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Abstract  
Human genetic studies of smoking behavior have been so far largely limited to common variations. 
Studying rare coding variants has potential to identify new drug targets and refine our understanding of 
the mechanisms of known targets. We performed an exome-wide association study (ExWAS) of smoking 
phenotypes in up to 749,459 individuals across multiple ancestries and discovered a protective association 
signal in CHRNB2 that encodes the β2 subunit of α4β2 nicotine acetylcholine receptor (nAChR). Rare 
predicted loss-of-function (pLOF) and likely deleterious missense variants in CHRNB2 in aggregate were 
associated with a 35% decreased odds for smoking more than 10 cigarettes per day (OR=0.65, CI=0.56-
0.76, P=1.9e-8). An independent common variant association in the protective direction (rs2072659; 
OR=0.96; CI=0.94-0.98; P=5.3e-6) was also evident, suggesting an allelic series. The protective effects of 
both rare and common variants were detectable to some extent on phenotypes downstream of smoking 
including lung function, emphysema, chronic obstructive pulmonary disease (COPD) and lung cancer. 
α4β2 is the predominant nAChR in human brain and is one of the targets of varenicline, a partial nAChR 
agonist/antagonist used to aid smoking cessation. Our findings in humans align with decades-old 
experimental observations in mice that β2 loss abolishes nicotine mediated neuronal responses and 
attenuates nicotine self-administration. Our genetic discovery will inspire future drug designs targeting 
CHRNB2 in the brain for the treatment of nicotine addiction.  
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Main 
Tobacco smoking is one of the greatest hazards to human health globally, accounting for over 200 million 
disability adjusted life years (DALYs) and 7 million deaths each year1. The currently available first line 
smoking cessation drugs—varenicline and bupropion—were introduced more than two decades ago, even 
before the human genome project was completed and the genomic revolution started2–4. Despite their 
proven efficacy and wide usage5, smoking remains a global health hazard, warranting advancements in 
smoking related drug discovery efforts that make use of recent innovations in therapeutic design and 
delivery6.  
 
Large scale rare variant association studies have the potential to advance drug discovery7–10. Drug designs 
inspired by naturally occurring genetic variants that protect humans against diseases have been successful 
in the past, for example, PCSK9 inhibitors for the treatment of hypercholesterolemia11–13. Smoking 
behavior is strongly influenced by genetics, with twin studies estimating its heritability up to 45%14. Both 
common and rare variants contribute to this high heritability. However, human genetic studies of smoking 
behavior have so far focused mainly on common variants (those observed in more than 1% of the 
population)15–17. Such genome-wide association studies (GWAS) were successful in identifying genomic 
regions associated with smoking. In contrast to GWAS, only a very few rare variant studies of smoking 
exist to date18,19. Although such studies have demonstrated that rare variants contribute substantially to 
smoking heritability, no genes have been confidently linked to smoking based on rare variant associations 
so far18,19.  
 
Unlike common variant associations, rare coding variant associations often pinpoint causal genes20, 
inform effect direction20,21, guide follow up experiments22 and provide an estimate of the therapeutic 
efficacy11,23 and safety24 of targeting a gene or its product. Even for known drug targets, discovering 
human genetic evidence is valuable as it can improve our understanding of the drug mechanisms and help 
develop new therapeutic modalities to treat diseases25. Hence, with the goal of discovering drug targets 
for smoking, we undertook a large-scale, exome-wide association study (ExWAS) of smoking behavior 
involving up to 749,459 individuals. We studied the associations of rare coding variants in the human 
genome, captured via exome sequencing, with six major smoking phenotypes and a range of secondary 
phenotypes including diseases in which smoking has been well established as a major risk factor. We also 
selectively explored the rare variant associations with genes whose associations with smoking via 
common variants has been realized since the candidate gene era26, well replicated by GWAS15–17,27 and 
the mechanisms through which they influence smoking behavior are understood28,29. Since we had 
information on common variants genome-wide for the study participants, we also conducted ancestry-
specific and cross-ancestry GWAS meta-analyses for the six smoking phenotypes to validate known loci 
and to identify novel loci. Finally, we studied the combined influences of both common and rare variants 
on smoking behavior. 

 

Exome-wide significant associations 
The overall study design is shown in Supplementary Fig. 1. We performed ExWAS meta-analysis for six 
primary phenotypes—ever smoker, heavy smoker, former smoker, nicotine dependence, cigarettes 
smoked per day (cig-per-day), and age started smoking—in sample sizes ranging from 112,670 (cig-per-

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.10.27.22281470doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.27.22281470


day) to 749,459 (ever smoker). The study cohorts and phenotype definitions are described in Methods, 
and the cohort-specific sample sizes and participant demographics are summarized in Supplementary 
Tables 1 and 2. We focused on coding variants of two functional categories: missense variants and 
predicted loss-of-function (pLOF) variants (frameshift, splice donor, splice acceptor, stop lost, and stop 
gain) with minor allele frequency (MAF) <0.01. In addition to variant-level associations, we also studied 
gene-level associations, using burden tests in which either pLOF variants only, or pLOF and likely 
deleterious missense variants (i.e. predicted to be deleterious by five different algorithms) in a gene are 
aggregated to create burden masks (or variant sets), which are then tested for association with the 
phenotypes (Methods)20. The burden masks were created using variants at five minor allele frequency 
(MAF) thresholds (<0.01, <0.001, <0.0001, <0.00001 and singletons) (Supplementary Table 3). 
Altogether, we performed 8,417,987 association tests across six smoking phenotypes. Applying a false 
detection rate (FDR) of 1% (corresponding P-value=4.5e-8), we identified 35 significant associations 
implicating three genes: ASXL1, DNMT3A, and CHRNB2 (Fig. 1a; Supplementary Fig. 2 and 
Supplementary Table 4). Although these results were based on analyses where individuals of all 
ancestries were pooled together (ALL), we found that the results were highly similar to those from a 
cross-ancestry meta-analysis or a meta-analysis involving only individuals of European ancestry (EUR), 
suggesting that the results were not influenced by population stratification (Supplementary Fig. 3) 
 

