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Abstract  36 
Translating genome-wide association study (GWAS) loci into causal variants and genes requires 37 
accurate cell-type-specific enhancer-gene maps from disease-relevant tissues. Building 38 
enhancer-gene maps is essential but challenging with current experimental methods in primary 39 
human tissues. We developed a new non-parametric statistical method, SCENT (Single-Cell 40 
ENhancer Target gene mapping) which models association between enhancer chromatin 41 
accessibility and gene expression in single-cell multimodal RNA-seq and ATAC-seq data. We 42 
applied SCENT to 9 multimodal datasets including > 120,000 single cells and created 23 cell-43 
type-specific enhancer-gene maps. These maps were highly enriched for causal variants in 44 
eQTLs and GWAS for 1,143 diseases and traits. We identified likely causal genes for both 45 
common and rare diseases. In addition, we were able to link somatic mutation hotspots to target 46 
genes. We demonstrate that application of SCENT to multimodal data from disease-relevant 47 
human tissue enables the scalable construction of accurate cell-type-specific enhancer-gene 48 
maps, essential for defining non-coding variant function. 49 

50 
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Main  51 

Introduction  52 

Genome-wide association studies (GWAS) have comprehensively mapped loci for human 53 

diseases1–4. These loci harbor untapped insights about causal mechanisms that can point to 54 

novel therapeutics2,5. However, only rarely are we able to define causal variants or their target 55 

genes. Of the hundreds of associated variants in a single locus, only one or a few may be causal; 56 

others are associated since they tag causal variants2,6,7. Moreover, causal genes are also 57 

challenging to determine, since causal variants lie in non-coding regions in 90% of the time8–10, 58 

may regulate distant genes11–13, and may employ context-specific regulatory mechanisms14–17.  59 

To define causal variants and genes, previous studies have used both statistical and 60 

experimental approaches. Statistical fine-mapping18–23 can narrow the set of candidate causal 61 

variants, and is more effective when GWAS includes diverse ancestral backgrounds with 62 

different allele frequencies and linkage disequilibrium structures (LD)24–28. However, these 63 

approaches alone are seldom able to identify true causal variants with confidence7,23,29–32. To 64 

define causal genes, previous studies have built enhancer-gene maps, that can be used to 65 

prioritize causal variants in enhancers and link causal variants to genes they regulate. These 66 

maps often require large-scale epigenetic and transcriptomic atlases (e.g., Roadmap33, 67 

BLUEPRINT34, and ENCODE35). The enhancer-gene maps have been built from these atlases 68 

by correlating epigenetic activity (i.e., enhancer activity; e.g., histone mark ChIP-seq and bulk 69 

ATAC-seq) with gene expression (e.g., RNA-seq)36,37, by combining epigenetic activity and 70 

probability of physical contact with the gene38,39, or by integrating multiple linking strategies to 71 

create composite scores 40. However, current methods largely use bulk tissues or cell lines. Bulk 72 
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data potentially (i) cannot be easily applied to rare cell populations (ii) obscures the cell-type-73 

specific nature of gene regulation and (iii) requires hundreds of experimentally characterized 74 

samples, necessitating consortium-level efforts. While perturbation experiments (e.g., CRISPR 75 

interference41 or base editing42) can point to causal links between enhancers and genes, they 76 

are difficult to scale because they require the cell- or tissue-type specific experimental 77 

protocols43. 78 

Advances in single-cell technologies offer new opportunities for building cell-type specific 79 

enhancer-gene maps. Multimodal protocols now enable joint capture of epigenetic activity by 80 

ATAC-seq alongside early transcriptional activity with nuclear RNA-seq44–48 . These methods 81 

are easily applied at scale to cells in human primary tissues without disaggregation, enabling 82 

query of many samples from disease-relevant tissues. If we establish accurate links between 83 

open chromatin enhancers and genes in single cells, statistical power should exceed bulk-tissue-84 

based methods since each observation is at a cell-level resolution. However, the sparse and 85 

non-parametric nature of RNA-seq and ATAC-seq in single-cell experiments makes confident 86 

identification of these links challenging. To date, most methods use linear regression models to 87 

link enhancers and genes (e.g., ArchR49 and Signac50) despite these features or only utilize co-88 

accessibility of regulatory regions from ATAC-seq but not gene expression from sc-RNA-seq 89 

(e.g., Cicero51).  These previous methods have not generally demonstrated efficacy in practice 90 

for causal variant fine-mapping in complex traits.  91 

In this context, we developed Single-Cell Enhancer Target gene mapping (SCENT), to 92 

accurately map enhancer-gene pairs where an enhancer’s activity (i.e. peak accessibility) is 93 
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associated with gene expression across individual single cells. We use Poisson regression and 94 

non-parametric bootstrapping52 to account for the sparsity and non-parametric distributions. We 95 

predicted that peaks with gene associations are more likely to be functionally important. We 96 

apply SCENT to 9 multimodal datasets to build 23 cell-type specific enhancer-gene maps. We 97 

show that SCENT enhancers are highly enriched in statistically fine-mapped likely causal 98 

variants for eQTL and GWAS. We use SCENT enhancer-gene map to define causal variants, 99 

genes, and cell types in common and rare disease loci and somatic mutation hotspots, which 100 

has not been previously demonstrated by conventional enhancer-gene mapping based on bulk-101 

tissues. 102 

 103 

Results 104 

Overview of SCENT  105 

To identify (1) active cis-regulatory regions and (2) their target genes (3) in a given cell type, we 106 

leveraged single-cell multimodal datasets. SCENT accurately identifies significant association 107 

between chromatin accessibility of regulatory regions (i.e., peaks) from ATAC-seq and gene 108 

expression from RNA-seq across individual single cells (Figure 1a). Those associations can be 109 

used for prioritizing (1) likely causal variants if they are in regulatory regions that are associated 110 

with gene expression, (2) likely causal genes if they are associated with the identified regulatory 111 

region and (3) the critical cell types based on which map the association is identified in. We 112 

assessed whether binarized chromatin accessibility in an ATAC peak is associated with gene 113 

expression counts in cis (< 500kb from gene body), testing one peak-gene pair at a time in each 114 
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cell type (see Methods). We tested each cell type separately to capture cell-type-specific gene 115 

regulation and to avoid spurious peak-gene associations due to gene co-regulation across cell 116 

types. 117 

Since both RNA-seq and ATAC-seq data are generally sparse50,53–56, we used Poisson 118 

regression since it was a simple model that has been used effectively for sc-RNA-seq 119 

analysis54,57:  120 

𝐸! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!) 121 

𝑙𝑜𝑔(𝜆!) = 	𝛽" +	𝛽#$%&𝑋#$%& +	𝛽%(!)*𝑋%(!)* +	𝛽+,-.𝑋+,-. +	𝛽/%)01𝑋/%)01		 122 

where 𝐸! 	is the observed expression count of 𝑖th gene, and 𝜆! is the expected count under 123 

Poisson distribution. 𝛽"#$% indicates the effect of chromatin accessibility of a peak on 𝑖 th gene 124 

expression (see Methods) and reflects the strength of the regulatory effect and sign (i.e., 125 

enhancing vs. silencing effect). We accounted for donor or batch effects (𝑋/%)01) and cell-level 126 

technical factors such as percentage of mitochondrial reads (𝑋%(!)*). 127 

However, gene expression counts are highly variable across genes (Figure 1b; 128 

Supplementary Figure 1a), and Poisson regression might be suboptimal for highly expressed 129 

and dispersed genes. Consequently, we observed inflated statistics when we permuted cell 130 

barcodes to disrupt association between ATAC and RNA profiles (Supplementary Figure 1b). 131 

Common analytical statistical models (e.g., linear, negative binomial and Poisson regression) all 132 

demonstrated inflated statistics (Supplementary Figure 1c-e). Therefore, to accurately 133 

estimate the error and significance of 𝛽#$%& , we implemented non-parametric bootstrapping 134 

framework. Briefly, we resampled cells with replacement from the full data and re-estimated 135 
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𝛽′"#$%  up to 50,000 times. We compared this empirical distribution of 𝛽′"#$%  against null 136 

hypothesis (𝛽′"#$% = 0) to derive the significance of 𝛽"#$% (i.e., two-sided bootstrapping-based 137 

P value; see Methods, Supplementary Figure 2). The Poisson regression followed by 138 

bootstrapping resulted in well-calibrated statistics with appropriate type I error (Supplementary 139 

