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19 Abstract 
20 To reduce the consequences of infectious disease outbreaks, the timely implementation of public health 

21 measures is crucial. Currently used early-warning systems are highly context-dependent and require a long 

22 phase of model building. A proposed solution to anticipate the onset or termination of an outbreak is the use 

23 of so-called resilience indicators. These indicators are based on the generic theory of critical slowing down and 

24 require only incidence time series. Here we assess the potential for this approach to contribute to outbreak 

25 anticipation. We systematically reviewed studies that used resilience indicators to predict outbreaks or 

26 terminations of epidemics. We identified 37 studies meeting the inclusion criteria: 21 using simulated data and 

27 16 real-world data. 36 out of 37 studies detected significant signs of critical slowing down before a critical 

28 transition (i.e., the onset or end of an outbreak), with a sensitivity (i.e., the proportion of true positive outbreak 

29 warnings) ranging from 0.67 to 1 and a lead time ranging from 10 days to 68 months. Challenges include low 

30 resolution and limited length of time series, a too rapid increase in cases, and strong seasonal patterns, and 

31 may hamper the sensitivity of resilience indicators. Alternative types of data, such as Google searches or social 

32 media data, have the potential to improve predictions in some cases. Resilience indicators may be useful when 

33 the risk of disease outbreaks is changing gradually. This may happen, for instance, when pathogens become 

34 increasingly adapted to an environment or evolve gradually to escape immunity. High-resolution monitoring is 

35 needed to reach sufficient sensitivity. If those conditions are met, resilience indicators could help improve the 

36 current practice of prediction, facilitating timely outbreak response. We provide a step-by-step guide on the 

37 use of resilience indicators in infectious disease epidemiology, and guidance on the relevant situations to use 

38 this approach.

39

40 Introduction
41 Infectious disease outbreaks are a leading cause of mortality worldwide, especially in low-income countries 

42 and for children (1), with substantial economic and psychological repercussions. Prevention measures such as 

43 vaccination and non-pharmaceutical interventions can reduce the consequences of epidemics, and even 

44 eliminate some diseases (2). Measures are most effective if executed before cases start increasing 

45 exponentially. However, as outbreaks are hard to anticipate, control efforts often start too late. 

46 Early warning systems have been developed to predict when and where outbreaks will start (3). These typically 

47 depend on the statistical association between the risk of an outbreak and predictive variables. The development 
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48 of such methods requires having access to various data sources, testing associations and building statistical 

49 models (4). Diverse factors can be used as predictors, such as climate, geographical settings, population, or 

50 socioeconomic data. The use of early warning systems to anticipate outbreaks and predict their consequences 

51 have shown to be effective in some cases, for instance in the anticipation of malaria as well as influenza 

52 outbreaks (5)(6). Other early-warning systems, such as Google Flu Trends, yielded more modest and variable 

53 performance and showed rather low associations between the predictors and the risk of an outbreak (7).

54 Early-warning systems are highly context-dependent, and no standard protocol to build and evaluate them has 

55 been proposed (8). They require consistent parametrization and model fitting. Moreover, complex interactions 

56 between the variables, as well as confounding effects, are hard to capture. Developing such models is a long 

57 and fastidious process and requires a long cycle of evaluations and adaptations. Further, previously effective 

58 early-warning systems might become outdated due to changing conditions and have to be updated (9). As 

59 such, early-warning systems require regular rounds of re-evaluation. A generic, model-free approach would 

60 be valuable to improve and complement outbreak anticipation. The use of resilience indicators could be such 

61 a generic approach, and was shown to be effective in detecting critical transitions in other complex systems 

62 (10).  

63 The start of an outbreak can be defined as a critical transition, a phenomenon observed in many complex 

64 systems. Complex systems are defined as systems involving many components interacting with one another 

65 and thus leading to non-linear behaviors that are hard to predict. Examples of complex systems are financial 

66 markets, ecosystems, the climate and, indeed, infectious diseases in populations. In complex systems, a critical 

67 transition occurs when a small change in an underlying condition brings the system across a critical threshold 

68 beyond which change becomes self-propelling, driving the system towards a new state. Many complex systems 

69 may undergo critical transitions. For instance, financial markets may collapse (11), vegetated ecosystems may 

70 shift to a barren state (12), and coral reefs may be overgrown by macroalgae (13). Being able to anticipate 

71 such shifts could enable to prevent their consequences.

72 Mathematically it can be shown that systems become slow close to a critical transition. This phenomenon is 

73 known as critical slowing down (10). It implies that approaching a critical transition, systems are expected to 

74 lose their resilience, i.e., the ability to maintain their normal stabilizing dynamics (e.g., a disease-free state) 

75 when subjected to disturbances (14). In such situations, they are found to recover more slowly from external 

76 perturbations. It is usually not possible to directly measure the recovery rate of a system. Therefore, statistical 

77 indicators of critical slowing down (e.g., variance, autocorrelation) are computed from representative time 
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78 series to estimate how close the system may be to undergoing a critical transition (15). We will refer to these 

79 metrics as resilience indicators. Some more background is provided in Box 1. 

