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Abstract 32 

The rise of mobile electrocardiogram (ECG) devices came with the rise of frequent large magnitudes of noise in 33 
their recordings. Several artificial intelligence (AI) models have had great success in denoising, but the model’s 34 
generalizability and the enhancement in clinical interpretability are still questionable. We propose Cardio-35 
NAFNet, a novel AI-based approach to ECG denoising by employing a modified version of Non-Linear 36 
Activation Free Network (NAFNET). We conducted three experiments for quantitative and qualitative 37 
evaluation of denoising, clinical implications and generalizability. In the first experiment, Cardio-NAFNet 38 
achieved 53.74dB average signal to noise ratio across varying magnitude of noise in beat-to-beat denoising, 39 
which is a significant improvement over the current state of the art model in ECG denoising. In the second 40 
experiment, we tested the enhancement in clinical interpretation of the ECG signals by utilizing a pretrained 41 
ECG classifier using 8 second long noise-free ECG signals. When the classifier was tested using noisy ECG 42 
signals and their denoised counterparts, Cardio-NAFNet's denoised signals provided 26% boost in classification 43 
results. Lastly, we provide an external validation dataset composed of single-lead mobile ECG signals along 44 
with signal quality evaluation from physician experts. Our paper suggests a settling method to capture and 45 
reconstruct critical features of ECG signals not only in terms of quantitative evaluation, but also through 46 
generalizable qualitative evaluation.  47 
 48 

Introduction 49 

With digital health evolution and numerous consumer electronics providing electrocardiograms (ECG), ECG 50 
denoising plays a pivotal role in standardizing and stabilizing the signals recorded amongst a multitude of 51 
devices and patients. Beyond providing a level of reliability of the mobile ECG recordings for physician’s 52 
interpretation, ECG denoising can play a critical role in translating the innovative artificial intelligence 53 
approaches using 12-lead ECG signals to the digital health realm. Previously, to reach beyond traditional use 54 
cases of electrocardiograms (ECG), numerous groups across the globe have provided methods to automate the 55 
processes typically done by subject matter experts and method to augment undiscovered knowledge about ECG 56 
signal’s discriminative features. For automated methods, a cardiologist-level arrhythmia detection and 57 
classification accuracy has been achieved using deep neural network [1]. Furthermore, the clinical implications 58 
of ECG signals has been expanded by an AI model detecting low ejection fraction using 12-lead ECG 59 
signals[2]. However, the AI models that were trained on clean 12-lead ECG in a hospital environment are bound 60 
to be inaccurate when tested with mobile ECG recorded during a patient or a consumer’s daily lives. Although 61 
measuring ECG signals has become more available to the public than ever, these recordings are frequently 62 
measured without any clinical staff’s oversight and more easily exposed to various types of noise. We learned 63 
throughout the years that ECG recordings are prone to three main types of noise - electrode motion (EM), 64 
baseline wandering (BW) and muscle artifacts (MA). Hence, effective methods to denoise ECG signals and 65 
experiments to evaluate its enhancements in clinical interpretability and generalizability in digital health realm 66 
are imperative.  67 
 68 