Figure 1f).    140 



Sakaue et al 

 8 

 141 
Figure 1. Schematic overview of SCENT and SCENT enhancer-gene pairs across 9 single-142 
cell multimodal datasets. a. SCENT identifies (1) active cis-regulatory regions and (2) their 143 
target genes in (3) a specific cell type. Those SCENT results can be used to define likely causal 144 
variants, genes, and cell types for GWAS loci. b. SCENT models association between chromatin 145 
accessibility from ATAC-seq and gene expression from RNA-seq across individual cells in a 146 
given cell type. c. 9 single-cell datasets on which we applied SCENT to create 23 cell-type-147 
specific enhancer-gene map. The cells in each dataset are described in UMAP embeddings from 148 
RNA-seq and colored by cell types.  149 
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Discovery of cell-type-specific SCENT enhancer-gene links 150 

We obtained nine single-cell multimodal datasets from diverse human tissues representing 13 151 

cell-types (immune-related, hematopoietic, neuronal, and pituitary). Since we are interested in 152 

autoimmune diseases, we newly generated an inflammatory tissue dataset by obtaining inflamed 153 

synovial tissues from ten rheumatoid arthritis (RA) and two osteoarthritis (OA) patients (arthritis-154 

tissue dataset; ndonor = 12). Applying stringent QC to these multimodal data, we obtained 155 

information on 30,893 cells (see Methods). In addition, we obtained eight public datasets with 156 

129,672 cells. In total we had data from 160,565 cells46,58–62. We analyzed 16,621 genes and 157 

1,193,842 open chromatin peaks in cis after QC (4,753,521 peak-gene pairs, 28 median peaks 158 

per gene; Figure 1c, Supplementary Figure 3, Supplementary Table 1). After clustering cells 159 

and cell type annotation, we applied SCENT individually to each of the cell types with ncells > 500 160 

to construct 23 enhancer-gene maps. SCENT identified 87,648 cell-type-specific peak-gene 161 

links (false discovery rate (FDR) < 10%, Figure 2a, Supplementary Figure 4). Each gene had 162 

variable number of associated peaks in cis (from 0 to 97, mean = 4.13, Supplementary Figure 163 

5a). 164 

To assess replicability of SCENT peak-gene links, we compared the effects from the 165 

arthritis-tissue dataset (discovery; which had the largest number of significant peak-gene pairs) 166 

with those from other datasets in the same cell-type (replication) in B cells, T/NK cells and 167 

myeloid cells (Supplementary Table 2a). Despite different tissue contexts, we confirmed high 168 

directional concordance of the effect of chromatin accessibility on gene expression for peak-169 

gene pairs significant in both datasets (mean Pearson r = 0.62 of effect sizes, 99% mean 170 
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concordance across all the datasets: Supplementary Figure 5b). For comparison, we tested 171 

two popular linear parametric single-cell multimodal methods that are already published, namely 172 

ArchR56 or Signac50. Using arthritis-tissue dataset as a discovery and public PBMC as a 173 

replication, we noted lower directional concordance and effect correlation in these methods than 174 

in SCENT (mean Pearson’s r = 0.31, 62% mean directional concordance in ArchR and r = 0.24, 175 

98% mean directional concordance in Signac; Supplementary Table 2b and c). These results 176 

argue that SCENT can more reproducibly detect enhancer-gene links compared with previous 177 

parametric methods for single-cell multimodal data.  178 

  179 
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 180 
Figure 2. SCENT identified functionally active and evolutionary conserved cis-regulatory 181 
regions from single-cell multimodal data.  182 
a. The number of significant gene-peak pairs discovered by SCENT with FDR < 10%. Each dot 183 
represents the number of significant gene-peak pairs in a given cell type in a dataset (y-axis) as 184 
a function of the number of cells in each cell type in a dataset (x-axis), colored by the dataset. 185 
b. The effect size (beta) of chromatin accessibility on the gene expression from Poisson 186 
regression (y-axis). Each dot is a significant gene-peak pair and plotted against the distance 187 
between the peak and the transcription start site (TSS) of the gene, colored as a density plot. c. 188 
The mean effect size (beta) of chromatin accessibility on the gene expression in arthritis-tissue 189 
dataset within each bin of TSS distance. Left; all significant gene-peak links. Right; SCENT 190 
peaks within enhancers identified using chromHMM in immune-related tissues. d. Mean 191 
phastCons score difference (Δ phastCons score) between each annotated region and all cis-192 
regulatory non-coding regions. We show the Δ phastCons score for exonic regions (purple) as 193 
a reference, and for SCENT (green) and all cis-ATAC peaks (yellow) enhancers in each 194 
multimodal dataset.   195 
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To assess if SCENT peaks (i.e., cis-regulatory regions) were functional, we examined if 196 

(1) they co-localized with conventional cis-regulatory annotation, (2) their effect on expression 197 

was greater for closer peak-gene pairs, (3) they had high sequence conservation, and (4) peak-198 

gene connections were more likely to be validated experimentally.  199 

First, we tested the overlap of SCENT peaks with an ENCODE cCRE63, a conventional 200 

cis-regulatory annotation by bulk epigenomic datasets. We observed that 98.0% of the SCENT 201 

peaks overlapped with ENCODE cCRE on average, compared to 23.3% of random cis-regions 202 

matched for size and 89.0% of non-SCENT peaks (Supplementary Figure 5c). 203 

Second, we examined the strength of enhance-gene links, hypothesizing that stronger 204 

links would be more proximal to the transcription start site (TSS) of target genes. The regression 205 

coefficient 𝛽"#$% (the effect size of peak accessibility on gene expression) became larger and 206 

more positive as the SCENT peaks got closer to the TSS (Figure 2b and Figure 2c, left panel), 207 

consistent with previous observations56,64. We annotated SCENT peaks with 18-state 208 

chromHMM results from 41 immune-related samples in ENCODE consortium37. When we subset 209 

peaks to those within enhancer annotations, we observed a clearer decay in 𝛽"#$% as a function 210 

of TSS distance (Figure 2c, right panel).  211 

Third, we assessed whether SCENT peaks had higher sequence conversation across 212 

species, quantified as phastCons score66, which should indicate functional importance; the 213 

evolutionary conserved regulatory regions are known to be enriched for complex trait 214 

heritability65. As expected, exonic regions were much more evolutionary conserved than all non-215 

coding cis-region (mean Δ phastCons score = 0.38, paired t-test P < 10-323; Figure 2d, purple). 216 
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The SCENT regulatory regions were also conserved relative to non-coding cis-regions (mean Δ 217 

phastCons score = 0.13, paired t-test P = 4.2 x10-42 in arthritis-tissue dataset; Figure 2d, green). 218 

In contrast, the Δ phastCons score between all cis-ATAC peaks and all non-coding cis-region 219 

was more modest (mean Δ phastCons score = 0.092, paired t-test P = 8.7 x10-27 in arthritis-220 

tissue dataset; Figure 2d, yellow). To test if the higher conservation in SCENT peaks were 221 

driven by their proximity to TSS (Supplementary Figure 6a), we matched each of the SCENT 222 

peak-gene pairs to one non-SCENT peak-gene pair that had the most similar TSS distance 223 

(Supplementary Figure 6b). We assessed Δ phastCons score between SCENT peaks and 224 

non-SCENT peaks with matching peaks on TSS distance. SCENT peaks had significantly higher 225 

conservation scores than the non-SCENT peaks with the matched TSS distance (mean Δ 226 

phastCons score = 0.034, P = 4.7x10-4 in arthritis-tissue dataset; Supplementary Figure 5d; 227 

see Methods). The higher sequence conservation suggested the functional importance of 228 

SCENT regulatory regions not solely driven by TSS proximity.  229 

Finally, we tested whether the target genes from SCENT were enriched for experimentally 230 

confirmed enhancer-gene links. We used Nasser et al.39 CRISPR-Flow FISH results which 231 

included 278 positive enhancer-gene connections and 5,470 negative connections. The SCENT 232 

peaks were >4-fold enriched relative to non-SCENT peaks for positive connections (Fisher’s 233 

exact OR=4.5X, P=1.8x10-9 in arthritis-tissue dataset and 4.5X, P=1.0x10-8 in public PBMC 234 

dataset; Methods, Supplementary Table 3).  235 

We anticipate that the genes with the largest number of SCENT peaks are likely to be the 236 

most constraint and least tolerant to loss of function mutations. The genes with the most SCENT 237 
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peaks included FOSB (n = 97), JUNB (n = 95), and RUNX1 (n = 77), critical and highly conserved 238 

transcription factors. We used mutational constraint metrics based on the absence of deleterious 239 

variants within human populations (i.e., the probability of being loss-of-function intolerant (pLI)67 240 

and the loss-of-function observed/expected upper bound fraction (LOEUF)68). The normalized 241 

number of SCENT peaks per gene is strongly associated with mean constraint score for the 242 

gene (beta=0.37, P=4.9x10-90 for pLI where higher score indicates more constraint, and beta=-243 

0.35, P=-0.35x10-106 for LOEUF where lower score indicates more constraint; Supplementary 244 