80 Pathogen transmission is a complex dynamic process too, as it involves many individuals interacting with one 

81 another. When an epidemic starts, the system undergoes a critical transition from a disease-free state to 

82 disease emergence. This happens when the effective reproduction number R, i.e., the number of secondary 

83 cases arising from an average infected individual in a population, exceeds one. This can be due to a gradual 

84 change in conditions, such as a decrease in vaccination rates or improving climatic conditions for the pathogen. 

85 Critical slowing down is expected in epidemiological systems prior to R crossing one (16). Therefore, resilience 

86 indicators could theoretically be used to anticipate epidemiological critical transitions based only on incidence 

87 time series, allowing to improve timely decision-making. However, the method raises challenges regarding the 

88 quality of data required, the processing of the data, and the data interpretation.

89 This review summarizes the latest findings on the application of resilience indicators to anticipate disease 

90 outbreaks based on simulated and real-world data. We address the types of disease, data types and types of 

91 transition suitable to be anticipated using resilience indicators. We review the sensitivity of resilience indicators 

92 in public health contexts and discuss their limitations. 

93

94 Box 1: Critical slowing down to anticipate sharp changes
95 When conditions change, some complex systems can approach a critical transition, which is a threshold 

96 where they lose their stability. Before the threshold is reached, they lose their resilience which is reflected in 

97 the intrinsic properties of the system. In particular, the recovery from perturbations becomes slower; a 

98 phenomenon called critical slowing down. 

99 As the slower recovery of the system pushed by external perturbations can often not be measured directly, 

100 statistical metrics are used as a proxy. They are referred to as resilience indicators. This loss of resilience can 

101 be observed in the time series of the system. Since most systems are constantly affected by external 

102 perturbations, the increasing time to return to equilibrium is visible in the autocorrelation structure of the 

103 time series (15). When looking at this structure, significant trends are displayed as the system approaches 

104 the transition. A rolling window is used to measure these trends: indicators are calculated repeatedly in 

105 overlapping subsets of the data to reveal their evolution over time (17).
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106 Similarly, indicators of complexity can be used to anticipate a critical transition. These indicators measure the 

107 complexity of a system, defined as its level of disorder. Similar to resilience indicators, complexity indicators 

108 are expected to display trends prior to a critical transition, as the complexity of a system is expected to change 

109 when approaching a sharp change. However, complexity measures as an indicator of an upcoming critical 

110 transition yielded contrasting results in previous studies in other fields (18,19). 

111 In general, the critical transition in models of infectious diseases is mathematically a transcritical bifurcation. 

112 This means that below the critical threshold R=1, the system represented by the number of cases is 

113 stabilized at a disease-free state, where only a few cases are observed. Once the threshold R=1 is crossed, 

114 the disease-free state becomes unstable as the disease emerges, and major outbreaks can take place. As 

115 the critical threshold R=1 is approached, the system's recovery time increases. This means that, when for 

116 instance perturbed by the introduction of infected individuals, the number of cases will take longer to vanish 

117 (Fig 1B). When the threshold of R=1 is crossed, the disease-free equilibrium becomes unstable (Fig 1C): any 

118 perturbation, i.e., the introduction of an infected individual, can result in a major outbreak.

119  

120 Fig 1. Illustration of resilience indicators based on simulated data using an SIR model. In the 

121 model, the transmission rate increases linearly over time, resulting in a critical transition when R 

122 crosses one. A, B, and C are potential landscapes, showing the energy of the system for different 

123 states. The ball represents the state of the system. A R is relatively far from the threshold: the system 

124 will recover easily from an external perturbation. B R is close to the critical threshold: the potential to 

125 recover from external perturbation is low, and the system undergoes critical slowing down. C The 

126 threshold is crossed: the system will stabilize at a state for which the disease is endemic. D incidence 

127 time series generated using a SIR model. The system is undergoing a critical transition: R increases 

128 linearly over time until it crosses one (shaded area). E and F are associated resilience indicators 

129 calculated in the simulated time series (daily resolution) using a rolling window. We observe a 

130 significant increase of the autocorrelation and variance prior to the outbreak  
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131 Material and methods 
132 We performed a comprehensive literature review to evaluate the current knowledge of resilience indicators to 

133 anticipate infectious disease critical transitions. An information retrieval process was performed to review the 

134 state of the art of these indicators applied to infectious disease epidemiology. Targeted studies were peer-

135 reviewed research publications using resilience indicators as early warning signals to anticipate infectious 

136 disease transitions. The review protocol was not registered. 

137

138 Search strategy 
139 This review focuses on resilience indicators based on the theory of critical slowing down. Two high-impact 

140 papers published in Nature and Science, cited 2,431 and 1,191 times respectively, are the main references 

141 regarding the theory of critical slowing down (10,20). We assumed that any study using this theory would cite 

142 one of these papers. We carried out a forward citation search intersected with a thematic search to avoid 

143 retrieving too many irrelevant results. The search was carried out on September 1st 2022 using Scopus.

