a semiparametric change detection procedure, 

can be accessed from commands available in the sac R package [23-24]. In this application, 

the cumsum.test command in sac using the “epidemic” option was used to detect up to 

two days on which a change in Health Index is likely, either an increase suggesting improved 

health or a decrease indicating that things are not going quite so well. 
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Application of Fitbit Devices for COVID-19 Monitoring using Heart Rate 

Only HR data obtained from a Fitbit smartwatch were used in these analyses due to the much 

lower density of observations for the Apple Watch. Successive HR values are highly 

autocorrelated, often up to at least 50 observations into the past. Using successive HR 

differences generates autocorrelation limited to only one future observation. When a day of 

HR difference data are analysed using the GMCM, parameter estimates and multifractal 

spectrum fits are obtained, as shown for a typical case in Figure 1. The close fit of the 

GMCM to the multifractal spectra is evident by the proximity of the black curve (data ) to the 

black data points and the red curve (average of the surrogate spectra) to the average surrogate 

spectrum represented by the unfilled red data points. In this example, the estimates of the 

means for data and surrogate series coincide and the standard deviation of the data series 

(Gauss) is slightly greater than that for the surrogates (Control). The zEntropy estimate is 4.0, 

suggesting a substantial multifractal component to the heart date differences series recorded 

from 9,223 heart rate differences obtained on 22 June 2020. This person’s COVID-19 history 

included the first appearance of symptoms on 14 July, a COVID-19 diagnosis on 17 July and 

a reported recovery by 6 August. 

Figure 2 shows the trends in daily zEntropy (top graph) and the sum of a standardized 

form of zEntropy when its values are converted to mean 0 and standard deviation 1 for 

COVID-19 case AFPB8J2. When the cumsum change detection procedure was applied to 

zEntropy, significant changes were detected on 4 July (red dotted line) and 9 August (blue 

dotted line). A similar cumsum analysis of the Sum(zEntropy) data indicated significant 

changes on 10 July (dotted orange line) and 24 August (dotted green line). Using 

Sum(zEntropy) as a Health Index, we detect the start of declining health on 4 July, a well-

established decreasing trend by 10 July, by which time the person had most likely been 

infected with COVID-19. On 9 August, a low point in the Health Index, a recovery period 
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begins and is well-established by 24 August. A return to this person’s pre-COVID health 

status does not occur until at least a week later. These dates correspond well with the first 

sign of infection being detected in the first week of July and recovery being evident about a 

month later. The COVID-19 time course from the first report of symptoms to recovery is 

shown by the buff-colored rectangle along the horizontal axis of the Sum(zEntropy) graph in 

Figure 2. The first detection of a decline in health status using the cumsum change detection 

method occurred 10 days before COVID-19 diagnosis, an impressive and useful outcome for 

minimizing the spread of COVID-19 infection. 

Figure 1. Multifractal spectra for the HR difference data (block dots) and the average of 30 

surrogate series derived from the data (red unfilled circles) for COVID-19 case AFPB8J2 [5]. 

The best-fitting Gaussian Multiplicative Cascade Model is shown by the black curve (data) 

and the red curve (surrogates). 
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Figure 2. Changes in the zEntropy (top graph) and Sum(zEntropy) (bottom graph) Health 

Indices for COVID-19 Case AFPB8J2 [5]. The cumsum change detections are represented by 

the vertical dotted red and blue lines for zEntropy, and by the vertical dotted orange and 

green lines for Sum(zEntropy). The buff colored rectangle in the bottom graph shows the 

time-course of COVID-19 from reporting symptoms to recovery. 
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illness phase of COVID-19 corresponds to a reduction in the rate of spread of activity in the 

network, an idea consistent with a reduction in physiological complexity when people are 

unwell. This effect is demonstrated more clearly when the summed standardized sigma 

estimates are plotted for this person in Figure 3. There was a rapid decrease in this sum until it 

reached its minimum when the COVID-19 diagnosis occurred on 15 July. Recovery was 

evident by the first week of August. Statistical decision thresholds were set at +2 for recovery 

and at –3 to detect COVID-19 infection, the crossover points indicating possible SARS-Cov-2 

infection on 7 July and recovery by 11 August. These dates are close to those obtained using 