Associations of rare and common variants in CHRNB2  
The primary phenotype that discovered the CHRNB2 association was heavy-smoker, where cases were 
individuals who smoked at least 10 cigarettes per day either currently or formerly (n=110,494), and 
controls were individuals who have never smoked in their lifetime (n =374,842). The strongest 
association was observed for pLOF-plus-missense burden (an aggregate of pLOF and likely deleterious 
missense variants in CHRNB2 with MAF< 0.001) where the odds of being a heavy smoker were 
significantly lower in carriers than non-carriers (OR=0.65; CI=0.56-0.76; P=1.9e-8). The rare variant 
burden association was independent of any nearby common variant associations with P<0.001 
(Supplementary Fig 4; Methods), and the effect estimates were consistently in the protective direction 
across the three cohorts that contributed to the meta-analysis (Fig. 1b). The protective association was 
also seen for ever-smoker (where individuals who ever smoked regularly in their lifetime were defined as 
cases, n=345,805) but was less significant compared to heavy smoker, despite a relatively larger sample 
size, highlighting the importance of phenotype specificity in gene discovery (Supplementary Fig. 5). 
However, when considering pLOF-only burden (an aggregate of pLOF variants in CHRNB2 with MAF 
<0.001)—which provides the strongest evidence on the direction of the association—the association 
reached at least a nominal level of significance (P<0.05) only for ever-smoker but not for heavy-smoker, 
likely because ever-smoker captured more pLOF carriers (247 carriers) than heavy-smoker (174 carriers), 
suggesting that a larger sample size at the expense of phenotype specificity is also valuable, particularly at 
the rarer end of the allele frequency spectrum.  
 
We next studied the association of CHRNB2 pLOF-plus-missense burden with a range of secondary 
smoking phenotypes, mainly derived from the UK Biobank (UKB)30 participants’ response to lifestyle 
questionnaire related to smoking (Methods). We also studied the burden associations with a curated list of 
binary and quantitative health phenotypes related to smoking. The overall association pattern was in line 
with our main finding that rare pLOF and likely deleterious missense variants in CHRNB2 in aggregate 
confer protection against smoking addiction (Supplementary Fig. 6 and Supplementary Table 5). To 
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highlight a few, compared to non-carriers, burden carriers (i.e. carriers of any of the variants included in 
the pLOF-plus-missense burden mask) showed a decreased risk for emphysema (OR=0.45; CI=0.28-0.71; 
P=6.9e-4), had better lung function (forced expiratory volume (FEV1): beta=0.05 SD ; CI=0.01-0.09; 
P=0.01), smoked fewer cigarettes (association seen only in current smokers; beta=-0.23 SD [~2.3 
cigarettes]; CI=-0.45-0; P=0.04), more likely to reduce smoking as a health precaution (OR=2.6; CI=1.0-
6.7; P=0.04), more likely to find it fairly easy to not smoke for one day (OR=2.0; CI=1.2-3.4; P=0.007), 
more likely to wait for 30 to 60 min before smoking the first morning cigarette (OR=1.7; CI=1.0-2.7; 
P=0.03) and more likely to quit smoking for at least 6 months (OR=1.5; CI=1.1-1.9; P=0.006). 
 
No individual pLOF or missense variants in CHRNB2 surpassed the study-wide significance threshold, 
suggesting that our sample sizes were still underpowered to capture single-variant associations. To 
examine the relative contribution of individual rare variants to the pLOF-plus-missense burden 
association, we performed gene burden tests iteratively, leaving one variant out of the burden mask each 
time (leave-one-variant-out (LOVO) analysis31). Variants that contribute substantially to the burden 
association will cause a large drop in the statistical significance when left out. Therefore, such an 
approach can isolate variants that are mainly driving the association and can help evaluate if a burden 
association is driven by multiple variants or just a single variant; this is important as in the latter, the 
inferred effect direction cannot be attributed to all the variants that were included in the burden mask. The 
LOVO analysis revealed one CHRNB2 missense variant (rs202079239, Arg460Gly) that contributed the 
most to the pLOF plus missense burden association as reflected by a substantial drop in the statistical 
significance and burden mask carrier frequency when that variant was left out (Fig 2a. and Supplementary 
Table 6). Importantly, even after excluding Arg460Gly, the burden association was still nominally 
significant with a protective odds ratio (OR=0.57; CI=0.44-0.73; P=1e-5), suggesting that other variants 
in the burden mask as well contributed to the association (Supplementary Table 6). And the Arg460Gly 
variant by itself showed a moderately significant protective association with the heavy smoker phenotype 
(OR=0.58; CI=0.45-0.74; P=2e-5). We found that this variant has been drifted to higher frequency in 
Finns (gnomAD32 MAF=0.0018) compared to non-Finnish Europeans (gnomAD MAF=0.00038; Fig. 2b). 
Statistical power increases with MAF hence we expected that the protective association of Arg460Gly 
with smoking or related phenotypes might be detectable in Finngen33, a population-based cohort in 
Finland, despite its smaller samples size compared to UKB. A selective exploration of Arg460Gly with 
smoking, substance use, and smoking-related lung disease phenotypes in the publicly available data from 
the FinnGen research project (freeze v7) revealed a significant enrichment for protective associations 
(hypergeometric test for enrichment P=0.03; Figs. 2c and d and Supplementary Table 7). At least two 
phenotypes showed nominally significant (P<0.05) protective associations—substance use disorder 
(excluding alcohol) (OR=0.39; CI=0.21-0.73; P=0.003) and chronic obstructive pulmonary disease 
(COPD) (OR=0.69; CI=0.49-0.96; P=0.03). Therefore, by exploiting the natural phenomenon of genetic 
drift in an isolated population, we were able to validate the protective association of CHRNB2 with 
smoking-related phenotypes in an independent cohort. 
 