ECG denoising methods can be largely divided into two categories - traditional denoising that relies on 69 
statistical methods and deep learning-based denoising models[3]. For example, traditional methods have seen 70 
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success in ECG denoising using bandpass filters[4], empirical mode decomposition (EMD), Wavelet 71 
transformation methods[5, 6], adaptive filtering[7-10], and Bayesian filtering methods[11]. Simple bandpass 72 
filtering may be capable of rejecting low frequency noise like small baseline wandering and some high 73 
frequency noise such as jitters, but it often fails to cope with muscle artifacts and electrode motion artifacts that 74 
sporadically create false peaks and valleys. Kabir et al suggested an approach based on noise reduction 75 
algorithms in EMD and discrete wavelet transform domains, but the method is also limited to noise reduction 76 
with jitters and baseline wandering[12]. The recent advances in deep learning has impacted how ECG signals 77 
are processed, through new deep learning models such as autoencoders[13, 14], long short-term memory 78 
(LSTM)[15], generative adversarial network (GAN)[16, 17]. For example, Xiong et al utilized a combination of 79 
wavelet transform to deconstruct the signals and deep autoencoders (DAE)[18] to enhance the quality of 80 
corrupted signals. Others have also proposed stacked contractive denoising auto-encoder[19]. Both autoencoder 81 
based approaches were capable of removing BW, MA, EM and mixed noises at varying magnitudes. The 82 
generalizability of these models has been questioned by Wang et al., as autoencoder’s performances can be 83 
sensitive to its sample selection, which led them to suggest a GAN based method. Since introduced by 84 
Goodfellow et al in 2014, GAN variants have had remarkable contributions to the advancements of generative 85 
models. Pratik et al proposed a GAN framework that contains convolution layers in its generator and 86 
discriminator[20], but the model was only tested to prove its applications with individual types of noise, not any 87 
mixtures at varying magnitude. Xu et al utilized ResNet based GAN model but has demonstrated that that the 88 
model’s denoising capabilities diminished with larger noise samples at lower signal to noise ratio[17]. Wang et 89 
al proposed a conditional generative adversarial network (CAE-CGAN) framework where they utilize a 90 
convolutional U-Net architecture as a generator, a discriminator with least squared loss, and a pretrained support 91 
vector machine (SVM) based classifier that learns to classify each beat[21]. Upon our review, CAE-CGAN’s 92 
methods were deemed the most sound as it demonstrated promising improvement in SNR across individual and 93 
mixture of noise at varying SNR while also proving that the denoised signal also enhances classification 94 
accuracy for each denoised beat.  95 

 96 
We note that the majority of the denoising work has been done by combining the noise from MIT-BIH noise 97 
stress database with clean ECG signals from various ECG databases in Physionet’s MIT-BIH Databases[22, 23], 98 
specifically the Arrhythmia Database. Despite numerous authors highlighting the rise of wearables and other 99 
mobile devices for ECG recordings as one of the primary motivations for denoising, the majority of the models 100 
are only evaluated internally within the arrhythmia database that was collected during 1970s. Also, most of the 101 
models prioritize on the quantitative evaluation of denoising using signal to noise ratio (SNR), but the 102 
qualitative evaluation of the signals is often missing as only a few have performed tests to confirm that 103 
denoising also improves clinical interpretability. 104 
 105 
To address these issues, we propose Cardio-NAFNet, a non-linear activation free network for ECG denoising. 106 
Cardio-NAFNet utilizes the current (SOTA) framework used in image denoising domain with reduced 107 
dimensionality and complexity along with separate loss functions to tailor the framework towards ECG signal 108 
denoising. We conducted three experiments designed to independently prove Cardio-NAFNet's superior 109 
performance to the current SOTA model in an identical environment using the arrhythmia database, enhanced 110 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted October 27, 2022. ; https://doi.org/10.1101/2022.10.26.22281565doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.26.22281565


clinical interpretability through rhythm-based classification, and generalizability with an external validation 111 
dataset composed of real-world mobile ECG signals.  112 
 113 

Method 114 

Experiment Design 115 
The first experiment’s objective is to evaluate Cardio-Net’s performance against that of the current 116 

SOTA model (CAE-CGAN)[21] in an identical testing environment. We prepared 10 records from Physionet’s 117 
arrhythmia database[24]. The 10 records are 100, 101, 106, 112, 117, 121, 123, 209, 220, and 228 and uses 118 
MLII lead. Then we split each record into samples with lengths of 512, which is about 1.2 seconds with the 119 
dataset’s sampling rate of 360Hz. For training and testing, we used 8:2 random split.  120 
 121 

The second experiment’s objective is to validate our argument that denoised samples should not only 122 
have enhanced SNR, but also improved interpretability. We aim to demonstrate improved classification results 123 
with beat and rhythm labels. The records were resampled to 64Hz, then split into samples length of 512, which 124 
is 8 seconds long. To split the signals, we visited every annotation point, which exists with every beat, then 125 
chose point at random to be the center of the sample, where the distance from the center to the annotation point 126 
was always less than the quarter of the total sample length. With this method, we were able to create samples 127 
that were multi-labeled with their rhythm types and their beat types. We trained a convolution neural network 128 
(CNN) classifier with clean ECG samples from the arrhythmia database, then evaluated its performance using 129 
unseen clean samples, noisy samples, and denoised samples.  130 