144 Among the studies citing one of these two papers, a thematic search was performed to only retrieve studies 

145 aiming at anticipating critical transitions related to infectious disease outbreaks. The keywords used for the 

146 thematic search were outbreak, epidemic, disease, infecti*, ill*, epidemiolog*, pest, virus, pandemic, bacteria, 

147 pathogen, parasite. To ascertain that the keywords were relevant, we also checked if adding the name of the 

148 top 20 infectious diseases according to WHO in the search keywords would yield new results. This did not result 

149 in additional results. 

150 A specific search in the main databases was also used to prevent missing key studies. This additional search 

151 also prevented us from missing studies that did not cite one of the two key studies mentioned above. Scopus, 

152 Web of Science and PubMed were used for the database search. The search was performed using all keywords 

153 of the thematic search described heretofore combined with the term "early-warning signals" using "AND". The 

154 search was purposely kept specific to avoid retrieving too many irrelevant results.

155

156 Selection
157 The selection was then performed (Fig 2). Pathogens affecting humans or animals were the point of focus. 

158 Vegetal or crop pathogens were excluded. Indicators based on the theory of critical slowing down were the 
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159 point of focus; other methods to anticipate outbreaks were excluded. Only primary publications were 

160 considered. The first selection was made based on the title and abstract. We retrieved 71 publications in this 

161 round. The second round of selection was based on full-text, using the selection criteria (Table 1), retrieving 

162 a final 37 publications (Fig 2, S3 Table).

163

164 Fig 2. PRISMA flowchart. PRISMA flowchart of the literature search process.

165
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166  Table 1: Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

1. The study is about the use of resilience 

indicators 

2. The study investigates critical slowing down 

3. Resilience indicators are used to forecast a 

disease critical transition 

4. The outbreak is caused by an infectious disease 

affecting humans or other mammals  

1. The study does not use resilience indicators 

based on the theory of critical slowing down 

to anticipate the critical transition

2. The critical transition is not related to 

infectious disease outbreaks 

3. The pathogen does not affect humans or 

other mammals 

4. The study does not look at population-level 

transmission dynamics 

5. The outcome is not reported 

6. The text is not available in English or French

7. Not the primary description of the study.

167

168 Classification
169 We classified the included studies based on the following criteria (S2 Table):

170  The type of disease studied: generic disease, seasonal disease, vector-borne disease, or COVID-19.

171  Identified best performing indicator: the indicator yielding the best performance to anticipate disease 

172 transition.

173  The type of data used: simulated using mechanistic models or real-world data.

174  The type of transition anticipated: onset of an outbreak or termination/elimination.

175  Additional complexities and imperfections in the data which could affect the performance.

176

177 Results
178 Among the retrieved studies, 37 met the inclusion criteria. Included studies were published between 2013 and 

179 2022. There has been an increasing interest in resilience indicators to anticipate disease outbreaks, and an 

180 increasing number of studies have been published on that topic, especially since 2020 when COVID-19 data 

181 became publicly available (
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182  Fig 3A). Many of the studies (n=15, 42%) did not focus on a specific disease and used generic models of 

183 infectious diseases to investigate critical slowing down. In the studies investigating specific diseases (n=22, 

184 58%), 12 different diseases were studied, the main one being COVID-19 (n=9, 24%). A total of 20 indicators 

185 were investigated, the most popular being variance, autocorrelation, and mean. These indicators were reported 

186 to be among the best-performing ones, respectively in 54% (n=20), 32% (n=12), and 22% (n=8) of the 

187 studies. Most of the time, resilience indicators were calculated in simulated data only to anticipate factitious 

188 critical transitions (n=21, 57%). However, the performance of resilience indicators was also investigated on 

189 real-world data in a few studies (n=16, 43%) (

190  Fig 3B). The onset of outbreaks was most often examined (n=31, 84%). The termination of outbreaks was 

191 investigated in a few studies (n=11, 30%) (

192  Fig 3C). When quantified, the performance was typically calculated using the area under the ROC curve (AUC). 

193 We will further refer to the AUC by (prediction) performance, unless specified otherwise.

194

195  Fig 3. Overview of the 37 papers included in this review. A Number of included papers per year. 

196 The number of studies on resilience indicators to anticipate epidemics has shown an increasing trend in 

197 the last few years. Since 2020, more studies have been published as data on the COVID-19 pandemic 

198 became publicly available. B Included papers classified according to the type of study into three 

199 categories: case studies, simulation studies, and simulation studies supported by case studies. C 

200 Included papers classified according to the type of transition, into three categories: the onset of an 

201 outbreak, disease elimination, and both.
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202 Indicators of resilience and complexity
203 A large variety of indicators can be used to monitor resilience. In the included studies, 20 different indicators 

204 were investigated in total (S1 Table). In n=23 studies (62%), the reported best-performing indicators were 

205 autocorrelation, variance, or mean. Other well-performing indicators were the coefficient of variation, the 

206 logarithmic distance, and composite indicators. The best-performing indicator may vary by disease system (S1 

207 Table). For example, wavelet reddening provided the best performance with periodic data (21), whereas the 

208 coefficient of variation outperformed other indicators in anticipating immune-waning induced re-emergence of 

209 a disease (22). Here, we describe the use of variance and autocorrelation as well as alternative indicators such 

210 as combinations of indicators, dynamical network markers, and deep learning algorithms. 