Common-variant associations by themselves often do not pinpoint the causal gene(s); when they do, they 
mostly bring limited insights on the druggability of the gene. However, when interpreted along with rare 
coding variant associations, they can offer valuable insights.  To this end, we searched for any known 
common variant GWAS signals near CHRNB2 that were reported previously for smoking related traits. 
Liu et al15 has reported a GWAS association with cig-per-day near CHRNB2 where the fine-mapped 95% 
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credible set contained a single variant, rs2072659, located within the 3’ untranslated region (UTR) of 
CHRNB2. This variant showed significant (P<0.05) associations in our dataset with multiple smoking 
phenotypes, all in the protective direction: cig-per-day (Beta=-0.04; CI=-0.02- -0.05; P=7.5e-8), heavy-
smoker (OR=0.96; CI=0.94-0.98; P=5.3e-6), ever-smoker (OR=0.98; CI=0.97-0.99; P=0.001) and 
nicotine-dependence (0.97; CI=0.95-0.99; P=0.003) (Supplementary Fig. 7a and b). In a phenome-wide 
association study (PheWAS) of this variant across 7,469 phenotypes in two of the largest cohorts (UKB 
and GHS), the topmost association was with smoking (Supplementary Fig. 7c) In addition, seven out of 
the top ten associations were with smoking-related phenotypes, all in the protective direction. The 
findings indicate a convergence between common-variant association with small effect size (OR=0.96) 
and rare-variant association with large effect size (OR=0.64) hinting a dose-response relationship between 
natural genetic perturbations of CHRNB2 and smoking behaviors.  
 

Associations of CHIP mutations in ASXL1 and DNMT3A 
Among the three exome-wide significant genes, ASXL1 and DNMT3A showed strongest associations with 
most of the smoking phenotypes, including UKB lifestyle questionnaire derived phenotypes and smoking 
related diseases (Fig 1a and b; Supplementary Fig. 8 and 9; Supplementary Tables 4 and 5). However, 
both ASXL1 and DNMT3A are known to accumulate somatic mutations in the circulating blood cells with 
increasing age in the general population, the phenomenon described as clonal hematopoiesis of 
indeterminate potential (CHIP)34. When the DNA source for exome sequencing is peripheral blood, 
standard exome variant calling workflows capture CHIP mutations along with germline variants, and 
many studies have exploited this fact to study CHIP mutations using exome sequencing data generated by 
many large-scale sequencing projects35,36. We have previously reported a comprehensive genetic analysis 
of CHIP where we systematically called somatic variants in participants of the UKB and GHS cohorts and 
studied their germline associations36. It is well known that smoking is strongly associated with CHIP37,38, 
which we have also reported previously36. Moreover, the strong association of ASXL1 CHIP mutations 
with smoking has emerged in an analysis of UKB’s initial release of ~50k exomes38.   Given this 
background, we were not surprised to learn that the strong associations of ASXL1 and DNMT3A with 
smoking were fully driven by CHIP mutations.  When the associations of ASXL1 and DNMT3A with 
smoking phenotypes were analyzed using gene burden masks that excluded CHIP mutations, we found 
associations for neither of the genes with any of the six smoking phenotypes (Fig. 3 and Supplementary 
Table 8).  We further tested the associations of all the eight most recurrently mutated CHIP genes36 
(DNMT3A, TET2, ASXL1, PPM1D, TP53, SRSF2, JAK2, SF3B1) with our six smoking phenotypes in the 
GHS and UKB, using burden masks created using only CHIP mutations (Supplementary Fig. 10a and 
Supplementary Table 9). In line with our earlier findings, the strongest associations were seen for ASXL1 
and DNMT3A. In addition, we also observed a significant association (P<0.003 based on 1% FDR across 
eight genes) for PPM1D pLOF-only burden with heavy smoker (OR=1.8; CI=1.4-2.3; P=5.5e-7). 
Notably, certain highly recurrent CHIP driver genes such as TET2 did not show significant associations 
with any of the six smoking phenotypes. This suggests that smoking influences the evolution of CHIP 
mutations through mechanisms that affect not all but only a specific set of genes (Supplementary Fig. 
10b).  As was previously proposed38, it is possible that the chronic inflammation associated with smoking 
offers a selective advantage to certain CHIP mutation clones to expand, though the precise mechanisms 
through which smoking influences CHIP mutations are yet to be understood.  Also, our findings echo the 
caution previously raised by many in relation to using exome sequencing data based on blood sample to 
establish genetic diagnosis for Mendelian diseases in adults39,40. In fact, the strongest individual CHIP 
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mutation associated with smoking in our analysis was a frame-shift mutation, rs750318549 (p.Gly646fs), 
in ASXL1 (nicotine dependence: OR=2.41; CI=1.9-3.0; P=7.6e-15), which is pathogenic when it occurs in 
germline (mostly as de novo), causing a neurodevelopmental disorder called Bohring-Opitz syndrome 
(Supplementary Table 4)39. We found 371 heterozygous carriers in the UKB, who were on average 6.3 
yrs. (SE=0.4; P=3.5e-51) older than the non-carriers (average age in carriers=62.9±5.56; non-
carriers=56.5±8.1). Observing 371 carriers of a pathogenic variant in a cohort of middle to old aged 
healthy volunteers strongly points to the somatic origin of this variant. 
 

Association of rare variants in classic smoking genes 
Two of the strongest genetic risk loci for smoking that were identified early in the GWAS timeline were 
locus 15q25.1 containing three nAChR genes (CHRNA5, CHRNA3 and CHRNB4)28,41 and 19q13.2 
containing a cluster of cytochrome P450 enzyme coding genes (CYP2A, CYP2B and CYP2F subfamilies), 
both strongly influence number of cigarettes smoked per day27,42. Although none of the genes were 
exome-wide significant in our analysis, given their strong biological links to smoking, we explored these 
loci for evidence of any subthreshold rare-variant associations. At the cytochrome P450 locus, we found 
little evidence for rare variant associations beyond the known common variant signals, even at the 
subthreshold level of significance (Supplementary Fig. 11 and Supplementary Table 10). But we observed 
nominal rare variant gene burden associations with cig-per-day at 15q25.1 implicating all three 
nAChRs—CHRNA5, CHRNA3, and CHRNB4—with effect sizes larger than those observed for common 
variants. Notably, the largest effect size was observed for the CHRNB4 pLOF-only rare variant burden 
where the 13 pLOF carriers smoked on average ~6.5 cigarettes per day more compared to non-carriers 
(Beta=0.65 SD; CI=0.14-1.15; P=0.01). This effect size is ~3 times larger than the largest effect size 
observed for CHRNA5 and CHRNA3 pLOF-only rare variant burden and ~7 times larger than rs16969968 
(~1 cigarette more; Beta=0.09; CI=0.09-0.10; P=3.8e-125), a well characterized common risk variant at 
this locus (Supplementary Fig. 11 and Supplementary Table 10). Power calculations based on observed 
effect sizes suggest that these associations will likely emerge as genome-wide significant when the 
sample size for ExWAS of cig-per-day reaches between 300k to 500k (Supplementary Fig. 12). 
 