Sum(zEntropy), as shown in Figure 2. 
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Figure 3. Changes in cumulated standardised sigma estimated from the Gaussian 

Multiplicative Cascade Model applied to heart-rate difference data from COVID-19 case 

AFPB8J2 [5]. COVID-19 diagnosis occurred on 15 July (vertical solid red line) and recovery 

occurred on 6 August (vertical solid green line). Positive and negative change detection 

thresholds were placed at +2 (horizontal dotted green line) and at –3 (horizontal dotted red 

line), respectively. Using these thresholds, predicted infection occurred on 7 July (vertical 

dotted blue line) and predicted recovery occurred on 11 August (vertical dotted green line). 
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Table 1. Actual and predicted dates for Symptoms, Diagnosis and Recovery for COVID-19 

Cases [5]. Green Case = Prediction was good. Red Case = Prediction was not possible. Red 

Date1-4 = Minimum of Sum(zEntropy), Green Date1-4 = Prediction during COVID-19 

illness. The L in the right-most column indicates those cases in which the COVID-19 time-

course extended until the end of the Fitbit data recording period and possibly beyond.  

Case    Symptoms Diagnosis Recovery Date1 Date2 Date3 Date4 
A0NVTRV 6Dec 11Dec 14Dec 7Nov 13Nov. 22Nov 6Dec      
A1K5DRI 20Jun 21Jun  25Apr.  3May. 6Jun. 13Jun    L 
A1ZJ410 6Aug. 10Aug. 14Aug 5Aug         10Aug      22Aug        12Sep.         
A3OU183 23Nov 27Nov 29Dec 8Oct. 13Oct 29Nov  22Dec  
A4E0D03 14May 18May. 14Jun. 21Apr. 5May. 13May. 19May  
A4G0044 4Mar. 8Mar. 30Mar. 20Jan. 7Feb. 9Mar.  25Mar  
A7EM0B6 26Dec. 26Dec 8Jan. 10Dec   25Dec         11Jan       23Jan                 
A36HR6Y 6Apr. 16Apr. 20Jun. 24Mar 5Apr. 15Apr. 3May  
AA2KP1S 6Jan. 11Jan.  10Nov 28Nov. 6Dec.  20Dec L 
AAXAA7Z 30Mar 13Apr 19May           18Feb     9Mar 23Mar      9Apr                  
AFPB8J2 14Jul. 17Jul. 6Aug. 4Jul. 10Jul. 9Aug. 24Aug  
AHYIJDV 16Jan. 22Jan 24Jan. 6Dec. 19Dec. 31Dec. 7Jan  
AIFDJZB 7Nov. 20Dec  30Sep. 26Oct. 18Dec. 7Jan L 
AJMQUVV 5Sep. 6Sep.  21Sep 2Oct. 12Oct. 31Oct   
AJWW3IY 9Aug. 10Aug. 15Aug. 12Jul. 19Jul. 5Aug   
AKXN5ZZ 6Jan.  20Jan. 22Dec. 18Feb. 21Feb   
AMV7EQF 9Jun. 11Jun                         7Apr         18May . 11Jun       21Jun L 
AOYM4KG 4Jul 18Sep 9Nov 14Jul 6Aug 20Aug 13Sep  
APGIB2T 22May 28May 11Jun 18Apr 12May 15May 18Jun  
AQC0L71 17May 19Jun  14May 30May 11Jun 22Jun L 
AS2MVDL 2Mar 5Mar 25Mar 5Feb 21Feb 9Mar 14Apr  
ASFODQR 4Aug 15Aug 18Aug 8Jul 4Aug 10Sep 9Oct  
ATHKM6V 6Mar 6Mar  11Feb 2Mar 8Apr 3May L 
AURCTAK  6Mar 8Mar 1Jan 20Jan 14Feb 19Mar L 
AUY8KYW  18Mar  1Jan 25Jan 3Feb 29Feb L 
AV2GF3B 12Feb 18Feb 22Mar 21Jan 3Feb 16Mar 24Mar  
AX6281V 22Mar 31Mar 4Apr 4Feb 18Feb 17Mar 26Mar  
AYEFCWQ 7Jul 8Jul 8Jul 9Jun 26Jul 14Oct 2Nov  
AYWIEKR 7Apr 9Apr 18Apr 8Feb 22Feb 15Apr 27Apr  
AZ1K4ZA 24Nov 1Dec 15Dec 30Nov 6Dec 27Dec 4Jan  