 131 
The third experiment was designed to highlight the generalizability of our model by utilizing an 132 

independent dataset from DECAAF-II[25]. We retrained Cardio-NAFNet to suit the samples from DECAAF-133 
II[25], which are measured at 200Hz with a 20 second window, providing sample length of 4000. The training 134 
data was generated using the same framework as the second experiment, but with sampling rate of 200Hz and 135 
sample length of 20 seconds. After the samples were denoised, we handed the samples over to the expert 136 
reviewers at Tulane University’s Heart and Vascular Institute.  137 

 138 
 139 

Study Data 140 

The internal training and validation data are from two databases on Physionet. We pulled the ECG recordings 141 
from MIT-BIH Arrhythmia Database[24], and the three different types of noises from MIT-BIH Noise Stress 142 
Database[26]. The MIT-BIH Arrhythmia database is from 4000 long-term Holter recordings that were obtained 143 
from Beth Israel Hospital Arrhythmia Laboratory. The arrhythmia database contains 23 records that were 144 
chosen at random from the aforementioned dataset, and 25 recordings that were selected for containing 145 
clinically important phenomena. Overall, the database contains 48 records where the average length of the 146 
records is around 30 minutes long. While most records have modified limb lead II (MLII) as the first lead, a few 147 
records did not contain MLII due to surgical dressings on the patients, hence we removed records 102, and 104 148 
from the dataset. All recordings are digitized at a sampling rate of 360Hz. The recordings in the database are 149 
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labeled with 20 categories of beat annotations and 15 categories of rhythm annotations. The subjects were 25 150 
men aged 32 to 89 years, and 22 women aged 23 to 89 years.  151 
 152 

The MIT-BIH Noise Stress Database includes three half hour recordings of 3 types of noise typical in 153 
ambulatory ECG recordings. The three noise records are baseline wander (BW), muscle artifact (MA), and 154 
electrode motion (EM) artifact. To evaluate the denoising capabilities of our model in comparison with the 155 
results in CAE-CGAN[21], we created 42 different scenarios of denoising which are combinations of the three 156 
noise types (EM, BW, MA, EM+BW, MA+BW, EM+MA, EM+MA+BW) and varying levels of signal to noise 157 
ratio (SNR) from 0dB to 5dB.  158 
 159 

An external validation dataset was prepared to ensure the generalizability of Cardio-NAFNet. We 160 
randomly selected 222 ECG strips from the DECAAF-II Trial[25], which are the recordings used to track the 161 
outcome of 843 patients who received atrial fibrillation ablation from 44 sites around the world. The strips are 162 
recorded using single-lead handheld devices called “ECG Check”. The length of the recordings are generally 163 
around 30 seconds with a sampling rate of 200Hz. As the strips are unfiltered raw recordings from a handheld 164 
device, we deem the recordings here to be “real world” examples of noisy ECG signals with large variance in 165 
noise types and magnitude. The strips were thoroughly reviewed by intra and inter reviewers that were all expert 166 
physicians.  167 

 168 
 169 

Preprocessing 170 
As the objective of the three experiments differ, the length of the samples in each experiment also differs. In the 171 
first experiment, we pulled record 103, 105, 111, 116, 122, 205, 213, 219, 223, 230 for training and sliced the 172 
records to sample lengths of 512. Considering the sampling rate of 360Hz in the arrhythmia database, each input 173 
signals are roughly 1.4 seconds long. For the second experiment, we wanted to preserve the rhythm labels; 174 
hence, we resampled the records to 64Hz, then the sample lengths of 512 again, resulting with 8 second strips. 175 
For the final experiment, we resampled the signals to 200Hz to match the sampling rate of the records in the 176 
external validation dataset, then sliced the records to sample lengths of 4000, resulting with 20 second strips. 177 
After resampling and slicing, all training and internal validation samples went through the steps below to 178 
generate simulated noisy signals.  179 
 180 