Cross-ancestry and ancestry-specific associations of common variants 
We first performed GWAS for the six primary smoking phenotypes in individuals of European ancestries 
(EUR) and used these results to analyze SNP based heritability (SNP-h2) and genetic correlations using 
an EUR ancestry based LD reference panel43. Our SNP-h2 estimates were comparable to the estimates 
reported by GWAS and Sequencing Consortium of Alcohol and Nicotine use (GSCAN)  in Liu et al15 
(Supplementary Fig. 13a; Supplementary Table 11). Also, our GWAS results showed high genetic 
correlations with the GWAS results from the GSCAN consortium15 (excluding UKB) (Supplementary Fig 
13b; Supplementary Table 12). The high concordance in the results between our analysis and an analysis 
in an independent dataset15 (GSCAN cohorts excluding UKB) signifies high reproducibility of the 
polygenic signals of the studied smoking phenotypes. Also, we observed moderate to large genetic 
correlations across our six phenotypes suggesting that the genetic architecture is shared substantially 
across the phenotypes (Supplementary Fig. 13c; Supplementary Table 13).  
 
Next, we performed cross-ancestry GWAS meta-analyses for the six primary smoking phenotypes. 
Across all the phenotypes, in total, we identified 328 linkage disequilibrium (LD) independent loci, of 
which a majority (94%) are known. This was expected given a GWAS with much larger sample size has 
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been published before15 (Supplementary Figs 14a-f; Supplementary Table 15). Among the novel loci, an 
X chromosome locus we identified for nicotine dependence deserves a special mention as it implicates a 
nicotinic receptor-related gene. This locus Xq22.1 harbors TMEM35A (the closest gene to the index 
variant), also referred to as NACHO (novel acetylcholine receptor chaperone); this gene encodes a 
molecular chaperone protein that is involved in the assembly of α7, α6β2 and α6β2β3 nAChRs44. Mice 
lacking TMEM35A develop hyperalgesia44 and we observed that the index variant at this locus is also 
associated with increased intake of oxycodone, an analgesic medication, in the UKB (OR=1.58; 
P=0.0001; data from opentargets.org),45 suggesting that this locus might influence both smoking and pain 
phenotypes in humans.   
 
After European ancestries, the second largest proportion (19%) of our study participants were of admixed 
American ancestries (AMR), mostly from the MCPS cohort46. Published GWAS of smoking behavior in 
AMR ancestries are sparse47. In the AMR-specific GWAS, we identified 25 independent loci across the 
six phenotypes, of which 15 are known and 10 are novel (Supplementary Table 15). The known loci 
include some of the strongest GWAS signals identified in the EUR-specific GWASs: CHRNA528, 
CHRNA448 and DBH loci42 associated with heavy-smoker, CYP2A6 locus27,42 associated with former-
smoker, NCAM1 locus49 associated with ever-smoker and DBH locus42 associated with heavy-smoker 
(Supplementary Table 15). In AMR ancestries, we also identified an X chromosome locus that has been 
previously linked to smoking in EUR ancestries17. Notably, at this locus (with GPR101 in the vicinity), 
we identified a genome-wide significant association with heavy-smoker in the AMR-specific GWAS 
(rs1190734; ORAMR=0.83 [0.79-0.88]; PAMR=1.2e-11), but only a nominal association with heavy smoker 
in the EUR-specific GWAS (OREUR=0.98 [0.97-0.99]; PEUR=0.001). However, the same variant showed 
genome-wide significant association with cig-per-day in EUR-specific GWAS (BetaEUR=-0.02; 
PEUR=7.6e-16) corroborating the GWAS signal at this locus reported previously for cig-per-day17. 
Whether this locus is associated with cig-per-day in AMR ancestry with a larger effect size compared to 
EUR is not clear, as we did not have this phenotype in the MCPS cohort at the time of this analysis. 
Nevertheless, the findings overall suggest that the GPR101 locus influences smoking behavior in both 
EUR and AMR ancestries. Regarding the 10 novel loci identified in the AMR ancestries, as expected, 
many (7 loci) harbored variants that are relatively more common in AMR ancestries than in EUR 
ancestries, thereby offering higher statistical power for discovery, for example, at 10q21.1, an intergenic 
locus, we identified a genome-wide significant association with heavy-smoker where the index variant is 
seen in ~10% of admixed Americans but only ~0.05% of Europeans; at 8p22 (closest gene: C8orf48), we 
identified a genome-wide significant association with ever-smoker where the index variant is seen in 
~30% of admixed Americans but only ~7% of Europeans (Supplementary Table 15).  

 
Interplay between common and rare variants 
Large-scale sequencing projects provide increased power to detect additive effects between common and 
rare variants for many diseases and traits. For example, we have previously demonstrated an additive 
effect between GPR75 obesity-protective rare variants and polygenic score (PGS) for obesity based on 
common variants10. We performed a similar analysis to test whether an additive effect is also evident for 
CHRNB2 rare variants and smoking PGS. We calculated smoking PGS for the UKB participants based on 
a GWAS of ever-smoker performed in an independent sample (a meta-analysis of our study cohorts and 
GSCAN leaving out UKB from both)15. We binned the UKB individuals into quintiles based on their 
smoking PGS and quantified the prevalence of heavy smokers in CHRNB2 pLOF-plus-missense burden 
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mask carriers (the burden mask that showed the strongest association with heavy smoker) and non-
carriers. The prevalence of heavy smokers increased in both carriers and non-carriers from lower PGS 
quintiles to higher, albeit with a small decline from fourth to fifth quintiles (Fig 4; Supplementary Table 
16). Importantly, within each of the quintiles, the prevalence of heavy smokers was lower in CHRNB2 
rare variant carriers than non-carriers, demonstrating an additive effect between common and rare 
variants. The additivity implies that the smoking PGS modifies the penetrance of CHRNB2 rare variants 
i.e., smoking behavior varies according to the polygenic background even within rare CHRNB2 variant 
carriers.  
 