211 Variance was reported to be one of the best indicators in 19 studies (51%), yielding a prediction performance 

212 between 0.52 and 0.99. However, it is not robust to all types of transition and stochasticity. Supporting Dakos 

213 et al.'s findings (23), O'Regan et al. found that variance displays a different trend depending on the type of 

214 data, the type of transition and the type of stochasticity (24). O'Regan et al. showed that specific types of 

215 noise could alter the trend in variance: a decrease or no trend at all was sometimes observed, making variance 

216 an unreliable indicator in those cases (24). 

217 Autocorrelation, coefficient of variation, and power spectrum are more robust to the type of stochasticity 

218 compared to variance: an increase is expected prior to a critical transition. Additionally, autocorrelation is 

219 reported to be the best-performing indicator in n=11 (29.7%) studies, is robust to data imperfections (section 

220 “Data imperfections”), and yielded a performance ranging from 0.48 to 0.99.

221 Combinations of indicators have also been studied to anticipate disease emergence. Brett et al. used a 

222 supervised learning algorithm to establish an optimal weighted combination of indicators, including mainly 

223 skewness, kurtosis, and coefficient of variation (25). The performance of this combination of indicators was 

224 investigated in simulated as well as real-world data. The authors yielded a prediction performance between 

225 0.7 and 0.85 in anticipating several diseases' re-emergence, such as mumps and pertussis, with a lead time 

226 between 2 and 4 years. Similarly, O'Brien et al. could anticipate 2 of the 3 COVID-19 waves in the UK with a 

227 lead time ranging from 3 to 48 days using a composite of variance, autocorrelation and skewness (26).

228 When case reports are discriminated between locations, dynamical network markers (DNM) can be used to 

229 anticipate disease (re-)emergence. These indicators were investigated in 5 studies (27–31). Locations were 

230 integrated into a weighted network structure using information on transport between these regions, traffic 

231 conditions and population. The correlation of the number of cases between the locations was used to calculate 
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232 the landscape network entropy index (27,30,31), or the minimum spanning tree (28,29). The sensitivity of 

233 this method ranged from 0.825 to 0.9, with a lead time between 10 days to 2 months (27–31).

234 Apart from resilience indicators, some studies investigated the performance of indicators of complexity to 

235 anticipate critical transitions (32–34). In the included studies, six indicators of complexity were investigated: 

236 Fisher information (32), Kolmogorov complexity and Shannon entropy (34), mutual information, joint counts, 

237 and Geary's C coefficient (33) (S1 Table). In accordance with previous studies, complexity indicators had a 

238 lower performance than resilience indicators (18,19), and failed to identify a transition in one study (32). 

239 Lastly, Bury et al. compared the performance of resilience indicators such as variance and autocorrelation to 

240 a deep learning algorithm (35). They found that resilience indicators slightly outperformed their deep learning 

241 algorithm in predicting the onset of an outbreak in simulated data (performance of 0.54 for the deep learning 

242 algorithm, and 0.55-0.57 for resilience indicators), a result consistent with other included studies (27–29). 

243

244 Simulated data
245 In total, 25 studies used simulated data (68%) to test whether epidemiological systems display signs of critical 

246 slowing down, including 21 relying on simulated data only without accompanying a case study (57%). The 

247 data were simulated using compartmental SIR-type models. In such models, the population is divided into 

248 categories such as susceptible (S), infected (I), or recovered (R) based on their epidemiological status. 

249 Individuals transition from one compartment to another. Such models can be kept purposefully generic or be 

250 parametrized for a specific disease. Generic models were investigated in 16 studies as a proof of principle for 

251 resilience indicators applied to epidemiological systems as well as to investigate additional complexities (further 

252 discussed in the section “Dealing with complexities”)  (16,21,24,33–45). O'Regan et al. were the first to 

253 demonstrate that critical slowing down arises when an epidemic threshold is being approached (46). These 

254 findings were confirmed in more complex epidemiological systems by including vaccination (47), seasonality 

255 (21), age structure (34), or social behavior (43). Eight simulation studies used compartmental models 

256 parametrized for a specific disease, including COVID-19 (48), measles (22,49–52), pertussis (51), and 

257 smallpox (50). Various mechanisms of (re-)emergence were studied within these studies, such as annual 

258 seasonal outbreaks (49), or re-emergence because of decreasing vaccine uptake (22,51). In all studies, signs 

259 of critical slowing down were displayed before a critical transition, and they could signal an upcoming outbreak 

260 with a performance between 0.55 and 0.99. These studies were used to investigate additional complexities 
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261 arising in epidemiological systems (further discussed in the section “Dealing with complexities”), or to support 

262 a case study and confirm findings from real-world data (22,25,49,53).

263

264 Real-world data
265 In total, 16 studies used real-world data to study the performance of resilience indicators. Nine diseases were 

266 studied: measles (22,49), mumps (25), pertussis (25,54), lymphatic filariasis (a parasitic worm disease) (55), 

267 plague (25), dengue (25), malaria (56), influenza (27,29), and COVID-19 (26,28,30–32,53,57,58). We 

268 distinguish three different categories of diseases studied: (i) seasonal diseases with R fluctuating around one, 

269 (ii) vector-borne diseases, and (iii) COVID-19.