The generation of the training data is intuitive. We inject the combinations of noise into the clean ECG 181 
samples from the arrhythmia database, arriving at three different variations of the signals – the clean ECG 182 
samples, the injected noise, and the simulated noisy ECG sample. The objective of the Cardio-NAFNet is to 183 
receive simulated noisy ECG samples and generate denoised samples that closely resemble their corresponding 184 
original ECG samples. When injecting the noise into the original ECG signals, we measure the signal to noise 185 
ratio (SNR) by the following equation.  186 

𝑆𝑆𝑆𝑆𝑆𝑆 =  10𝑙𝑙𝑙𝑙𝑙𝑙10
∑ 𝑥𝑥𝑖𝑖2𝑁𝑁
𝑖𝑖=0

∑ 𝑛𝑛𝑖𝑖2𝑁𝑁
𝑖𝑖=0

 187 
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To provide various mixtures of noise by providing a random length, a random signal to noise ratio 188 
(SNR) to a randomized segment in an ECG signal. For validating samples, we created 42 different testing 189 
environments by fixing the signal to ratio to integers from 0dB to 5dB and providing all combinations of 190 
baseline wander, muscle artifacts, and electrode motion artifacts. We fixed the signal to ratio of generated noisy 191 
signals by calculating a that is provided by the following equation:  192 
 193 

�̇�𝑥  = 𝑥𝑥𝑖𝑖 + 𝑛𝑛𝑖𝑖 ∗ 𝛼𝛼  194 
 195 

𝛼𝛼 =  �
∑ 𝑥𝑥𝑖𝑖2𝑁𝑁
𝑖𝑖 = 0

∑ 𝑛𝑛𝑖𝑖 ∗ 10𝑆𝑆𝑁𝑁𝑆𝑆 10�𝑁𝑁
𝑖𝑖 = 0

 196 

where �̇�𝑥 represents the simulated noisy signals, 𝑥𝑥 represents individual clean ECG sample from the arrhythmia 197 
database,  𝑛𝑛 is the noise, 𝑆𝑆 is the number of samples, and 𝛼𝛼 represents the constant that is multiplied to the noise 198 
to generate noisy samples at fixed SNR. With the formulas above, we generate combinations of simulated noisy 199 
ECG samples at fixed SNR from 0dB to 5dB with all combinations of noise types. We then normalized the 200 
signals using min-max normalization: 201 
 202 

𝑆𝑆𝑙𝑙𝑁𝑁𝑁𝑁(𝑥𝑥) =
𝑥𝑥𝑛𝑛  −  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  −  𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

 203 

For the external validation dataset, we chose to slice the recordings into 20 second windows by 204 
choosing the starting point of the window to be a random point in the first 10 seconds of the signal due to a 205 
small variance in the length of the recordings. We also performed min-max normalization to all samples.  206 
 207 
 208 

Network Architecture 209 
Our Cardio-NAFNet resembles the original structure of NAFNet[27] with reduced complexity and dimension to 210 
transform the model’s original framework dedicated to 2-dimentional image restoration to ECG signal 211 
restoration. The network follows U-Net architecture where we utilize an encoder and a decoder with skip 212 
connections. The encoder is comprised of 10 NAFBlocks and the decoder is comprised of 4 NAFBlocks as 213 
shown in Figure 1b. The generalizability of encoder-decoder architecture has been questioned before, and we 214 
provide evidence that model performance holds with an external validation dataset.  215 

For training, Cardio-NAFNet receives batches that comprise pairs of noisy ECG signal generated from 216 
the preprocessing steps and their corresponding original ECG strips unaltered by noise. The matching original 217 
ECG signals are only used to calculate the loss by taking the distance of the denoised output to the original 218 
signal.  219 
 220 

Each NafNet’s Block consists of layers without nonlinear activation functions (e.g., sigmoid, softmax, 221 
ReLu, etc). The block consists of Layer Normalization, pointwise convolution, depth wise convolution, simple 222 
channel attention, simple gate, elementwise multiplication/addition, and dropout layers in the order described in 223 
figure. The core difference between NAFNet’s Block versus the feed forward networks (FFN) in transformers is 224 
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in the simple gate, which allows the entire block to be free of nonlinear activation functions. See Figure 1a for 225 
the structure of NAFBlock.  226 
 227 
Mean Squared Error (MSE) 𝐿𝐿𝑀𝑀𝑆𝑆𝑀𝑀  is adopted to measure the differences between denoised signals and clean 228 
signals. Similar to Wang et al., 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 is used to measure the maximum difference between denoised and clean 229 
signals. It helps the model to capture the local characteristics of ECG signals.  230 