 
 Table 1 summarises the analyses for all 31 people who were eventually diagnosed 

with COVID-19 or at least reported symptoms. Sum(zEntropy) provided a useful indicator of 

COVID-19 for all but three of these people, implying a 90% success rate. This represents 

better performance than the 66% success rate achieved by [5]. The successful predictions 
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have green Case labels in Table 1, and the unsuccessful ones are colored red. Cases labelled 

L may have experienced an extended period of COVID-19 illness.  

Table 2. Comparison of the predictions of the GMCM with [5, Figure 7e]. Cases with good 

warning before symptoms appeared are shown in green. Post-symptomatic detections are 

shown in red. The long pre-symptomatic detections are shown in blue. 

 
 Mishra et al. 2020 GMCM analysis 

A0NVTRV Alarms after Symptoms Alarm 14 days before Symptoms 
A1K5DRI Alarms before and after Symptoms Alarm 14 days before Symptoms 
A3OU183 Alarms before and after Symptoms Alarm 6 days after Symptoms 
A4E0D03 Alarms after Symptoms Alarm 9 days before Symptoms 
A4G0044 Alarms after Symptoms Alarm 26 days before Symptoms 
A7EM0B6 Alarms after Symptoms Alarm 1 day before Symptoms  
AA2KP1S Alarms before and after Symptoms Alarm 17 days before Symptoms 
AAXAA7Z Alarms before and after Symptoms  Alarm 7 days before Symptoms  
AHYIJDV Alarms after Symptoms Alarm 9 days before Symptoms 
AIFDJZB Alarms before and after Symptoms Alarm 11 days before Symptoms 
AJWW3IY Alarms before and after Symptoms Alarm 4 days before Symptoms 
AKXN5ZZ Alarms after Symptoms No alarm before Symptoms 
AMV7EQF Alarms before and after Symptoms  Alarm 2 days after Symptoms 
AOYM4KG Alarms before and after Symptoms Alarm 9 days before Symptoms 
APGIB2T Alarms after Symptoms Alarm 10 days before Symptoms 
AQC0L71 Alarms after Symptoms Alarm 18 days before Symptoms 
AS2MVDL Alarms after Symptoms Alarm 10 days before Symptoms 
ASFODQR Alarms after Symptoms No alarm before Symptoms 
AV2GF3B Alarms after Symptoms Alarm 9 days before Symptoms 
AX6281V Alarms before and after Symptoms Alarm 5 days before Symptoms 
AYEFCWQ Alarms before and after Symptoms Alarm 29 days before Symptoms 
AYWIEKR Alarms after Symptoms Alarm 8 days after Symptoms 

 

Table 2 compares the performance of the GMCM model using zEntropy and 

Sum(zEntropy) to detect change due to COVID-19 infection with performance of the models 

used by [5]. Both methodologies are based on the same HR data, and comparisons are made 

with the change detection performance for cases presented in [5, Figure 7e], which shows the 

relative numbers of detections of change before and after Symptoms are reported for 22 of 

their cases. Good pre-symptomatic detections are shown in green, post-symptomatic 

detections are shown in red and some very long pre-symptomatic detections are shown in 

blue, the latter being considered too long to be effective warnings of future COVID-19 
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infection. For the 14 cases when a pre-symptomatic alarm was evident, the median delay was 

nine days before symptom onset. This time compares favorably with the median pre-

symptomatic warning of four days provided by the Mishra et al. algorithm [5].  