Figure 7a and 7b, respectively). Previously, genes with many regulatory regions from bulk-245 

epigenomic data had been shown to be enriched for loss-of-function intolerant genes69. We 246 

replicated the same trend in the single-cell multimodal datasets and SCENT.  247 

 248 

Enrichment of eQTL putative causal variants in SCENT peaks 249 

We examined whether the SCENT peaks are likely to harbor statistically fine-mapped putative 250 

causal variants for expression quantitative loci (eQTL). We used tissue-specific eQTL fine-251 

mapping results from GTEx across 49 tissues70 and defined any variants with posterior inclusion 252 

probability (PIP) > 0.2 as putative causal variants. We computed enrichment statistics within 253 

ATAC peaks or SCENT peaks (see Methods). Unsurprisingly, all the accessible regions defined 254 

by ATAC-seq in cis-regions were modestly enriched in fine-mapped variants by 2.7X (yellow, 255 

Figure 3a). However, SCENT peaks were more strikingly enriched in fine-mapped variants by 256 

9.6X on average across all datasets (green, Figure 3a). Using more stringent PIP threshold 257 
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cutoffs (0.5 and 0.7) to define putative causal variants resulted in even stronger enrichments 258 

(Supplementary Figure 8). 259 

Since many SCENT peaks are close to TSS regions, we again considered whether this 260 

enrichment might be driven by TSS proximity (Supplementary Figure 6a). To test this, we 261 

compared the fine-mapped variant enrichment between SCENT and non-SCENT peak-gene 262 

pairs with matched TSS distance (Supplementary Figure 6b). The SCENT peaks consistently 263 

had higher enrichment in all analyzed datasets (Supplementary Figure 9a) than TSS-264 

distance-matched non-SCENT peaks (e.g., 12.3X in SCENT vs. 9.64X in distance-matched 265 

non-SCENT in arthritis-tissue dataset). This suggests that SCENT has additional information in 266 

identifying functional cis-regulatory regions beyond TSS distance.  267 
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 268 
Figure 3. SCENT enhancers are enriched in putative causal variants of eQTL and GWAS. 269 
a. The mean causal variant enrichment for eQTL within SCENT peaks or all ATAC-seq peaks in 270 
each of the 9 single-cell datasets. The bars indicate 95% confidence intervals by bootstrapping 271 
genes. b. Comparison of the mean causal variant enrichment for eQTL (y-axis) between SCENT 272 
(green), ArchR (pink), and Signac (purple) as a function of the number of significant peak-gene 273 
pairs at each threshold of significance. The bars indicate 95% confidence intervals by 274 
bootstrapping genes. The ArchR results with > 100,000 peak-gene linkages are omitted, and full 275 
results are in Supplementary Figure 9b. c and d. The mean causal variant enrichment for 276 
GWAS within SCENT enhancers (green), all cis-ATAC peaks (yellow), ENCODE cCREs (pink), 277 
EpiMap enhancers across all groups (red) and ABC enhancers across all samples (blue). GWAS 278 
results were based on FinnGen (c) and UK Biobank (d). The bars indicate 95% confidence 279 
intervals by bootstrapping traits. e. The mean causal variant enrichment for FinnGen GWAS 280 
within intersection of SCENT enhancers and caQTL enhancers at each threshold of significance. 281 
The bars indicate 95% confidence intervals by bootstrapping traits.   282 
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We next compared the enrichment for eQTL putative causal variants in SCENT peaks to 283 

peaks identified by the two published linear parametric methods using single-cell multimodal 284 

data, ArchR56 and Signac50 using the same dataset. ArchR and Signac peaks had substantially 285 

lower causal variant enrichment for eQTL (1.4X and 9.3X, respectively) compared to SCENT 286 

peaks (74.1X) with FDR<0.10. We were concerned that this performance differences may reflect 287 

variable recall; that is SCENT may be more restrictive and calling fewer peaks. By varying the 288 

thresholds to define significant peak-gene associations (see Methods), we called the number of 289 

peak-gene pairs with difference levels of stringency and tested causal variant enrichment (i.e., 290 

recall-precision tradeoff; Figure 3b and Supplementary Figure 9b). SCENT peaks consistently 291 

demonstrated higher causal variant enrichment (i.e., precision) than ArchR and Signac peaks 292 

across different recall values.  293 

We also tested Cicero51, which is a published linear parametric method for detecting 294 

promoter-enhancer co-accessibility from ATAC-seq data alone. We confirmed that SCENT 295 

peaks demonstrated higher causal variant enrichment than Cicero using the same dataset but 296 

only with ATAC-seq side (Supplementary Figure 9c; see Methods). 297 

We assessed whether the Poisson regression or the bootstrapping in SCENT was driving 298 

its performance over other linear parametric methods. We benchmarked causal variant 299 

enrichment in SCENT peaks against peaks identified with only Poisson regression but without 300 

non-parametric bootstrapping (see Methods). As previously mentioned, we already observed 301 

false positive associations in the simulated null datasets in the Poisson-only strategy 302 

(Supplementary Figure 1c). Indeed, we observed substantially lower causal variant enrichment 303 
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at a given recall compared to SCENT (14.4X in Poisson only vs. 74.1X in SCENT at the same 304 

FDR<0.10), albeit slightly higher than the linear methods ArchR and Signac (Supplementary 305 

Figure 9c). This underscored the importance of accounting for both (1) sparsity by Poisson 306 

regression and (2) highly variable gene count distribution by non-parametric bootstrapping to 307 

achieve high precision in SCENT. 308 

SCENT can detect cis-regulatory regions in a cell-type-specific manner. We created cell-309 

type-specific enhancer-gene maps in four major cell types with > 5,000 cells across datasets; 310 

for each cell type we took the union of SCENT enhancers across datasets. The cell-type-specific 311 

SCENT enhancers (e.g., SCENT B cell peaks) were most enriched in putative causal eQTL 312 

variants within relevant samples in GTEx (e.g., EBV-transformed lymphocytes; Supplementary 313 

Figure 9d). 314 

These results suggest that SCENT can prioritize regulatory elements harboring putative 315 

causal eQTL variants in a cell-type-specific manner, with higher precision than the previous 316 

single-cell methods. 317 

 318 

Enrichment of likely causal variants for GWAS in SCENT enhancers 319 

SCENT applied for multimodal data from disease-relevant tissues can build disease-specific 320 

enhancer-gene maps. We sought to examine whether SCENT peaks can be used for the more 321 

difficult task of prioritizing disease causal variants. We obtained candidate causal variants for 322 

diseases and traits from fine-mapping results of GWASs in two large-scale biobanks (PIP>0.2; 323 

FinnGen71 [1,046 disease traits] and UK Biobank72 [35 binary traits and 59 quantitative traits])28. 324 
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We computed enrichment statistics for causal GWAS variants within SCENT enhancers (both 325 

cell-type-specific tracks and aggregated tracks across cell types; see Methods). The SCENT 326 

enhancers were strikingly enriched in causal GWAS variants in FinnGen (31.6X on average; 327 

1046 traits; Figure 3c and Supplementary Figure 10a) and UK Biobank (73.2X on average; 94 328 

traits; Figure 3d and Supplementary Figure 10b). This enrichment was again much larger than 329 

all cis-ATAC peaks (12.8X in FinnGen and 38.8X in UK Biobank). Moreover, the target genes of 330 

the likely causal variants for autoimmune diseases (AID) identified by SCENT peaks in immune-331 

related cell types had higher fraction (10.8%) of know genes implicated in Mendelian disorders 332 

of immune dysregulation (ngene = 550)73,74 than SCENT peaks in fibroblast (3.8%; 333 

Supplementary Figure 10c). 334 

We compared SCENT to alternative genome annotations and enhancer-gene maps from 335 

bulk tissues. Causal variant enrichment in SCENT was much higher than the conventional bulk-336 

based annotations such as ENCODE cCREs (13.9X in FinnGen and 46.5X in UK Biobank), ABC 337 

(16.3X in FinnGen and 53.3X in UK Biobank) and EpiMap (12.9X in FinnGen and 40.6X in UK 338 

Biobank; Figure 3c and 3d [aggregated tracks], Supplementary Figure 10a and 10b [cell-type-339 

specific tracks]). We again assessed recall and precision tradeoffs by varying thresholds for 340 

defining significant peak-gene linkages. We constructed SCENT from 9 datasets and 23 cell 341 

types with only 28 samples, substantially less than the 833 samples and tissues used to 342 

construct EpiMap and 131 samples and cell lines for the ABC model. Despite the smaller data 343 

set, SCENT peaks consistently demonstrated higher precision (i.e., enrichment of causal GWAS 344 

variants) at a given recall (i.e., a similar number of identified peak-gene linkages) than ABC 345 
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model and EpiMap (Supplementary Figure 11a). A more stringent PIP threshold (0.5 and 0.7) 346 

for putative causal variants increased the enrichment while maintaining the higher enrichment in 347 