Discussion 
GWAS of smoking behavior15–17 based on common variants have made tremendous progress in the field 
with the sample size in the recent GWAS from the GSCAN consortium crossing over 3 million 
individuals. Such studies have significantly improved our understanding of the polygenic architecture of 
smoking phenotypes and pointed to genes and pathways underlying smoking behavior, including genes 
encoding nAChRs, genes involved in nicotine metabolism and dopaminergic and glutamatergic 
signaling15. However, to date, few studies based on whole exome or genome sequencing data have been 
reported19,50 and such studies were conducted in sample sizes insufficient to capture associations at variant 
and gene level resolutions. Hence, our understanding of the contributions of rare variants to smoking 
behavior has been minimal so far.  To the best of our knowledge, the data we report here represents the 
largest rare variant study of smoking behavior to date. Our sample sizes were powered to identify 
associations with a rare variant or an aggregate of rare variants with an odds ratio of 2.5 and above (or 0.4 
and below) when present in at least 100 carriers (Supplementary Fig. 15). The fact that our analysis 
revealed only one germline association indicates that there are no “low hanging fruits” for smoking in the 
rare variant space other than the CHRNB2 association that we identified. However, we acknowledge that 
this interpretation applies only to European populations, and we cannot exclude the possibility there exist 
rare variants that are more frequent in other ancestries might be discovered in the future in similar or even 
smaller sample sizes than ours. Nevertheless, we note that 25% of our samples represent non-European 
ancestries with the largest proportion (19%) representing admixed-Americans. However, the samples 
sizes, when broken down to individual ancestry groups, are still smaller than what would be necessary to 
make rare variant discoveries.  
 
The major finding from our analysis is the protective association between CHRNB2 rare variants and 
smoking. We show that individuals who carry rare pLOF and likely deleterious missense variants have 
significantly decreased odds of becoming a heavy smoker. Although the top association was observed for 
the gene burden that combined both pLOFs and missense variants, the concordant protective effect sizes 
observed for pLOF-only burden with heavy smoker and ever smoker strengthened our interpretation that 
what we observe is a loss-of-function and not gain-of-function association. This knowledge is crucial as it 
directly informs therapeutic hypotheses for drug design. Moreover, we identified a single deleterious 
missense variant that drifted to higher frequency in Finnish population, which gave us an opportunity to 
validate the protective associations observed with smoking and smoking-related diseases in the FinnGen 
study33. The finding highlights the value of studying isolated populations with drifted variants to enhance 
drug target discovery51. Another important finding is the convergence of rare and common variant 
findings of CHRNB2. We highlight a common 3’UTR variant that shows protective associations with 
multiple smoking phenotypes, suggesting that this variant likely decreases CHRNB2 expression. 
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Importantly, the odds ratio of the common variant association with heavy smoker was 0.96 as opposed to 
the odds ratio 0.65 for the pLOF plus missense rare variant burden association with heavy smoker. The 
pattern reveals a dose-response relationship between the gene and phenotype where varying levels of gene 
perturbations resulting in proportional effects on the phenotype. We particularly highlight the fact that 
this variant, though was discovered in an earlier GWAS15, did not receive attention as it was buried 
underneath the hundreds of associations identified by the GWAS, reflecting an important limitation of 
interpreting common variant findings. However, when interpreted in the light of rare variant findings, that 
particular common variant association stood out as highly valuable, exemplifying the combined value of 
GWAS and ExWAS in drug target discovery. Such observations will become frequent in the future with 
the rapidly growing population-scale ExWASs of human diseases and traits52.  
 
CHRNB2 codes for the β2 subunit of the α4β2 nAChR, which is the predominant nicotinic receptor 
expressed in the human brain53. The role of α4β2 nAChR in mediating nicotine effects has been well 
characterized by decades of animal studies54,55, thanks to the pioneering work of Picciotto and colleagues 
who first demonstrated in 1995 that deletion of β2 in mice abolished nicotine-mediated effects on 
avoidance learning and reinforcement behavior56,57. However, to the best of our knowledge, what we 
describe here is the first human genetic evidence supporting the hypothesis that loss of CHRNB2 protects 
against nicotine addiction. Importantly, CHRNB2 can be viewed as a known drug target as it encodes a 
component of α4β2 nAChR, which, being the major nicotine receptor in the brain, has been the target of 
most nAChR partial agonists and antagonists developed so far, including cytisine (an α4β2 partial 
agonist58) and varenicline (an α4β2 partial agonist and antagonist3). Varenicline is the current drug of 
choice to aid smoking cessation and was first developed in 1997 by Pfizer based on the molecular 
structure of cytisine2,3. In addition to α4β2, varenicline binds to various other nAChRs in the brain 
including α7, α3β4 and α6β2. Given the established role α4β2 in mediating the rewarding and 
reinforcement actions of nicotine, it is believed that the α4β2 antagonistic action of varenicline helps with 
smoking cessation3. Our finding aligns with this hypothesis, emphasizing that human genetics is useful 
not only to discover new drugs but also to better understand the mechanism of action of old drugs that 
have been in use for decades, and such knowledge can pave the way for better drug designs with higher 
efficacy and limited adverse effects.  
 
Limitations of our study include small sample sizes for finer quantitative phenotypes such as cig-per-day, 
which have limited our power to capture associations of genes mediating aversive effects of nicotine (e.g., 
CHRNA5) and those related to nicotine metabolism (e.g., CYP2A6)27,28. As is often the case, individuals 
of non-European ancestries were underrepresented in our study cohorts, which has limited the 
generalizability of the findings to all ancestries59,60. However, we involved a substantial number of 
individuals of admixed American ancestries, who belong to one of the most underrepresented populations 
in human genetic studies—a step in the right direction. With growing awareness of the importance of 
diversity in human genetic studies, representation on non-European ancestries is expected to improve in 
the future studies59,60.   
 