𝐿𝐿𝑀𝑀𝑆𝑆𝑀𝑀  =  
1
𝑆𝑆
�(𝑥𝑥�𝑛𝑛 − 𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 231 

 232 
𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚  =  𝑁𝑁𝑚𝑚𝑥𝑥(|𝑥𝑥1� − 𝑥𝑥1|, |𝑥𝑥2� − 𝑥𝑥2|, . . . , |𝑥𝑥𝑁𝑁� − 𝑥𝑥𝑁𝑁|) 233 

 234 
where 𝑥𝑥� indicates denoised signals and 𝑥𝑥 indicates clean signals. N represents the total number of samples. Our 235 
total loss function is defined as: 236 

𝐿𝐿 = 𝜆𝜆1𝐿𝐿𝑀𝑀𝑆𝑆𝑀𝑀 + 𝜆𝜆2𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 237 
where 𝜆𝜆1 and 𝜆𝜆2 are weighted coefficients. Through our experiments, we chose 𝜆𝜆1 = 0.8 and 𝜆𝜆2 = 0.2. 238 
We train models with AdamW optimizer with learning rate of 0.0001 (𝛽𝛽1 = 0.9,𝛽𝛽2 = 0.999). The batch size is 239 
256.  240 

 241 

Evaluation 242 
The performance is measured by root mean square error (RMSE) and SNR as follows: 243 

𝑆𝑆𝑅𝑅𝑆𝑆𝑅𝑅 = �
1
𝑆𝑆
�(𝑥𝑥�𝑛𝑛 − 𝑥𝑥𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 244 

𝑆𝑆𝑆𝑆𝑆𝑆 =  10𝑙𝑙𝑙𝑙𝑙𝑙10
∑ 𝑥𝑥𝑛𝑛2𝑁𝑁
𝑛𝑛=1

(𝑥𝑥�𝑛𝑛 − 𝑥𝑥𝑛𝑛)2 245 

where 𝑥𝑥 is the original clean signal, 𝑥𝑥� is denoised signal, and 𝑆𝑆 is the number of samples. RMSE indicates the 246 
difference between two signals. While the SNR formula for the evaluation may seem different from the one 247 
introduced to prepare the training samples, both formulas essentially represent the same ratio of the ECG signal 248 
to the noise as  𝑥𝑥� − 𝑥𝑥 is the remaining noise after the signal was denoised. The RMSE and SNR possess an 249 
inverse relationship where smaller RMSE values indicate larger SNR. Cardio-NAFNet’s objective is to 250 
minimize RMSE and maximize SNR, which indicates a stronger power of the ECG signal to the noise.   251 
 252 

The samples from DECAAF-II dataset were only used for external validation. We highlight that the 253 
samples from DECAAF-II dataset are real world examples of unfiltered mobile ECG samples as the patients 254 
submitted the data from home during the follow up period of the trial; thus, it is impossible to measure the SNR 255 
of these samples as we do not have a clean version, nor the noise separated from the signal. We provided 222 256 
original samples and their corresponding denoised samples to the physicians at Tulane University’s Heart and 257 
Vascular institute to review the quality of denoising with the following scale.  258 

 259 
Signal Quality Scale: 260 
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1. Uninterpretable 261 
2. Signal suffers from heavy combinations of baseline wandering, muscle artifacts and etc. Some beats 262 

are not recoverable, but the trend of the rhythm is identifiable to make an educated guess 263 
3. Signal demonstrates heavy amplitudes of noise, but all beats are clear and rhythm is identifiable 264 
4. Signal contains very minor noise but the rhythm is interpretable  265 
5. Signal shows no presence of noise 266 