SCENT than bulk methods (Supplementary Figure 11b). The target genes for AID by SCENT 348 

in immune-related cell types had higher fraction (10.8%) of known Mendelian genes of immune 349 

dysregulation73,74 than EpiMap (8.6%) and ABC model (4.4%) (Supplementary Figure 10c). 350 

These results demonstrate the power SCENT achieved by accurately modeling association 351 

between chromatin accessibility and gene expression at the single-cell resolution.  352 

We hypothesized that putative causal variants by SCENT would likely modulate 353 

chromatin accessibility (e.g., transcription factor binding affinity). If so, the intersection of the 354 

SCENT enhancers and chromatin accessibility quantitative trait loci (caQTL) could further enrich 355 

the causal GWAS variants75–78, because these intersected enhancers should include genetic 356 

variants that directly change both chromatin accessibility and gene expression. To test this 357 

hypothesis, we used single-cell ATAC-seq samples with genotype (ndonor = 17; arthritis-tissue 358 

dataset) and performed caQTL mapping by leveraging allele-specific (AS) chromatin 359 

accessibility (binomial test followed by meta-analysis across donors) or by combining AS with 360 

inter-individual differences (RASQUAL79). We then intersected the caQTL ATAC peaks with the 361 

SCENT enhancers and calculated the causal variant enrichment within these intersected regions. 362 

We observed higher enrichment within intersected regions with SCENT and caQTL than those 363 

with SCENT alone. The enrichment increased as we used more stringent threshold for caQTL 364 

peaks, reaching as high as 333-fold when compared with background cis-regions (Figure 3e). 365 

Thus, SCENT efficiently prioritized causal GWAS variants in part by capturing regulatory regions 366 
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of which chromatin accessibility is perturbed by genetic variants and modulates gene expression. 367 

SCENT demonstrated a potential to further enrich causal variants by caQTLs if multimodal data 368 

has matched genotype data. 369 

 370 

Defining mechanisms of GWAS loci by SCENT 371 

We finally sought to use SCENT enhancer-gene links to define disease causal mechanisms. We 372 

analyzed the fine-mapped variants from GWASs (FinnGen, UK Biobank and GWAS cohorts of 373 

rheumatoid arthritis (RA)26, inflammatory bowel disease29 and type 1 diabetes (T1D)80). SCENT 374 

linked 4,124 putative causal variants (PIP>0.1) to their potential target genes across 1,143 traits 375 

(Supplementary Table 4). These target genes were mostly close to the causal variant, with 376 

20% of them being the closest gene to the causal variant (Supplementary Figure 12a and 12b; 377 

see Methods). However, 30.6% of the time SCENT linked causal variants to genes more than 378 

300 kb away. 379 

We first focus on autoimmune loci, given that our current SCENT tracks are largely 380 

derived from immune cell types. We prioritized a single well fine-mapped variant rs72928038 381 

(PIP > 0.3) at 6q15 locus in multiple autoimmune diseases (RA, T1D, atopic dermatitis and 382 

hypothyroidism), within the T-cell-specific SCENT enhancer (T cells in Public PBMC and 383 

Dogma-seq datasets; Figure 4a). This enhancer was linked to BACH2, which was also the 384 

closest gene to this fine-mapped variant. Notably, base-editing in T cells has confirmed that this 385 

variant affects BACH2 expression81. Moreover, editing of this variant into CD8 T cells skewed 386 

naive T cells toward effector T cell fates81.  387 

  388 
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 389 
Figure 4. SCENT defined causal variants and genes in complex trait GWAS. 390 
a. Rs72928038 at BACH2 locus was prioritized by T-cell-specific SCENT enhancer-gene map, 391 
being for RA, T1D, Atopic dermatitis and hypothyroidism. The top four panels are GWAS regional 392 
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plots, with x-axis representing the position of each genetic variant. The color of the dots 393 
represent LD r2 from the prioritized variant (highlighted by light blue stripe). ATAC-seq and 394 
SCENT tracks represent aggregated ATAC-seq tracks (top) and SCENT peaks (bottom with 395 
grey stripes) in each cell type (public PBMC dataset for immune cell types and arthritis-tissue 396 
dataset for fibroblast). An arrow head indicates the SCENT peak overlapping with fine-mapped 397 
variant. b. Rs35944082 for RA and T1D was prioritized and connected to RBPJ by long-range 398 
interaction from T-cell- and fibroblast- SCENT enhancer-gene map using inflamed synovium in 399 
arthritis-tissue dataset. The top two panels are GWAS regional plots similarly to panel a. ATAC-400 
seq and SCENT tracks are shown similarly to panel a, but using both public PBMC and arthritis-401 
tissue datasets. c. Rs11031006 was prioritized and connected to FSHB for multiple 402 
gynecological traits by using pituitary-derived single-cell multimodal dataset. The top four panels 403 
are GWAS regional plots similarly to panel a. ATAC-seq and SCENT tracks are shown similarly 404 
to panel a, and include tracks from pituitary dataset. There were no SCENT peaks in cell types 405 
except for pituitary. d. ATAC-seq and SCENT tracks for IL10RA locus, where non-coding ClinVar 406 
variants (grey dots) colocalized with T-cell SCENT track. e. ATAC-seq and SCENT tracks for 407 
CXCR4 locus, where somatic mutation hotspot for leukemia colocalized with T-cell and myeloid-408 
cell SCENT tracks.  409 
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Another locus for RA and T1D at 4p15.2 harbored 21 candidate variants, each with low 410 

PIPs (< 0.14). SCENT prioritized a single variant rs35944082 in T cells and fibroblasts only within 411 

the arthritis-tissue dataset from inflamed synovial tissue (Figure 4b). SCENT linked this variant 412 

to RBPJ, which was the 3rd closest gene to this variant located 235kb away. This variant-gene 413 

link was supported by a physical contact from promotor-capture Hi-C data in hematopoietic 414 

cells82. RBPJ (recombination signal binding protein for immunoglobulin kappa J region) is a 415 

transcription factor critical for NOTCH signaling, which has been implicated in RA tissue 416 

inflammation through functional studies83,84. Rbpj knockdown in mice resulted in abnormal T cell 417 

differentiation and disrupted regulatory T cell phenotype85,86, consistent with a plausible role in 418 

autoimmune diseases. Intriguingly, we observed no SCENT peaks in T cells from PBMC or blood 419 

at this locus. This linkage was not present in EpiMap. ABC map prioritized another variant, 420 

rs7441808 at this locus and linked it non-specifically to 16 genes including RBPJ, making it 421 

difficult to define the true causal gene. These results underscored the importance of creating 422 

enhancer-gene links using causal cell types, in this case cells from inflammatory tissues, in the 423 

instances where links exist only in disease-relevant tissues. 424 

We highlight another example of SCENT to build enhancer-gene maps from disease-425 

critical tissues. We examined the enhancer-gene map produced from single-cell pituitary data62 426 

to assess 11p14.1 locus for multiple gynecological traits (endometriosis, menorrhagia, ovarian 427 

cyst and age at menopause). Our map connected rs11031006 to FSHB (follicle stimulating 428 

hormone subunit beta) (Figure 4c), which is specifically expressed in the pituitary70,87 and 429 

enables ovarian folliculogenesis to the antral follicle stage88. Rare genetic variants within FSHB 430 
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cause autosomal recessive hypogonadotropic hypogonadism89. However, multimodal data from 431 

other tissues and bulk-based methods (ABC model and EpiMap) were unable to prioritize this 432 

variant, since they missed the most disease-relevant tissue of pituitary. 433 

 434 

Mendelian-disease variants and somatic mutations in cancer within SCENT enhancers 435 

Having established the SCENT’s utility in defining likely causal variants and genes in complex 436 

diseases, we examined rare non-coding variants causing Mendelian diseases. Currently, causal 437 

mutations and genes can only be identified in ∼30–40% of patients with Mendelian diseases90–438 

92. Consequently, many variants in cases are annotated as variants of uncertain significance 439 

(VUS). The VUS annotation is especially challenging for non-coding variants. We examined the 440 

overlap of clinically reported non-benign non-coding variants by ClinVar93 (400,300 variants in 441 

total) within SCENT enhancers. The SCENT enhancers harbored 2.0 times ClinVar variants on 442 

average than all the ATAC regions with the same genomic length across all the datasets 443 

(Supplementary Figure 13). This density of ClinVar variants was 3.2 times and 12 times on 444 

average larger than that in ENCODE cCREs and of all non-coding regions, respectively. We 445 

defined 3,724 target genes for 33,618 non-coding ClinVar variants by SCENT in total 446 