270 Seasonal diseases
271 Despite the particularly complex dynamical patterns of seasonal diseases, signs of critical slowing down were 

272 detected in six case studies on measles (22,49), mumps (25), pertussis (25,54) and influenza outbreaks 

273 (27,29). In these studies, case reports were used to (i) anticipate long-term re-emergence because of a decline 

274 in vaccination or an increase in the infection probability (22,25), (ii) discriminate locations where epidemics 

275 would take place or not (25,54), and (iii) anticipate annual emergence because of seasonal variations 

276 (27,29,49). First, Brett et al. used a combination of indicators to anticipate long-term re-emergence of mumps 

277 and pertussis up to several years in advance (25). Specifically, a combination of resilience indicators could 

278 have anticipated the 2004 national mumps outbreak in England with a lead time of four years (25). Second, 

279 they were able to discriminate localities where an outbreak would occur and localities with low levels of 

280 transmission based on local case reports. The authors anticipated pertussis outbreaks in nearly all 37 states 

281 that experienced one. However, 30 to 50% of the 12 states that did not experience an outbreak raised a false 

282 alarm. Third, Chen et al. and Yang et al. were able to anticipate annual influenza outbreaks in Japan in several 

283 areas using case reports per location and a weighted network of the locations to compute dynamical network 

284 markers (27,29). They yielded a performance between 0.74 and 0.9 with a lead time between 3 and 9 weeks.

285 Vector-borne diseases
286 The anticipation of vector-borne disease transitions using resilience indicators was shown in three studies 

287 investigating dengue (25), plague (25), and malaria re-emergence (56), and lymphatic filariasis elimination 

288 (55). In these studies, re-emergence was a slow process due to respectively the sequential introduction of 

289 serotypes, change of transmission route, or decline in treatment efficacy, and elimination was due to mass 

290 drug administration. Brett et al. showed that the outbreaks of DENV-2 and DENV-3 in Puerto Rico could have 
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291 been anticipated with respective lead times of 18 months and 6 months using a combination of indicators 

292 (25). Further, they illustrated the potential anticipation of the 2017 plague outbreak in Madagascar 30 days 

293 before its onset using reports of suspected cases (25). A recent study suggests that these suspected case 

294 reports poorly represented the true extent and temporal evolution of the outbreak (59). While it is not clear 

295 how this has affected the results in (25), it highlights the importance of assuring that data used with 

296 resilience indicators are a good representation of the underlying disease dynamics to avoid misleading 

297 results. Harris et al. showed that the re-emergence of malaria in Kenya could have been anticipated 65 

298 months prior to the critical transition using resilience indicators calculated over the hospital case counts (56). 

299 Lastly, signs of critical slowing down were displayed prior to the elimination of lymphatic filariasis, as 

300 demonstrated by Michael and Madon (55). The autocorrelation decreased and served to anticipate the 

301 elimination of the disease. Although vector-borne diseases display complex dynamics due to the vector-host 

302 interactions, their re-emergence and elimination can be anticipated using resilience indicators calculated in 

303 case reports or hospital counts.

304 COVID-19
305 Three studies attempted to anticipate the first wave of COVID-19, despite the sparse data, and yielded 

306 contrasting results (26,32,57). Ma et al. used the Fisher information as a critical slowing down indicator using 

307 incidence time series from March 2019 in various countries (32). The author failed to detect critical slowing 

308 down. However, Fisher information is generally considered an indicator of complexity. Complexity measures 

309 as an indicator of an upcoming critical transition yielded contrasting results in previous studies, possibly 

310 explaining why they failed to anticipate the COVID-19 outbreak (18,19). Similarly, O'Brien et al. showed an 

311 especially high false-positive rate (0.62) for the first wave due to the short time series and high variability of 

312 the data, as well as a high false-negative rate (ranging from 0.46 to 0.88) consistent with previous results 

313 (25,26,32). Only one study by Kaur et al. (57) succeeded at anticipating the emergence of COVID-19 in 7 out 

314 of the 9 countries studied, but with no mention of the lead time and false-positive rate.

315 During the subsequent COVID-19 waves, consistent testing became the norm in most western European 

316 countries, creating a context of high-quality monitoring ideal for the use of resilience indicators, although still 

317 yielding contrasting results. Additionally, information on the geographic location of the cases was available. 

318 Six studies investigated the use of resilience indicators to anticipate the waves of COVID-19 

319 (26,28,30,31,53,58), including three using dynamical network markers (28,30,31). Overall, signs of critical 

320 slowing down were detected with a lead time ranging from 10 days to 2 months, and a performance ranging 

321 from 0 to 0.95. Dynamical network markers yielded the highest performance, ranging from 0.83 to 0.95, but 
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322 they require location data and the implementation of a location network structure. Additionally, using a 

323 composite of resilience indicators (skewness and variance), O'Brien et al. were the only authors to estimate a 

324 false positive rate ranging from 0.22-0.62 (26). However, Dablander et al. found that fast successions of 

325 elimination and re-emergence hampered the performance of resilience indicators as indicators were sometimes 

326 still picking signals of disease elimination before a new wave of COVID-19 (53). They detected signs of critical 

327 slowing down in only 16 out of the 27 countries studied, with some countries raising an alarm for only one of 

328 the 10 waves studied. 