To conclude, we have performed a large-scale ExWAS of smoking behavior and identified a protective 
association between rare coding variants in CHRNB2 and smoking. The results align with the findings 
from published knockout animal models and mechanism of action of varenicline that is currently in use to 
aid smoking cessation and will support future therapeutic developments to treat smoking addiction.  
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Methods  
Participating Cohorts 
UK Biobank  
UK Biobank is an open-access, large population cohort of 500,000 individuals established in the UK30,61. 
The participants were, in general, community-dwelling middle aged to old aged volunteers who were 
recruited between 2006 to 2010 through invitations sent by mail61. The participant’ age ranged between 
40 to 69 at the time of recruitment. A deep set of phenotypes has been collected from the participants 
prospectively, including physical, biochemical and multimodal imaging measures, disease history based 
on electronic health records and a wide range environmental measures obtained via touchscreen and web-
based questionnaires.  The smoking phenotypes that we studied in this project were based on the 
information collected through lifestyle and environment touch screen questionnaires (data field category 
100058). The health-related phenotypes that we studied including history of lung and vascular diseases 
are based on ICD-10 codes from the electronic health records or self-reported or a combination of both.  
 
GHS  
The GHS participants come from Geisinger’s MyCode community health initiative which was established 
in 2007 to create a bio repository for research projects investigating the molecular and genetic bases of 
health and disease62,63. The participants were patients enrolled in the health care system who consented to 
participate in the MyCode initiative and gave access to their electronic health records (EHR). The 
smoking phenotypes that we studied were based on the clinical history of smoking available in the EHR. 
Finer details on the smoking behavior such as number of cigarettes smoked per day, age started smoking 
etc. were available for a subset of patients through spirometry questionnaires available in the EHR. 
 
MCPS  
The MCPS is large prospective cohort of 150,000 individuals recruited between 1998 to 2004 with a 
major aim to investigate the known and novel risk factors for mortality in individuals of Mexican 
descent46,64.  The participants were residents of Coyoacan and Iztapalapa districts of Mexico City. 
Phenotype data including information on smoking behavior was collected through house-to-house visits 
through interviewer administered questionnaires. 
 
SINAI  
The SINAI participants were from the BioMe biobank program of The Charles Bronfman Institute for 
Personalized Medicine at Mount Sinai Medical Center established in 200765. The BioMe participants are 
patients enrolled in the Mt Sinai health system, who consented to participate in the BioMe initiative and 
gave access to their electronic health records. The smoking phenotypes we studied were derived from the 
EHR. 
 
Ethical approval and informed consent  
All the study participants have provided informed consent and all the participating cohorts have received 
ethical approval from their respective institutional review board (IRB).  The UK Biobank project has 
received ethical approval from the Northwest Centre for Research Ethics Committee (11/NW/0382)20,30. 
The work described here has been approved by the UKB (application no. 26041)20. The GHS project has 
received ethical approval from the Geisinger Health System Institutional Review Board under project no. 
2006-025862,63. The MCPS study has received ethical approval from the Mexican Ministry of Health, the 
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Mexican National Council for Science and Technology, and the University of Oxford46,64. The BioMe 
biobank has received ethical approval from the IRB at the Icahn School of Medicine at Mount Sinai65.  
 
Phenotype definitions  
We defined six phenotypes for the primary analysis: a) ever-smoker—cases were those who ever smoked 
regularly (include both former and current smokers) and controls were those who never smoked in their 
lifetime; b) heavy-smoker—cases were those who smoked 10 or more cigarettes per day (include both 
former and current smokers) and controls were those who never smoked in their lifetime; c) former-
smoker—cases were those who smoked in the past but not at the present and controls were current 
smokers; d) nicotine dependence—cases were those who had an ICD-10 F17 diagnosis in the EHR and 
controls were those who did not have an ICD-10 F17 diagnosis; e) cig-per-day - number of cigarettes 
smoked per day in both current and former smokers; f) age started smoking - age when the person first 
started smoking.  
 
In addition to the six primary phenotypes, we also studied a set of secondary smoking phenotypes 
primarily derived from the smoking lifestyle questionnaire data in the UKB (data field category 100058). 
We also studied a selected list of disease phenotypes related to smoking namely lung cancer (ICD-10 
C34), COPD (ICD-10 J44), emphysema (ICD-10 J43), chronic bronchitis (ICD-10 J42), peripheral 
arterial disease (ICD-10 I73), coronary artery disease (ICD-10 I25) and myocardial infarction (ICD-I21). 
 
Exome sequencing and variant calling 
Individuals from all the participating cohorts were exome-sequenced at the RGC. Exome sequencing and 
variant calling workflows followed in each of the participating cohorts are described in detail 
elsewhere10,20,46,62,66. Briefly, the DNA source for exome sequencing in all the cohorts was peripheral 
blood. The DNA samples were first enzymatically fragmented into 200 base-pair DNA libraries to which 
10 base-pair bar codes were added to facilitate multiplexed operations. Exome regions containing DNA 
fragments were captured overnight using a modified version of xGen probe from integrated DNA 
technologies (IDT). The Captured fragments were then PCR amplified and sequenced in a multiplexed 
way using 75 base-pair paired-end reads on the Illumina NovaSeq 6000 platform. On average 20x 
coverage was achieved for more than 90% of the target sequences in 99% of the samples.   
 
Sequenced reads are mapped to hg38 reference genome using BWA-MEM to create BAM files. 
Duplicated reads are marked for exclusion using Picard tool. Then, variant calling was performed at 
individual sample level using WeCall variant caller to create a per sample gVCF files to enable a sample 
level filter. Samples with low sequence coverage (<85% of the targeted bases achieving >20x coverage), 
excess heterozygosity, disagreement between genetic and reported sex, disagreement between exome and 
array genotype calls and genetic duplicates were removed. The remaining high quality gVCF files are 
merged into a single project level VCF (pVCF) file using GLnexus joint genotyping tool. A further 
variant level filter is applied on the multi-sample pVCF file. SNVs with read depth <7 and INDELs with 
read depth <10 were removed. Also, variants without either at least a single homozygous genotype or a 
single heterozygous genotype with allele balance ratio >= 0.15 (>=0.20 if INDEL) were removed. The 
QCed pVCF files are then converted to analysis ready PGEN format using Plink.v2.  
 