(Supplementary Table 5). As illustrative examples, we found 40 non-coding variants linked to 447 

LDLR gene causing familial hypercholesterolemia 193, 3 non-coding variants linked to IL10RA 448 

causing autosomal recessive early-onset inflammatory bowel disease 28 (Figure 4d)94, and an 449 

intronic variant rs1591491477 linked to ATM gene causing hereditary cancer-predisposing 450 

syndrome93. 451 
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Finally, we used SCENT to connect non-coding somatic mutation hotspots to target genes. 452 

Recently, somatic mutation analyses across the entire cancer genome revealed possible driver 453 

non-coding events95. Among 372 non-coding mutation hotspots in 19 cancer types, SCENT 454 

enhancers included 193 cancer-mutation hotspot pairs (Supplementary Table 6). SCENT 455 

enhancer-gene linkage successfully linked those hotspots to known driver genes (e.g., BACH2, 456 

BCL6, BCR, CXCR4 (Figure 4e), and IRF8 in leukemia). In some instances, SCENT nominated 457 

different target genes for these mutation hotspots from those based on ABC model used in the 458 

original study. For example, SCENT connected a somatic mutation hotspot in leukemia at 459 

chr14:105568663-106851785 to IGHA1 (Immunoglobulin Heavy Constant Alpha 1), which might 460 

be more biologically relevant than ADAM6 nominated by ABC model. These results implicate 461 

broad applicability of SCENT for annotating all types of human variations in non-coding regions. 462 

 463 

Augmenting SCENT enhancer-gene maps with more samples 464 

While the recall for enhancer-gene maps defined by SCENT was lower than that by bulk-tissue-465 

based methods, this might be a function of current limited sample sizes. We assessed if the 466 

addition of more cells into SCENT leads to the higher recall for enhancer-gene maps while 467 

retaining the precision. By downsampling of our multimodal single cell dataset, we observed that 468 

the number of significant gene-peak pairs increased linearly to the number of cells per cell type 469 

in a given dataset, suggesting that SCENT will be even better powered as the size of sc-470 

multimodal datasets increases (Supplementary Figure 14). We considered the possibility that 471 

enhancer-gene maps with greater numbers of cells might capture spurious associations; if this 472 
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was the case, we would expect more long-range associations, which are more likely to be false 473 

positives with greater cell numbers. In contrast, shorter-range and longer-range associations 474 

were both equivalently represented as we added cells, suggesting the robustness of our 475 

discovery. 476 

 477 

 478 

Discussion 479 

In this study, we presented a novel statistical method, SCENT, to create a cell-type-specific 480 

enhancer-gene map from single-cell multimodal data. Single-cell RNA-seq and ATAC-seq are 481 

both sparse and have variable count distributions, which requires non-parametric bootstrapping 482 

to connect chromatin accessibility with gene expression. The SCENT model demonstrated well-483 

controlled type I error, outperforming commonly used statistical models which showed inflated 484 

statistics. SCENT mapped enhancers that showed strikingly high enrichment for putative causal 485 

variants in eQTLs and GWASs and outperformed previous methods for single-cell multimodal 486 

data (e.g., ArchR49 and Signac50). Despite using substantially lower number of samples (28 from 487 

9 datasets in total), enhancers defined by SCENT had equivalent or even higher enrichment for 488 

putative causal variants than bulk-tissue-based methods with more than 100 samples (e.g., 489 

EpiMap and ABC model), by modeling single-cell level observations instead of obscuring them 490 

into sample-level association.  491 

As potential limitations, first, our enhancer-gene maps had relatively fewer enhancers 492 

(lower recall) compared to other resources (Figure 2a). However, downsampling experiments 493 
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showed a clear linear relationship between the number of cells and the number of significant 494 

SCENT peak-gene links. It follows that SCENT applied to larger datasets from a diverse set of 495 

tissues will further expand the current enhancer-gene map. In contrast, bulk-tissue-based 496 

enhancer-gene map might have an upper limit of discovery by the number of samples generated 497 

by each consortium (e.g., ENCODE). Second, SCENT focuses on gene cis-regulatory 498 

mechanisms to fine-map disease causal alleles, while there could be other causal mechanisms 499 

that explain disease heritability, such as alleles that act through trans-regulatory effects, splicing 500 

effects, or post-transcriptional effects96. 501 

We argue that the real utility of SCENT is that it enables the construction of disease-502 

tissue-relevant enhancer-gene maps. Multimodal single cell data can be easily obtained from a 503 

wide range of primary human tissues. Since these assays query nuclear material, data can be 504 

obtained without disaggregating tissues and thus can be employed for assays that need intact 505 

cells from tissue. Therefore, it is possible to build relevant tissue-specific enhancer-gene maps 506 

that are necessary to understand the causal mechanisms of common diseases, rare diseases, 507 

and somatic non-coding mutations in cancers. For example, understanding the FSHB locus in 508 

gynecological traits specifically required a pituitary map, and RBPJ locus in RA specifically 509 

required a synovial tissue map.  510 

In summary, our method SCENT is a robust, versatile method to efficiently define causal 511 

variants and genes in human diseases and will fill the gap in the current enhancer-gene map 512 

built from genomic data in bulk tissues.  513 

 514 
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Data Availability 515 

The publicly available datasets were downloaded via Gene Expression Ombibus (accession 516 

codes: GSE140203, GSE156478, GSE178707, GSE193240, GSE178453) or web repository 517 

(https://www.10xgenomics.com/resources/datasets?query=&page=1&configure%5Bfacets%5D518 

%5B0%5D=chemistryVersionAndThroughput&configure%5Bfacets%5D%5B1%5D=pipeline.ve519 

rsion&configure%5BhitsPerPage%5D=500&menu%5Bproducts.name%5D=Single%20Cell%2520 

0Multiome%20ATAC%20%2B%20Gene%20Expression, 521 

https://openproblems.bio/neurips_docs/data/dataset/). The raw data for arthritis-tissue dataset 522 

(single-cell multimodal RNA/ATAC-seq and single-cell ATAC-seq) will be publicly available 523 

before the acceptance of this manuscript. 524 

 525 

Code Availability 526 

The computational scripts related to this manuscript are available at 527 

https://github.com/immunogenomics/SCENT. 528 

 529 

Methods 530 

Data and sample in arthritis-tissue dataset 531 

This study was performed in accordance with protocols approved by the Brigham and Women’s 532 

Hospital and the Hospital for Special Surgery institutional review boards. Synovial tissue from 533 

patients with RA and OA were collected from synovectomy or arthroplasty procedures followed 534 

by cryopreservation as previously described97. RA samples with high levels of lymphocyte 535 
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infiltration (as scored by a pathologist on histologic sections) were identified as “inflamed” and 536 

used for downstream analysis. Next, cryopreserved synovial tissue fragments were dissociated 537 

by a mechanical and enzymatic digestion97, followed by flow sorting to enrich for live synovial 538 

cells. For each tissue sample, the viable cells were isolated and lysed to extract and load 539 

approximately 10,000 nuclei according to manufacturer protocol (10X Genomics). Joint sc-RNA- 540 

and sc-ATAC-seq libraries were prepared using the 10x Genomics Single Cell Multiome ATAC 541 

+ Gene Expression kit according to manufacturer’s instructions. Libraries were sequenced with 542 

paired-end 150-bp reads on an Illumina Novaseq to a target depth of 30,000 read pairs per 543 

nuclei both for mRNA and ATAC libraries. Demultiplexed scRNA-seq fastq files were inputted 544 

into the Cell Ranger ARC pipeline (version 2.0.0) from 10x Genomics to generate barcoded 545 

count matrix of gene expression. For ATAC-seq, we trimmed adaptor and primer sequences and 546 

mapped the trimmed reads to the hg38 genome by BWA-MEM with default parameters. To 547 

deduplicate reads from PCR amplification bias within a cell while keeping reads originating from 548 

the same positions but from different cells, we used in-house scripts (manuscript in preparation). 549 

 550 

Uniform processing of single-cell multimodal datasets 551 

In addition to our arthritis-tissue multimodal dataset, we downloaded all publicly available 552 

multimodal RNA-seq/ATAC-seq datasets from adult human tissues (ndataset = 9, as of April 2022). 553 

We processed these downloaded count matrices of gene expression and ATAC data. Briefly, 554 

we applied QC to both the nuclear RNA data and the ATAC data based on RNA counts, ATAC 555 

fragments, nucleosome signal, and TSS enrichment (Supplementary Table 7). We only kept 556 
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cells that had passed QC in both RNA-seq and ATAC-seq. Then to identify open chromatin 557 

regions (peaks), we used macs2 to call open chromatin peaks using post-QC ATAC-seq data. 558 