329

330 Dealing with complexities
331 Eleven publications discussed the prerequisites for resilience indicators to anticipate accurately critical 

332 transitions in infectious diseases (16,21,22,24,36,37,39,47,51,53,58). These will be discussed in detail in the 

333 following. 

334 Data types
335 Most studies discussed up to now have used incidence time series to calculate resilience indicators. These data 

336 can be obtained from case reports or hospital case counts. Other data types were also explored and compared: 

337 prevalence, rate of incidence as well as alternative sources of data such as Google Trends and Twitter data. 

338 By reproducing different types of data using mechanistic models combined with an observation process, O'Dea 

339 et al. (37), Brett et al. (36), and Southall et al. (47) showed that prevalence and incidence data portray similar 

340 trends in resilience indicators prior to disease emergence. Thereby, a prediction performance around 1 using 

341 variance was observed prior to disease emergence in prevalence as well as incidence time series (47). Similar 

342 trends in the variance, as well as a similar prediction performance, were observed in rate of incidence data 

343 prior to disease emergence. However, variance can display different trends depending on the data type, making 

344 it an unreliable indicator (47). Additionally, alternative sources of data giving an indirect measure of 

345 transmission were also investigated: social media data and google trend data (22). Pananos et al. looked at 

346 the evolution of the amount of pro-vaccine and anti-vaccine tweets and generated time series to anticipate 

347 measles re-emergence (22). This showed a significant trend in the indicators several years in advance, prior 

348 to the re-emergence of measles due to a rising anti-vaccine sentiment. 

349 Resolution of the data
350 The number of data points and the temporal resolution of the time series strongly affect the prediction 

351 performance. In case studies, the amount of available data ranged from 10 to 30 years of monthly case reports, 
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352 being around 120 to 360 data points. O'Dea et al. used simulated datasets to investigate the relationship 

353 between data quantity and prediction performance (39). They showed that the observation period should be 

354 much greater than the oscillation period of a seasonal pattern. For instance, for an annual seasonal disease, 

355 several years of observation should be available. Moreover, the resolution of the data affects the prediction 

356 performance of autocorrelation: equidistant data are necessary for a good estimation of autocorrelation, and 

357 the collection interval should be smaller than the infectious period (39). 

358 Data imperfections
359 Epidemiological data is subject to imperfect observations due to misreporting and underreporting, data 

360 aggregation and reporting delay making it difficult to report cases accurately. Brett et al. examined the impact 

361 of overdispersion, underreporting and aggregation into periodic reports on the prediction performance using 

362 simulated time series (36). Mean and variance were found to be the least impacted indicators by underreporting 

363 and aggregation. Strikingly, their predictive powers were unaffected if the data were not highly overdispersed, 

364 meaning displaying a high variability, and if the aggregation period was shorter than the infectious period. 

365 Other usually top-performing indicators, such as autocorrelation, performed well for aggregated data but were 

366 affected by overdispersion and low reporting probability (36). Additionally, when reporting rate is increasing 

367 together with a varying transmission probability, indicators can struggle to distinguish an increase in 

368 transmission probability, leading to an outbreak, from an increase in reporting rate. O'Dea showed that using 

369 multiple time series can help confirm that the signal in resilience indicators is the result of an upcoming 

370 outbreak and not just a change in transmission probability, and that the second factorial moment is an indicator 

371 insensitive to the variation of the reporting probability (37).

372 Seasonality
373 Another common characteristic of infectious diseases reflected in epidemiological data is seasonality. Miller et 

374 al. simulated time series of infectious diseases subject to seasonal patterns by varying the transmission rate 

375 periodically with different levels of amplitude. They found that seasonality does not highly affect the 

376 performance of the indicators, as for time series with the highest amplitude of seasonal transmission the 

377 performance decreased by 0.02 to 0.07 compared to a sensitivity of 0.85 for non-seasonal simulations. 

378 Seasonal detrending did not significantly improve the performance, especially in datasets with low amounts of 

379 seasonal fluctuations (21). Dessavre et al. found that detrending can help improve the accuracy of prediction 

380 for some indicators in the case of disease elimination in multiple subpopulations for instance, an argument 

381 supported by O'Dea et al. (16,37). 
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382 Speed of change of R
383 The theory of critical slowing down and the use of resilience indicators to anticipate critical transitions are 

384 exclusively dedicated to critical transitions caused by a slow change in an underlying condition. This assumption 

385 applies to the anticipation of epidemics transitions as well, as shown by Dablander et al. (53). The authors 

386 showed that overall, the performance of resilience indicators decreases as the speed of change of R increases, 

387 meaning that resilience indicators fail at anticipating epidemics emerging too fast. Using simulated data of 

388 several waves of COVID-19, they found a performance of variance dropping from around 0.99 to 0.6 as the 

389 speed of change increases. Proverbio et al. proposed a method to verify the assumption of a slow increase in 

390 R (58). By using a Bayesian approach, they compute the R over time and measure its speed of change. They 

391 consider the assumption to be verified if R reaches one in a period much longer than the serial interval of the 

392 disease. Additionally, in the case of multi-wave diseases such as COVID-19, the stabilization time between two 

393 waves should be long enough for the epidemics to stabilize in a non-endemic state. Dablander et al. showed 

394 that when the time between two waves is too short, resilience indicators fail to anticipate the new outbreak 

395 and might pick up signals from the elimination of the previous wave instead (53). 