Genotyping and imputation  
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Genotyping was done using DNA genotyping arrays that varied from cohort to cohort and are reported in 
detail in cohort specific publications30,46,62. Briefly, the UKB participants were genotyped using Applied 
Biosystems UK BiLEVE Axiom Array or Applied Biosystems UKB Axiom Array, GHS participants, 
using either the Illumina Infinium OmniExpressExome or Global Screening Array (GSA) and MCPS, 
SINAI participants, using GSA. Standard quality control procedures were followed to retain only high-
quality genotyped variants, which are then used for imputing common variants using TOPMed LD 
reference panel67. For all the cohorts, the imputation was performed in the TOPMed imputation server by 
uploading the QCed genotypes in randomized batches. Following imputation, we retained only variants 
with MAF>0.01 and imputation INFO score > 0.8 for the analysis reported in the current study. After all 
QC, the final number of common variants included in the cross-ancestry meta-analyses ranged from ~6.7 
million for ever smoker to ~14 million variants for cig-per-day (final number of variants expectedly 
decreased with increase in the number of cohorts included in the meta-analyses).  Appropriate variables 
for the genotyping arrays and the imputation batches are used as covariates in all the analysis of imputed 
variants.  
 
Genetic ancestry inference  
Genetic ancestries of the individuals from all the participating cohorts were quantified using a set of 
common variants that are genotyped directly using the genotyping arrays20. We first computed principal 
components (PCs) in the HapMap3 individuals using the publicly available genotype reference panel68; 
only high confident variants (MAF>0.10, genotype missingness < 5% and Hardy-Weinberg Equilibrium 
test P > 1e-5) that are common between our dataset and HapMap3 are used for PC calculations.  PCs were 
first computed in the HapMap3 samples on which the rest of the samples are projected. Individuals were 
assigned to one of five ancestral groups namely Europeans (EUR), African (AFR), admixed Americans 
(AMR), East Asians (EAS) and South Asians (SAS) if their likelihood for belonging to a particular 
ancestry > 0.3; the likelihood estimate is calculated using a kernel density estimator (KDE) trained on the 
HapMap3 PCs20.   
 
Genetic association analysis  
Genetic association analyses were done using REGENIE software31. REGENIE uses a two-step whole 
genome regression framework that controls for population stratification and sample relatedness in a cost-
effective and computationally efficient way. Briefly, in the step 1, REGENIE computes trait prediction 
values (also called as local polygenic scores) using a sparse set of genotypes, which are typically the array 
genotypes. In the step 2, REGENIE computes the variant associations with phenotypes using either 
logistic or linear regression where the trait prediction values computed in step 1 are included as covariates 
along with other covariates namely first 20 genetic PCs computed using common variants, first 20 genetic 
PCs computed using rare variants, age, age squared, sex, interaction term between age and sex and 
genotyping batches.  Specifically, for binary traits with imbalanced case-control ratios, REGENIE uses a 
fast Firth regression, which has been shown to perform better than saddle point approximation (SPA) 
correction used in the logistic mixed model approach implemented in software such as SAIGE69. For 
burden analysis, REGENIE first creates a pseudo-genotype, described as burden mask, by collapsing a set 
of variants (see Supplementary Table 2 for different burden definitions used) into a single categorical 
variable and then treats this burden mask in the same way as a variant genotype to compute association 
statistics. For the top burden associations, we performed a sensitivity analysis called leave-one-variant-out 
(LOVO) implemented in REGENIE. To perform LOVO, REGENIE creates a series of burden masks 
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iteratively for a given set of variants where during each iteration one variant is left out of the burden 
mask. The created burden masks are then tested for association with the phenotype of interest. For the top 
burden associations, we also tested if the associations are driven by any nearby common variant signals. 
For this, we iteratively included the most significant common variant observed within 1Mb on either side 
of the gene start as covariate in the REGENIE regression analysis until no nearby common variants with 
P<0.01 were observed. The burden results from the conditional analysis in each of the cohorts were then 
meta-analyzed together.  
 
Identification of independent known and novel GWAS loci 
To define approximate LD independent GWAS signals, we used conditional and joint analysis (COJO) 
implemented in the GCTA software70. For the LD reference, we used individual level genotype data of 
randomly sampled 10,000 unrelated individuals of either EUR ancestry (for cross-ancestry and EUR 
specific GWASs) or AMR ancestry (for AMR specific GWAS). The standard errors of the GWAS 
summary statistics were adjusted for LD score regression intercept (see section on LD score regression 
analysis) prior to GCTA-COJO analysis. We defined GWAS loci as “known” if the index variant in the 
loci is in LD (R2>0.1) with genome-wide significant variants reported previously.  LD calculations are 
done using Plink.v271. Our list of known GWAS loci came primarily from Liu et al 201915. However, 
before declaring a variant as “novel”, we also manually queried the variants in GWAS catalog to ensure 
that the variants are not in LD with variants reported in other smoking GWAS publications.  
 
LD score regression analysis  
We calculated SNP-heritability (SNP-h2), that is, the proportion of phenotypic variance explained by the 
common variants, using LD score regression software43. We used an EUR LD reference panel built in-
house using a random set of 10,000 unrelated EUR individuals from the UKB following the instructions 
provided by the authors of the LD score regression software. Genetic correlations were also computed 
using LD score regression software using the EUR LD reference panel.  We used LD score regression 
also to quantify the population stratification that is known to inflate GWAS association statistics43.  We 
computed LD score intercept for all the GWAS runs including the cross ancestry and AMR specific 
GWASs and then, compared the values to the corresponding GC lambda values. A GC lambda > 1 but an 
intercept =1 suggests that the observed inflation in the test statistics is fully due to polygenicity. For 
phenotypes such as smoking that are substantially influenced by environmental factors, it is common to 
have intercept values slightly above 1 (but still lower than GC Lambda) indicating that there is inflation in 
test statistics due to factors other than polygenicity e.g., population stratification, cryptic relatedness etc43. 
To remove such inflations, we applied a correction factor72 to the test statistics to constrain the LD score 
intercept close to 1. We scaled the standard errors of the variant associations by a factor of the square root 
of LD score intercept. This is a better alternative to GC correction (commonly practiced in large-scale 
consortium GWASs) as GC correction tends to over-correct the statistics removing true polygenic 
signals72. The LD score statistics before and after intercept correction are reported in the Supplementary 
Table 14. We used EUR LD reference panel even for cross-ancestry as well as AMR specific GWASs as 
there are no well-established guidelines on how to handle cross-ancestry or admixed ancestry based 
GWAS results. We acknowledge that this has likely biased the results towards variants that are shared 
between EUR and other ancestries.  
 