We thus obtained count matrices of gene expression and ATAC peaks with corresponding cell 559 

barcodes. Gene expression counts were normalized using the NormalizeData function 560 

(Seurat98), scaled using the ScaleData function (Seurat), and batch corrected using Harmony99. 561 

We visualized the cells in two low-dimensional embeddings with UMAP by using 20 batch-562 

corrected principal components from these normalized gene expression matrices (Figure 1c). 563 

When original cell labels are provided by the authors, we used those labels to obtain broad cell 564 

type categories. When they are not available, we performed reference-query mapping by Seurat 565 

and PBMC reference object to define broad cell type labels. ATAC peak matrix was binarized to 566 

have 1 if a count is > 0 and 0 otherwise. 567 

 568 

SCENT method 569 

We defined cis-peaks as any peaks whose center is within the window +/-500 kb from a given 570 

gene body. We modeled the association between peak’s binarized accessibility and the target 571 

gene’s expression with Poisson distribution: 572 

𝐸! 	~	𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆!) 573 

𝑙𝑜𝑔(𝜆!) = 	𝛽" +	𝛽#$%&𝑋#$%& +	𝛽%(!)*𝑋%(!)* +	𝛽+,-.𝑋+,-. +	𝛽/%)01𝑋/%)01			(	𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	1) 574 

where 𝐸! 	is the observed expression count of 𝑖th gene, and 𝜆! is the expected count under 575 

Poisson distribution. 𝛽"#$% indicates the effect of chromatin accessibility of a peak on 𝑖 th gene 576 

expression. 𝛽%'!(), 𝛽*+,-, and 𝛽.$(/0 each represents the effect of covariates, percentage of 577 
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mitochondrial reads per cell as a mesure of cell quality, the number of UMIs in the cell, and the 578 

batch, respectively. To empirically assess error and significance of 𝛽"#$% for each peak-gene 579 

combination, we used bootstrapping procedures. In brief, we resampled cells with replacement 580 

in each bootstrapping procedure and re-estimated 𝛽′"#$%  within those resampled cells. We 581 

repeated this procedure N times, where we adaptively increased N (i.e., the total number of 582 

bootstrapping) from at least 100 and up to 50,000, depending on the significance of 𝛽"#$% (as 583 

described next) in each chunk of bootstrapping trials to reduce the computational burden. After 584 

N times of bootstrapping, we assessed the distribution of N 𝛽′"#$%s against null hypothesis 585 

(𝛽′"#$% = 0) to derive the significance of 𝛽"#$% (i.e., two-sided bootstrapping-based P value for 586 

this peak-gene combination by counting the instances where the statistics are equal or more 587 

extreme than the null hypothesis of 𝛽′"#$% = 0; Supplementary Figure 2). 588 

To avoid spurious associations from rare ATAC peak and rare gene expression, we QCed 589 

cis-peak-gene pairs we test so that both peak and gene should have been expressed in at least 590 

5% of the cells we analyze. We finally defined a set of significant peak-gene pairs for each cell 591 

type based on bootstrapping-based P values and FDR correction for multiple testing (Benjamini 592 

& Hochberg correction). 593 

When we tested the calibration of statistics from SCENT or other regression strategies 594 

(Supplementary Figure 1), we used null dataset where we randomly permuted cell labels in the 595 

ATAC-seq and ran the regression model we tested.  596 

 597 

ArchR peak2gene and Signac LinkPeaks method 598 
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We analyzed arthritis-tissue dataset with ArchR49 and Signac50 for single-cell multimodal data, 599 

which both have a function to define peak-gene linkages. In brief, ArchR takes multimodal data 600 

and creates low-overlapping aggregates of single cells based on k-nearest neighbor graph. Then 601 

it correlates peak accessibility with gene expression by Pearson correlation of aggregated and 602 

log2-normalized peak count and gene count. Signac computes the Pearson correlation 603 

coefficient r (corSparse function in R) for each gene and for each peak within 500kb of the gene 604 

TSS. Signac then compares the observed correlation coefficient with an expected correlation 605 

coefficient for each peak given the GC content, accessibility, and length of the peak. Signac 606 

defines P value for each gene-peak links from the z score based on this comparison. We ran 607 

both methods on arthritis-tissue dataset with default parameters. We output statistics for all 608 

peak-gene pairs we tested without any cut-off for correlation r or P values. We used FDR in the 609 

output from ArchR software, or computed FDR using P values in the output from Signac software 610 

by Benjamini & Hochberg correction. We defined significant peak-gene linkages as those with 611 

FDR < 0.10, and used varying correlation r to assess the precision and recall in the causal variant 612 

enrichment analysis (see later sections in Method). 613 

 614 

Replication across datasets 615 

Since we have the same immune-related cell types across different multimodal datasets, we 616 

evaluated the concordance of enhancer-gene map in a discovery dataset (arthritis-tissue 617 

dataset) when compared with other replication datasets including immune-related cell types 618 

(Public PBMC, NeurIPS, SHARE-seq and NEAT-seq datasets). To this end, we used most 619 
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stringent FDR threshold for defining an enhancer-gene map in arthritis-tissue dataset (FDR < 620 

1%). We then used more lenient threshold for defining an enhancer-gene map in replication 621 

datasets (FDR < 10%), which is a similar strategy used in assessing replication in GWAS. For 622 

each cell type and for each replication dataset, we took the intersection of enhancer-gene links 623 

defined as significant in both datasets. We assessed the directional concordance (i.e., 624 

concordance of the sign of 𝛽"#$% ) and the Pearson’s correlation r of 𝛽"#$%  between the 625 

discovery and the replication for these peak-gene pairs. For the largest replication dataset of 626 

Public PBMC, we performed the same analysis for enhancer-gene map from ArchR and Signac 627 

software. 628 

 629 

Conservation score analysis 630 

To compare the evolutional conservation across species between our annotated peaks and the 631 

other peaks, we used phastCons66 score. We downloaded the phastCons score for multiple 632 

alignments of 99 vertebrate genomes from 633 

https://hgdownload.cse.ucsc.edu/goldenpath/hg19/phastCons100way/. We lifted them over to 634 

GRCh38 by LiftOver software. We used SCENT results for arthritis-tissue, Public PBMC and 635 

NeurIPS for conservation score analysis as representative datasets with the largest numbers of 636 

cells. Because each gene should have variable functional importance and conservation, we 637 

assessed each gene separately. For each gene, we took (1) an annotation of interest for the 638 

gene and (2) all cis-non-coding regions (< 500kb from a gene), and computed the mean 639 

phastCons score of each of two sets of the peaks. As annotations to be tested, we used a. exonic 640 
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regions of the gene, b. SCENT peaks for the gene, and c. all ATAC peaks in cis-regions from 641 

the gene (< 500 kb). Then, we took the difference between two mean differences 642 

( Δ	phastCons	score ), and computed the mean differences across all the genes 643 

(mean	Δ	phastCons	score) as follows. 644 

mean	Δ	phastCons	score = 	
1

𝑛1#*#
8(𝑝ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠AAAAAAAAAAAAAAAA1,!*_$**)( − 𝑝ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠AAAAAAAAAAAAAA1,*)*4/)5!*1)
1#*#

 645 

By bootstrapping the genes, we calculated the 95% CI of the mean	 Δ phastCons score. 646 

If this metric is positive, that indicates that the annotated regions are more conserved than non-647 

coding regions.  648 

We also calculated similar Δ phastCons score by comparing the SCENT peaks with 649 

TSS-distance-matched non-SCENT peaks in each dataset.  650 

mean	Δ	phastCons	score651 

=	
1

𝑛1#*#
8(𝑝ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠AAAAAAAAAAAAAAAA1,"#$%_!*_6789: − 𝑝ℎ𝑎𝑠𝑡𝐶𝑜𝑛𝑠AAAAAAAAAAAAAA1,"#$%_*)*_6789:_'$(/0#5)
1#*#

 652 

By bootstrapping the genes, we again calculated the 95% CI of the mean	 Δ phastCons 653 

score. If this metric is positive, that indicates that SCENT peaks are more conserved than TSS-654 

distance-matched non-SCENT peaks.  655 

 656 

Construction of a set of TSS-matched non-SCENT peaks 657 

To assess the effect of TSS distance when comparing SCENT peaks with non-SCENT peaks, 658 

we matched each one of the SCENT peak-gene pairs to one non-SCENT peak-gene pair, where 659 

the peak had the most similar TSS distance to the same gene among all the ATAC peaks in cis 660 

in each of the dataset. We confirmed that the resulting TSS-distance-matched non-SCENT 661 
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peak-gene pairs demonstrated the similar distributions of TSS distance when compared with the 662 