A comparison of the respective technologies can be obtained by forming the cross-

classification of COVID-19 Symptom prediction success and failure for the two methods as 

shown in Table 3. The GMCM predicted a decline in health prior to Symptoms being 

reported for 18 of out of 22 cases (82%) compared with 10 out of 22 cases with the Mishra et 

al. [5] technology (45%). The better performance of the GMCM model is indicated by a 

significant Chi-squared Test using the frequencies in Table 3, Χ"(1	𝑑𝑓) = 4.81, 𝑝 = .028. 

However, for four of the cases that were correctly predicted by the GMCM, predictions 

occurred between 17 and 29 days before symptoms were reported. If these predictions are 

reclassified as failures for the GMCM, there would be no significant difference in the 

COVID-19 prediction performance of the GMCM and the Mishra et al. techniques, 

Χ"(1	𝑑𝑓) = 2.35, 𝑝 = .125.  

Table 3. Comparison of the performance of the GMCM with the technology used by Mishra 

et al. [5] 

Prediction GMCM Mishra et al.[5] 
Before Symptoms 18 10 
After Symptoms 4 12 

 
Conclusions 

An analysis of the Mishra et al. [5] HR data has shown that the GMCM plus its cumsum 

change detection procedure can detect evidence of COVID-19 infection before symptoms are 

reported. The accuracy of GMCM is similar to the data analysis method of Mishra et al. that 

uses a transformation of HRV data and a similar type of sequential decision making scheme. 

For those cases providing adequate data, the GMCM provided an average pre-symptomatic 

warning about five days earlier than did the Mishra et al. data analysis method. These extra 
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five days are crucial when potential COVID-19 sufferers might otherwise self-isolate and not 

be moving around spreading the virus among the community. 

 It is better that a person’s HR data from a wearable device be analysed in real time 

24/7 using a special mobile device application, so that they can be advised to take a COVID-

19 test well before symptoms appear. A modification of the research tool, PhDApp, could 

perform this task [6]. A significant reduction in the Sum(zEntropy) Health Index could result 

from causes other than Sars-CoV-2 infection, such as declining mental health and imminent 

relapse in long-term conditions such as mood disorder, [1,8]. There are also the normal ups 

and downs anyone can experience, such as an improvement in health with good diet and 

exercise and a temporary decline when one is not adjusting too well to environmental 

stresses, or when a person undergoes an invasive medical procedure [3]. The GMCM and 

associated change detection technology may find useful application in monitoring the health 

fluctuations in people diagnosed with Long COVID, a persistent form of the illness that can 

affect numerous body functions, including cognition [25-27]. 
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Multimedia Appendix 

Data URL:  

https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19/COVID-19-

Wearables.zip 

The supplementary files are contained in the OSF archive directory https://osf.io/mwnx3/ 

The GMCM is described in more detail in SupplementaryNotes_GMCMDetails.pdf 
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The GMCM parameter estimates are contained in 

Results_CovidPredictionUsingHeartRate.zip 

The Figures for all participants are contained in "SupplementaryFile_Extra Figures.pdf" 
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Abbreviations 

 DFA: detrended fluctuation analysis 

 EEG: electroencephalogram 

 GMCM: gaussian multiplicative cascade model 

 HR: heart rate 

 HRV: heart rate variability 

 pdf: probability density function 

 RHR: resting heart rate 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 30, 2022. ; https://doi.org/10.1101/2022.10.27.22281632doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.27.22281632
http://creativecommons.org/licenses/by-nc-nd/4.0/