Polygenic score analysis  
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We calculated smoking PGS for the UKB participants using SNP weights based on a GWAS of ever 
smoker conducted in an independent sample. We performed a GWAS meta-analysis of ever smoker 
across all our cohorts except the UKB. Then, we meta-analyzed the results with the GWAS of ever 
smoker (without UKB) available from the GSCAN consortium15. We then refined the SNP effect sizes in 
the GWAS summary statistics using PRS-CS software73, which uses a Bayesian approach to calculate 
SNP posterior effect sizes under continuous shrinkage priors based on an external LD reference panel. 
The refined SNP weights are then used to compute polygenic scores using Plink.v2 software71.  We then 
binned UKB individuals into quintiles (five equally sized groups) based on their smoking PGS. 
Individuals within each quintile are further divided into carriers and non-carriers of CHRNB2 pLOF or 
likely deleterious missense variants at MAF<0.001. Prevalence of heavy smokers are then compared 
between carriers and non-carriers within each quintile. Standard errors of prevalence was calculated using 
the formula sqrt((Prev - (1-Prev))/N)) where N is number of individuals in the group.   
 
Power calculations  
All power calculations are done in R using the package “genpwr” available from CRAN74.  In all the 
cases, we computed effect sizes (beta values) using the function “genpwr.calc” with the following input 
parameters: power=0.80, calc=“es”, model=“logistic” for binary phenotypes and “linear” for quantitative 
phenotypes, Alpha=“5e-8” for GWAS and “4.5e-8” for ExWAS, MAF= values ranging from 0 to 0.5, 
True.model=“additive” and Test.model=“additive”, N=total sample size, case_rate=N cases/N total (for 
binary phenotypes) and sd_y=1 (for quantitative phenotypes).  
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Data availability statement  
UKB individual-level genotypic and phenotypic data are available to approved investigators via the UK 
Biobank study (www.ukbiobank.ac.uk/). Additional information about registration for access to the data 
are available at www.ukbiobank.ac.uk/register-apply/. Data access for approved applications requires a 
data transfer agreement between the researcher’s institution and UK Biobank, the terms of which are 
available on the UK Biobank website (www.ukbiobank.ac.uk/media/ezrderzw/applicant-mta.pdf). GHS 
individual-level data are available to qualified academic noncommercial researchers through the portal at 
https://regeneron.envisionpharma.com/vt_regeneron/ under a data access agreement. The MCPS 
represents a long-standing collaboration between researchers at the National Autonomous University of 
Mexico (UNAM) and the University of Oxford. The investigators welcome requests from researchers in 
Mexico and elsewhere who wish to access MCPS data. If you are interested in obtaining data from the 
study for research purposes, or in collaborating with MCPS investigators on a specific research proposal, 
please visit https://www.ctsu.ox.ac.uk/research/prospective-blood-based-study-of-150-000-individuals-in-
mexico where you can download the study’s Data and Sample Access Policy in English or Spanish. The 
policy lists the data available for sharing with researchers in Mexico and in other parts of the world. Full 
details of the data available may also be viewed at https://datashare.ndph.ox.ac.uk/. 
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a. b.

Figure 1. Discovery of rare variants associated with smoking phenotypes. a. QQ plot of the rare variant associations with six smoking 
phenotypes (ever-smoker, heavy-smoker, former-smoker, nicotine-dependence, cig-per-day and age-started-smoking). The dotted line 
corresponds to the exome-wide significant threshold, 4.5e-8, defined based on FDR 1% across all the associations combined. b. Forest 
plots of the top burden-trait pairs. For burden mask definitions, refer to Supplementary Table 2.
ALL – all ancestries analyzed together; AAF – alternate allele frequency (combined across all variants included in the burden mask)

ASXL1 (pLOF-only burden) – Ever-smoker

DNMT3A (pLOF-plus-missense burden) – Ever-smoker

CHRNB2 (pLOF-plus-missense burden) – Heavy-smoker
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Population MAF

EUR (Finnish) 0.0018

EUR (Non-Finnish) 0.00038

East Asian 0.0001

African/African American 0.00009

Others 0

gnomAD allele frequencies

Figure 2. A Finnish enriched missense variant contributes most to the CHRNB2 burden signal. a. P values from the leave-one-variant-out 
(LOVO) analysis of CHRNB2 rare pLOF-plus-missense burden in the UK Biobank are plotted against the variant positions (hg38). The dotted 
blue line corresponds to P value of the full burden test. The dotted grey line corresponds to P value=0.05. The variant Arg460Gly that had the 
largest impact on the LOVO analysis is highlighted and its gnomAD allele frequencies are shown. c. Volcano plot showing the PheWAS 
associations of Arg460Gly related to smoking, substance use, COPD and lung disease endpoints in the Finngen. d. OR and 95% confidence 
intervals of selected phenotype associations of Arg460Gly in the Finngen. 

a.

c. d.

b.

*

*

*P<0.05



Figure 3. Associations of ASXL1 and DNMT3A based on gene burden masks with and without CHIP variants. We constructed pLOF-only and 
pLOF plus missense burden masks at five allele frequency thresholds (Methods) using all variants (wCHIP) and variants excluding CHIP 
variants (wo CHIP). The CHIP variants were identified in the UKB and GHS exome sequencing data using a somatic mutation caller, which we 
have described in detail previously in Kessler et al 2022. The P values of the burden associations with six primary smoking phenotypes are 
plotted. Excluding the CHIP variants from the burden masks completely removed all the significant associations suggesting that the ASXL1 
and DNMT3A significant burden associations are fully driven by the CHIP variants. 
CHIP – Clonal Hematopoiesis of Indeterminate Potential



Figure 4. Additive effects between CHRNB2 rare variants and smoking polygenic score. Prevalence estimates heavy smokers in CHRNB2 
rare variants carriers and non-carriers within each of the five PGS quintiles in the UK Biobank are plotted. Polygenic score (PGS) was based on 
a GWAS meta-analysis of ever smoker (Internal + external without UKB). CHRNB2 rare variants mean variants that comprise CHRNB2 
pLOF_miss_0.001 burden mask, i.e., pLOF and likely deleterious variants with MAF <0.001. The absolute count of cases and controls in each 
of the quintiles are reported in the Supplementary Table 16. 