SCENT peak-gene pairs (Supplementary Figure 6b). 663 

 664 

Gene’s constraint and the number of significant SCENT peaks for a gene 665 

We sought to investigate the relationship between the number of significant SCENT peaks for 666 

each gene and the gene’s evolutionary constraint. We used pLI and LOEUF as metrics for the 667 

gene’s loss-of-function intolerance within human population. We downloaded both pLI and 668 

LOEUF scores from gnomAD browser (https://gnomad.broadinstitute.org/downloads). We 669 

inverse-normal transformed the raw number of significant SCENT peaks for each gene, since 670 

the raw number of significant SCENT peaks for each gene is skewed toward zero 671 

(Supplementary Figure 5a). We performed linear regression between the normalized number 672 

of significant SCENT peaks and pLI or LOEUF score with accounting for gene length, which 673 

could be potential confounding factor for pLI and LOEUF67,68. 674 

 675 

Validation with CRISPR-Flow FISH results 676 

To validate our SCENT enhancer-gene links, we used published CRISPR-Flow FISH 677 

experiments as potential ground-truth positive enhancer element-gene links and negative 678 

enhancer element-gene links. We downloaded the experimental results from the 679 

Supplementary Table 5 of original publication39. We used “Perturbation Target” as candidate 680 

enhancer elements. We defined 283 positive enhancer element-gene links when they are “TRUE” 681 

for “Regulated” column (i.e., the element-gene pair is significant and the effect size is negative) 682 
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and 5,472 negative enhancer element-gene links when they are “FALSE” for “Regulated” column. 683 

We lifted them over to GRCh38 and obtained final sets of 278 positive links and 5,470 negative 684 

links.  685 

We used two most powered datasets, arthritis-tissue and Public PBMC datasets. For 686 

each dataset, we used “bedtools intersect” to categorize SCENT peak-gene links and non-687 

SCENT ATAC peak-gene pairs into either CRISPR-positive or CRISPR-negative groups, based 688 

on whether these peaks overlapped with positive or negative CRISPR-Flow FISH links for the 689 

same gene (Supplementary Table 3). We finally performed two-sided Fisher’s exact test to 690 

assess the enrichment of CRISPR-positive links within SCENT peak-gene links in each dataset. 691 

 692 

Cell-type-specific SCENT tracks and aggregated SCENT tracks 693 

For cell types with more than 5,000 cells across datasets, we concatenated SCENT peak-gene 694 

linkages across all the datasets to create cell-type-specific SCENT tracks. We collected a set of 695 

SCENT peak-gene linkages for the same cell type and used “bedtools merge” function (for each 696 

gene) to obtain a union of SCENT peaks for each gene. Similarly, we created aggregated 697 

SCENT tracks across all the cell types and all datasets. We collected all sets of SCENT peak-698 

gene linkages and used “bedtools merge” function (for each gene) to obtain a union of SCENT 699 

peaks for each gene across all the cell types and all datasets. 700 

 701 

Causal variant enrichment analysis using eQTLs 702 



Sakaue et al 

 38 

We defined a causal enrichment for eQTL within SCENT enhancers and other annotations by 703 

using statistically fine-mapped variant-gene combinations from GTEx. We used publicly 704 

available statistics analyzed by CAVIAR software20, and selected variants with PIP > 0.2 as 705 

putatively causal (fine-mapped) variants for primary analyses. For the primary enrichment 706 

analysis, we aggregated fine-mapped variants from all the 49 tissues. For cell-type-specific 707 

SCENT enrichment analysis (Supplementary Figure 9d), we used fine-mapped variants from 708 

each tissue separately. We intersected these putatively causal variants with our annotation 709 

(SCENT peaks, ArchR peaks or Signac peaks). We then retained any variants which the linking 710 

method (SCENT, ArchR, Signac, and Cicero) connected to the same gene as GTEx phenotype 711 

gene.  712 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡1#*#_! =

#	𝑐𝑎𝑢𝑠𝑎𝑙_𝑣𝑎𝑟_𝑖𝑛_𝑎𝑛𝑛𝑜𝑡1#*#_!
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 715 

For each gene 𝑖 (expression phenotype), we divided the number of putatively causal variants 716 

within an annotation normalized by the number of common variants within an annotation by the 717 

number of all causal variants for gene 𝑖 normalized by the number of all common variants within 718 

cis-region from for gene 𝑖. To calculate common variants within annotation or within locus, we 719 

used 1000 Genomes Project genotype. We selected any variants with minor allele frequency > 720 

1% in European population as a set of common variants to be intersected with each annotation. 721 

To derive 𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 score, we took the mean across all the genes.   722 
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To have further insights into precision and recall and compare against ArchR peak2gene 723 

and Signac LinkPeaks functions, we varied the threshold for defining a set of significant peak-724 

gene linkages in each software (i.e., FDR in SCENT {0.50, 0.30, 0.20, 0.10, 0.05, 0.02}, 725 

Peason’s correlation r {any, 0, 0.1, 0.3, 0.5, 0.7} in ArchR, and correlation socre {any, 0, 0.05, 726 

0.1, 0.15} in Signac). We used the same myeloid cells in the arthritis-tissue dataset and a set of 727 

eQTL fine-mapped variants in GTEx blood tissue for this benchmark across all three methods. 728 

We then used each set of peak-gene linkages to re-calculate causal variant enrichment 729 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 score (Figure 3b). 730 

We also assessed the impact of PIP threshold in defining a set of statistically fine-mapped 731 

variants on the causal variant enrichment analysis. To do so, we re-defined the set of putative 732 

causal variants with more stringent PIP thresholds (PIP > 0.5 and PIP > 0.7), and re-computed 733 

the calculate causal variant enrichment 𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 score. 734 

 735 

Cicero co-accessibility analyses 736 

To benchmark our SCENT using single-cell multimodal ATAC/RNA-seq against a published 737 

method using single-cell unimodal ATAC-seq alone, we ran Cicero51 for the same dataset of 738 

myeloid cells in the arthritis-tissue dataset as benchmarked in the SCENT, ArchR and Signac. 739 

We only used the peak by cell matrix from the ATAC-seq side of the arthritis-tissue dataset and 740 

ran “run_cicero” function with default parameters to obtain Cicero co-accessibility scores. We 741 

only retained peak-peak co-accessibility as potential enhancer-gene connection when one of the 742 

co-accessible peaks is a promoter of a gene (defined by the peak’s distance to the TSS < 1kb); 743 



Sakaue et al 

 40 

we treated them as putative enhancer-gene (promoter) linkage. We used the co-accessibility 744 

scores {any, 0, 0.1, 0.3, 0.4, 0.5, 0.7} for assessing the recall-precision tradeoffs as described in 745 

the previous section. 746 

 747 

Peak-gene linkage using Poisson regression alone 748 

As other benchmarking for assessing the effect of the components of SCENT on the causal 749 

variant enrichment, we also created peak-gene linkage using the Poisson regression but without 750 

non-parametric bootstrapping for the same dataset of myeloid cells in the arthritis-tissue dataset. 751 

We used the nominal P values for the term 𝑋#$%& from the Poisson regression (𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛	(1)) to 752 

perform FDR correction to obtain significant peak-gene pairs using the Poisson regression alone. We 753 

then used the FDR thresholds {0.30, 0.20, 0.10, 0.05, 0.02, 0.01} for assessing the recall-precision 754 

tradeoffs as described in the previous section. 755 

 756 

GWAS fine-mapping results 757 

We used GWAS fine-mapping results in FinnGen release 671 upon registration and publicly 758 

available GWAS fine-mapping results in UK Biobank72 (https://www.finucanelab.org/data). For 759 

FinnGen traits, we downloaded all the fine-mapping results by SuSIE software22 and 760 

systematically selected any traits with case count > 1,000. We then selected non-coding fine-761 

mapped loci which did not include any non-synonymous or splicing variants with PIP > 0.5. We 762 

thus analyzed 1,046 traits and 5,753 loci in total after QC. For UK Biobank, we analyzed the 763 

fine-mapping results by SuSIE software for all 94 traits including binary and quantitative traits. 764 
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Since the genomic coordinates for the UK Biobank fine-mapping results were hg19, we lifted 765 

them over to GRCh38 by using LiftOVer software. We again selected non-coding fine-mapped 766 

loci which did not include any non-synonymous or splicing variants with PIP > 0.5. We thus 767 

analyzed 7,274 loci in total after QC. 768 

We analyzed three additional autoimmune GWAS fine-mapping results for RA26, T1D80, 769 

and IBD29, given our special interest in immune-mediated traits. We similarly selected non-770 

coding fine-mapped loci which did not include any non-synonymous or splicing variants with PIP 771 

> 0.5, and lifted the results over to GRCh38 by using LiftOVer software. We defined 117 loci for 772 