 267 
 268 

Results 269 

In the first experiment, we created an identical environment to that of CAE-CGAN’s experiment to provide a 270 
direct comparison of Cardio-NAFNet’s performance to CAE-CGAN’s performance[21]. Table 1 demonstrates 271 
that Cardio-NAFNet’s performance has a significant improvement in all noise combinations at all noise levels, 272 
resulting in a combined average difference of 11.76dB. In the supplement, we also provide results to compare 273 
the results with not only CGAN, but also with Improved denoising autoencoder[13], and adversarial method[21, 274 
28, 29]. We note that while our model follows the general autoencoder architecture, the skip connections from 275 
the encoder to the decoder and utilizing NAFBlocks instead of ConvBlocks provide a significant improvement 276 
in results.  277 
 278 
 For the second experiment, we demonstrate that not only our model performance holds when we 279 
stretch the input to 8 seconds, but also the ECG rhythm classifications drastically improved after denoising. The 280 
detailed SNR and RMSE results with 8 second samples can be found in Table 5 and 6. Figure 2 shows the 281 
original clean ECG from the arrhythmia database, a simulated ECG through our preprocessing, and the output of 282 
Cardio-NAFNet when it receives the simulated ECGs. As shown in the figure, while the simulated noisy signals 283 
contain a significant amount of noise, the denoised samples are nearly indistinguishable from the clean ECG 284 
signals during validation. Also, a pretrained 4 label classifier that achieved .98 F-1 score with clean signals from 285 
the arrhythmia database was applied to the noisy signals and corresponding denoised signals. When applied with 286 
different noise types demonstrated in Table7, denoised signals had 26% average improvement compared to the 287 
noisy signals.  288 
 289 
 For the third experiment, we highlight the generalizability of Cardio-NAFNet’s by providing the 290 
denoised results from single-lead mobile ECG samples. The original samples and corresponding denoised 291 
examples can be found in Figure 3. Above visual representation, the denoised signals were reviewed by expert 292 
physicians with the metric provided in Evaluation. The improved results can be found in Table 3. In our 293 
proposed metric scaling from 1 to 5, the expert physicians’ scored the unfiltered signals from the DECAAF-II a 294 
mean of 3.18 with a variance of 0.94, while the denoised signals achieved 4.46 with a variance of 0.91. We 295 
noticed that majority of the unfiltered recordings that were in 3 or 4 range, meaning individual beats were 296 
identifiable, but with the presence of noise, was scored 5 after denoising. 297 

 298 

 299 
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Discussion 300 

In this work, we present Cardio-NAFNet that outperforms existing state-of-the-art methods in quantitative 301 
measures. We also augment the conventional experiment design of quantitative ECG denoising performance 302 
evaluation by qualitative evaluation methods and an external validation of mobile ECG signals for 303 
generalizability. SNR served as a popular metric to evaluate the quality of a signal or image samples, but we 304 
believe that the most critical piece of ECG denoising is not to generate signals that are just visibly good, but to 305 
enhance the clinical interpretability of the signals. Previous literature demonstrated the average SNR and the 306 
classification results of the model’s denoised outputs when the ECG records are broken down into nearly a 307 
single second[20, 21, 30, 31], containing one to two beats. While Wang et al created an extensive design to test 308 
CAE-CGAN, we believe that the model performance should be also evaluated with longer signals as the 309 
irregularities in rhythm that cannot be captured in a single beat can have significant clinical implications. Also, 310 
generalizability has been regularly concerned in numerous publications when it comes to the AI models used in 311 
medicine[29, 32, 33]. AI models within ECG domain are no exception as different device types and patient 312 
population can cause AI models to underperform when it is exposed to an unseen dataset. Demonstrating the 313 
generalizability of denoising models with mobile ECGs has been a difficult task due to a limited number of 314 
datasets with clean ECG samples and noise samples that are publicly available. Since the rise of consumer level 315 
ECG devices such as AliveCor Kardia or Apple Watch, the validation of AI-based ECG model’s 316 
generalizability with single lead mobile ECG signals has been imperative. Numerous authors have addressed the 317 
generalizability of their models by stratifying the dataset at a patient level and providing unseen leads to the 318 
model during tests using MIT-BIH Physionet’s Arrhythmia database [5-10, 12-14, 17-21, 30, 31, 34-37]. 319 
Despite the attempt, these models prove its generalizability within the Arrhythmia database, which contains 320 
Holter recordings from 48 patients recorded at a single lab during 1975 to 1979.  We argue that previously 321 
suggested experimental framework does not suffice to prove the model’s generalizability, especially when the 322 
large demands arise from mobile ECG signals.  323 
 324 
Cardio-NAFNet, with three experiments, validated its performance and addressed all the limitations above. The 325 
three experiments were designed with the following objectives: 326 