396

397 Discussion – Guidelines on how to use resilience indicators in 

398 epidemiology
399 The advantage of resilience indicators lies in the fact that it is a data-driven, generic method applicable 

400 to a wide range of epidemiological systems without the need for frequent recalibration. Simulation 

401 studies supported by real-world case studies showed that critical slowing down can indeed be detected 

402 prior to disease outbreaks or eliminations, using good quality incidence time series. The 37 studies we 

403 reviewed suggest that resilience indicators have the potential to anticipate outbreaks but yielded a 

404 highly variable sensitivity. The false positive rate was poorly documented (only reported in two 

405 studies). As false positives can result in the implementation of unnecessary interventions or even 

406 precipitated halt of disease elimination strategies, it is important to get a better understanding of how 

407 the specificity of resilience indicators is affected by complexities in the data and the disease system. 

408 Similarly, lead time was not always quantified in the studies (only reported in eight studies), even 

409 though this is a key aspect of disease anticipation. Additionally, our information retrieval is likely 

410 subject to publication bias, which may result in an overestimation of the performance of these tools. 
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411 To bridge the gap between theory and practice, it is necessary to get a better understanding of the 

412 factors affecting the performance of resilience indicators as well as the suite of disease and monitoring 

413 systems that are best suited for the use of resilience indicators. Here, we present a step-by-step 

414 approach to assess whether a disease and its monitoring system are suitable for the use of resilience 

415 indicators. We also suggest how such an early warning system may be set up for the system at hand 

416 (Fig 4).

417 Fig 4. Decision tree. Step-by-step approach to use resilience indicators in epidemiology

418

419 Prior considerations
420 Although resilience indicators can help anticipate critical transitions, this may only be expected to work in 

421 specific contexts. First, we cannot expect signals of critical slowing down prior to a transition in all situations. 

422 At least two requirements must be fulfilled to use resilience indicators: suitable data should be available and 

423 external conditions should change slowly (15,53). We can distinguish several reasons for a new outbreak. A 

424 common mechanism is the emergence of a new unknown pathogen due to spillover from wild animals, for 

425 example. In this case, no suitable data will be available to observe critical slowing down. Another possibility is 

426 a pathogen remaining close to endemicity as their R fluctuates around 1, and that is subject to seasonal 

427 variations leading to sudden outbreaks. Under those circumstances, the seasonal change in conditions is likely 

428 too fast to detect critical slowing down. By contrast, when the risk for a pathogen to cause an outbreak rises 

429 gradually due to changing conditions, the outbreak might be anticipated using critical slowing down. Examples 

430 could include changes that may bring the R gradually closer to 1, such as a decline in vaccine uptake, mutation 

431 of the pathogen inducing immunity escape, and change in the immunity profile of a population due to waning 

432 immunity. Statistical tests have been proposed to check the assumption of slow change (60). 

433 Second, the type of transition can affect the trend in some of the indicators. Disease outbreaks as well as 

434 disease elimination can be anticipated using resilience indicators. Prior to both transitions, critical slowing down 

435 is displayed in the system, as was shown in simulation studies as well as case studies. However, depending on 

436 the type of data, variance might not increase before the elimination of a disease (44). Thus, autocorrelation 

437 should always be the first choice as it displays consistent trends, insensitive to the data types. 

438 Finally, enough data points should be available, with a sufficient resolution to capture slowing down in order 

439 to anticipate disease critical transitions. The collection interval should be smaller than the infectious period 
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440 (36) with a reasonable number of data points, meaning that the duration of observation is at least as long as 

441 the period of any oscillation in the data (39). For instance, if the disease is a seasonal disease coming back 

442 every winter, at least a year of observations should be available. As a comparison, the included case studies 

443 based their analyses on around a decade of monthly case reports. Data should be equidistant for a good 

444 estimation of autocorrelation. Additionally, when case reports are discriminated per location, dynamical 

445 network markers seem to yield higher performance. However, only five studies were published using these 

446 types of indicators. Thus, further investigation is required. 

447 Alternatively, substitute types of more accessible time series representing the state of an epidemic indirectly 

448 could be considered. Critical slowing down in Google trends or social media data was investigated, and 

449 significant trends were displayed prior to a measles outbreak (22). Other types of alternative data could also 

450 be envisioned, such as excess mortality data (61), news feed (62) or wastewater surveillance data (63). 

451 Wastewater surveillance, in which biomarkers related to a specific disease are quantified in untreated sewage 

452 data, provides real-time data and allows monitoring the state of the epidemic with less effort than by counting 

453 the new cases. However, investigations would be required to make sure that critical slowing down is also 

454 displayed in this type of data.