RA, 77 loci for T1D and 86 loci for IBD. 773 

 774 

Causal variant enrichment analysis using GWASs 775 

We defined a causal enrichment for GWAS within SCENT enhancers and other annotations by 776 

using statistically fine-mapped variants from FinnGen71 and UK Biobank72 which we described 777 

in the previous section. We selected variants with PIP > 0.2 as putatively causal variants for 778 

primary analyses. 779 
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∑𝑐𝑜𝑚𝑚𝑜𝑛_𝑣𝑎𝑟_𝑖𝑛_𝑎𝑛𝑛𝑜𝑡(=$!(_!
N
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 782 

For each trait 𝑖, we divided the number of putatively causal variants within an annotation (across 783 

all loci for trait 𝑖) normalized by the number of common variants within an annotation by the 784 
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number of all causal variants for trait 𝑖 normalized by the number of all common variants within 785 

all significant loci analyzed for the trait 𝑖. To calculate common variants within annotation or 786 

within locus, we again used 1000 Genomes Project variants with minor allele frequency > 1% in 787 

European population. To derive 𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 score, we took the mean across all the 788 

traits.   789 

For each trait 𝑖 and putative causal gene pair, we calculated the distance between the 790 

TSS of the gene and the most likely causal variant which had the largest PIP when multiple 791 

variants were nominated for a single gene by SCENT (Supplementary Figure 12a). For each 792 

putative causal gene for the trait 𝑖, we also sorted all the genes based on the distance between 793 

the gene’s TSS and the most likely causal variant (from the smallest to the largest). We then 794 

obtained the rank of the putative causal gene from SCENT among the sorted gene list to see 795 

how often the SCENT gene is the closest gene from the most likely causal variant. 796 

 797 

Comparison with bulk-tissue-based regulatory annotation and enhancer-gene maps 798 

We downloaded per-group EpiMap enhancer-gene links from 799 

https://personal.broadinstitute.org/cboix/epimap/links/pergroup/. We lifted the genomic 800 

coordinates to GRCh38 by using LiftOver software. When we assessed aggregated EpiMap 801 

enhancer-gene links across all the 31 tissue-groups, we used “bedtools merge” function for each 802 

gene to create a union of all enhancer-gene links (Figure 3c and d). For tissue-specific 803 

enrichment analyses, we analyzed the 31 group-specific tracks separately (Supplementary 804 

Figure 10a and 10b). To benchmark the precision and recall, we used EpiMap correlation scores 805 
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to define variable sets of enhancer-gene links from EpiMap based on the threshold of EpiMap 806 

correlation score.  807 

We downloaded ABC predictions in 131 cell types and tissues from 808 

ftp://ftp.broadinstitute.org/outgoing/lincRNA/ABC/AllPredictions.AvgHiC.ABC0.015.minus150.F809 

orABCPaperV3.txt.gz. We lifted the genomic coordinates to GRCh38 by using LiftOver software. 810 

When we assessed aggregated ABC enhancer-gene links across all the groups, we used 811 

“bedtools merge” function for each gene to create a union of all enhancer-gene links across 131 812 

cell types (Figure 3c and d). For cell-type-specific analyses, we aggregated cell lines or cell 813 

types to be corresponding with our cell types and analyzed each of these tracks separately (B 814 

cell, T cell, Myeloid cells, and fibroblasts; Supplementary Figure 10a and 10b). To benchmark 815 

the precision and recall, we used ABC scores to define variable sets of enhancer-gene links 816 

from ABC model based on the threshold of ABC score. 817 

To assess precision and recall and compare against bulk-tissue based methods (i.e., 818 

EpiMap and ABC model), we used sets of significant peak-gene linkages in each method with 819 

varying thresholds (i.e., FDR in SCENT {0.5, 0.3, 0.2, 0.1, 0.05, 0.02}, EpiMap correlation score 820 

{0, 0.4, 0.8, 0.9} in EpiMap, and ABC score {0, 0.05, 0.1, 0.2} for ABC model). We then used 821 

each set of peak-gene linkages to re-calculate causal variant enrichment for GWAS (Figure 3d).  822 

We also assessed the impact of PIP threshold in defining a set of statistically fine-mapped 823 

variants on the causal variant enrichment analysis. To do so, we re-defined the set of putative 824 

causal variants with more stringent PIP thresholds (PIP > 0.5 and PIP > 0.7), and re-computed 825 

the calculate causal variant enrichment 𝑂𝑣𝑒𝑟𝑎𝑙𝑙_𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡 score. 826 
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 827 

caQTL analysis using scATAC-seq samples with genotype 828 

We generated independent arthritis-tissue dataset with single-cell unimodal ATAC-seq data with 829 

genotype (n = 17, manuscript in preparation) to define chromatin accessibility QTLs (caQTLs). 830 

We used two methods, binomial test and RASQUAL. Briefly, we genotyped donors by using 831 

Illumina Multi-Ethnic Genotyping Array. We performed quality control of genotype by sample call 832 

rate > 0.99, variant call rate > 0.99, minor allele frequency > 0.01, and PHWE > 1.0×10-6. We 833 

performed haplotype phasing with SHAPEIT2 software100 and performed whole-genome 834 

imputation by using minimac3 software101 with a reference panel of 1000 Genomes Project 835 

phase 3102. After imputation, we selected variants with imputation Rsq > 0.7 as post-imputation 836 

QC. We next created a merged bam file of ATAC-seq for each donor and each cell type by 837 

aggregating all the reads. Using the imputed genotype for each donor and aggregated bam files 838 

for each donor and cell type, we applied WASP103 to correct any bias in read mapping toward 839 

reference alleles to accurately quantify allelic imbalance. We thus created a bias-corrected bam 840 

files for each donor and cell type.  841 

For binomial tests, we ran ASEReadCounter module in GATK software104 using the bias-842 

corrected bam files as input to quantify allelic imbalance in heterozygous sites with read count 843 

> 4 within ATAC peak counts. We first performed one-sided binomial tests in each donor, and 844 

meta-analyzed the statistics across donors by Fisher’s method if multiple donors shared the 845 

same heterozygous site. For RASQUAL, we created a VCF file containing both genotype dosage 846 

and allelic imbalance from ASEReadCounter. We quantified the read coverage for each peak 847 
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and for each donor by “bedtools coverage” function. We created a peak by donor matrix with 848 

read coverage. We QCed samples with log(total mapped fragments) fewer than mean – 2SD 849 

across samples in each cell type. We QCed peaks so that at least two individuals have any 850 

fragments for the peak. We then ran RASQUAL software with the inter-individual differences in 851 

ATAC peak counts (in a peak by donor matrix) and intra-individual allelic imbalance (in VCF), 852 

with accounting for chromatin accessibility PCs (the first N components whose explained 853 

variances are greater than those from permutation result), 3 genotype PCs, sample site and sex 854 

as covariates. RASQUAL output chi-squared statistics and P values. We computed FDR from 855 

these raw P values by Benjamini & Hochberg correction on local multiple test burden (i.e., the 856 

number of cis-SNPs in the region). To correct for genome-wide multiple testing, we ran the 857 

RASQUAL with random permutation, where the relationship between sample labels and the 858 

count matrix was broken. Thus, we derived q values for each candidate caQTL. 859 

We finally intersected these peaks with significant caQTL effect in each significance 860 

threshold with SCENT peaks and assessed causal variants enrichment within these peaks for 861 

GWAS as explained in the previous sections. 862 

 863 

ClinVar analysis 864 

We downloaded the latest clinically reported variant list registered at ClinVar from 865 

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz. We then screened the 866 

variants to exclude (1) exonic variants and (2) variants categorized as “benign”. We defined the 867 
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ClinVar variant density as the number of the non-coding and non-benign variants within each 868 

annotation x 1,000 divided by the total length (bp) of each annotation. 869 

 870 

Somatic mutation analysis 871 

We used a list of somatic mutation hotspot in Supplementary Table 2-20 of the original 872 

publication95. We lifted the genomic coordinates to GRCh38 by using LifOver software. We then 873 

intersected the non-coding somatic mutation hotspots with our cell-type-specific SCENT peaks. 874 

We compared the intersected elements’ target genes by SCENT with the “Annotate_Gene” 875 

column from the original publication. 876 

 877 

Downsampling experiments 878 

To evaluate the effect of cell numbers on the statistical power in detecting significant SCENT 879 

enhancer-gene linkages, we performed downsampling experiments in fibroblast (the most 880 

abundant cell type in arthritis-tissue dataset, ncell = 9,905). We randomly samples cells (ncell = 881 

500, 1000, 2500, 5000, and 7500). We then applied SCENT to each of the subset groups of 882 

cells and defined significant peak-gene links with FDR < 10%. We counted the number of 883 

significant peak-gene links in each of the subset groups of cells, and annotated peaks based on 884 

the distance to the TSS to the target gene. 885 

 886 
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