455

456 Data processing
457 Once we know the disease transition is relevant with regard to resilience indicators, pre-processing of the data 

458 should be conducted prior to the analysis. Detrending of the data series is usually necessary to avoid spurious 

459 trends in the indicators due to slow changes in the mean (17). This is essential, especially for seasonal data. 

460 Seasonality affects the spread of a number of diseases, creating periodic fluctuations in the data. These 

461 fluctuations have an effect both on variance and autocorrelation, introducing misleading results. When studying 

462 a disease subject to periodicity, the number of data points should be much higher than the period. In other 

463 terms, if the disease has waves every winter, one should have data over several years. This helps assess if 

464 the trend in the indicators is truly due to long-term re-emergence and not to seasonal fluctuations.

465 Several types of data can represent the state of the system. Incidence time series represent the count of new 

466 cases, while prevalence time series count the number of infected individuals at different time points. The rate 

467 of incidence is the rate at which newly infected cases occur in a population. The rate of incidence can be 

468 estimated from incidence time series using a rolling window approach (47). Critical slowing down is displayed 

469 prior to a transition in all these types of data. However, when using variance as an indicator of resilience, the 
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470 type of data can affect the trend prior to a transition. Moreover, although the rate of incidence requires 

471 additional computations to be obtained, it displayed a more significant trend prior to disease elimination in one 

472 study (47). If dynamical network markers are to be used, it is necessary to build a location network using 

473 population data, using the information on transport between these regions, traffic conditions and population.

474 As monitoring is never perfect, epidemiological data are subject to imperfections. The data are aggregated into 

475 weekly or monthly case reports. Underreporting is often observed as a result of asymptomatic cases as well 

476 as poor access to health facilities. Moreover, various types of stochasticity are inherent to the data. Again, 

477 these characteristics can affect the trend in variance. Furthermore, when combined, imperfections can be 

478 detrimental to the performance of resilience indicators. Imperfections likely to be encountered in the data 

479 should be clearly stated in order to select relevant indicators. Variance and mean perform poorly when data 

480 are highly overdispersed, meaning that data show great variability. Similarly, autocorrelation performs poorly 

481 when the reporting rate is highly overdispersed or when the aggregation period is too high. If the reporting 

482 rate is expected to change, the second-order moment could be used as it is insensitive to variations in the 

483 reporting rate (37).

484

485 Computing
486 After preprocessing the data, the resilience indicators can be computed using packages, for instance, in R or 

487 Matlab (64,65). 

488 The indicators should be picked carefully based on the prior reflection presented above. Variance was the top-

489 performing indicator in a majority of studies and least impacted by underreporting and aggregation. However, 

490 when choosing variance, the trend can be inverted. Autocorrelation was among the best-performing indicators 

491 in a majority of studies, and its trend is not affected by the type of transition. However, the performance of 

492 autocorrelation is impacted in the case of low reporting probability and highly overdispersed data, and equally 

493 spaced data are necessary to calculate autocorrelation. A variety of indicators can be used for specific situations 

494 (S1 Table). Combinations of indicators yielded the best performance (25). However, the best combinations 

495 were determined using an optimization algorithm trained on a large dataset of simulated time series, and their 

496 performance remained to be proved in other contexts. 

497 The size of the rolling window should be picked carefully to observe a trend at a consistent scale. An arbitrary 

498 value is to take 50% of the size of the dataset as a window size (17). However, if several transitions occur, 
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499 then a smaller rolling window size should be picked to be able to observe a trend before each transition. In 

500 addition, enough data points should be present in the window in order to accurately estimate the 

501 autocorrelation; however, a too-large window will reduce the absolute increase (60). It is good practice to 

502 check the effect of the window size and detrending in a sensitivity analysis (17).

503 When a trend is observed, its significance needs to be assessed. Due to the sliding window approach, standard 

504 statistical tests are not applicable as the observations are not independent. A proposed approach to assess the 

505 significance of the trend is to produce surrogate datasets to compare the trend estimates (17). Several 

506 methods to produce consistent surrogate datasets have been proposed and implemented in the resilience 

507 indicators packages (64,65). The choice of the threshold should be calibrated based on previous data, as a 

508 poorly calibrated threshold can induce misleading results (53). 

509

510 Conclusion and future directions
511 To conclude, resilience indicators have the potential to help public health organizations anticipate infectious 

512 disease transitions, as they constitute a generic, data-driven method. Real-time calculation of resilience 

513 indicators could be put into practice to monitor the risk of an upcoming outbreak, provided sufficient, good-

514 quality case reports are available. However, further investigations are required to strike the right balance 

515 between false negative and false positive rates and lead time. This will differ by setting, disease system, and 

516 data availability and quality. To overcome the data and model limitations, a combination with other early-

517 warning systems, as well as other sources of data, might help improve early detection. The potential of such 

518 combined approaches remains to be explored. Moving forward, a close collaboration between experts in 

519 resilience indicators and public health practitioners is needed to bridge the gap between theory and practice, 

520 and determine how and when resilience indicators could contribute to more timely outbreak response.

521
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