1. Confirm superior performance in an identical training and testing environment to the current SOTA 327 
model.  328 

2. Validate Cardio-NAFNet’s capabilities with 8 second recordings with SNR and enhanced classification 329 
results.  330 

3. Prove the generalizability of Cardio-NAFNet through an external validation.  331 
 332 
Our external validation highlights Cardio-NAFNet’s generalizability not only at the device level, but also at a 333 
patient population level as the data was collected from 44 sites around the world. We also note that most of the 334 
original samples that were hardly interpretable stayed uninterpretable after denoising, which is reasonable.  335 

Conclusion 336 

In this paper, we propose a novel AI ECG denoising method based on NAFNet architecture and extensive 337 
experiment designs to evaluate the denoised signal’s clinical interpretability and generalizability. Cardio-338 
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NAFNet further contributes to ECG denoising where the previous methods have been limited by employing the 339 
structure of simplified attention blocks in a U-Net architecture with loss functions tailored to ECG denoising. 340 
Cardio-NAFNet consistently achieved SNR above 50dB in majority of the extensive testing environment, which 341 
is a mark that no other model in literature has achieved so far. The ECG denoising performance was not only 342 
evaluated by SNR, but also qualitatively with a pre-trained ECG classification model and expert physicians to 343 
demonstrate improved classification results and enhanced signal quality. Overall, Cardio-NAFNet shows 344 
promising results in ECG denoising in both Holter recordings and mobile single lead recordings, proving its 345 
generalizability and clinical significance.  346 

Overall, Cardio-NAFNet provides a denoising method to standardize and stabilize the ECG recordings 347 
from mobile devices. In our future studies, we plan to apply Cardio-NAFNet to the mobile ECG data and 348 
translate innovative AI works that have been done with 12-lead ECG signals in clinics or labs to be applicable to 349 
the mobile ECG recordings.  350 
  351 
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 352 

Figures and Tables: 353 

Figure 1 354 

 355 
Figure 1: Figure 1a describes the structure of the Block using Mobile Convolution (MB Block) and Feed Forward Network (FFN) Block 356 

with changes to the attention layers using simple channel attention (SCA) and simple gate along with drop out layers.  Figure 2b describes 357 
the overall U-shaped architecture of Cardio-NAFNet where the left side represents encoder with 10 NAFBlocks and the right side is the 358 

decoder with 4 NAFBlocks. The decoder also receives maps from the encoder blocks using skip connection. 359 
 360 

Figure 2: 361 

 362 
Figure 2: The denoised outputs from Cardio-NAFNet are in green, the clean ECG signals from the arrhythmia database are in blue, and the 363 
simulated noisy signals are in red. Cardio-NAFNet takes the signals in red as an input and uses the signals in blue only to calculate the loss 364 

to produce the signals in green. The denoised outputs here are nearly indistinguishable from the original clean ECG samples. 365 
 366 
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 367 

Figure 3 368 

 369 
Figure 3:The denoised outputs from Cardio-NAFNet are in green and the unfiltered mobile ECG signals from DECAAF-II trial are in red. 370 

The records are in an order by their original signal quality score ranging from one to four. 371 
Tables 372 

SNR Methods 
Denoised 

Metrics 

Noise Type 

BW EM MA BW+EM BW+MA MA+EM 
BW+MA+E

M 
Avg. 

0dB 

CGAN 
SNR(dB) 39.59 40.09 39.09 40.08 40.43 40.38 39.49 39.88 

RMSE 0.0031 0.0029 0.0033 0.0029 0.0028 0.0029 0.0031 0.0030 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 53.38 52.97 51.70 51.80 52.19 51.31 51.55 52.13 

RMSE 0.0027 0.0014 0.0024 0.0018 0.0026 0.0016 0.0017 0.0020 

1dB 

CGAN 
SNR(dB) 41.29 42.31 41.21 42.42 42.57 42.67 41.92 42.06 

RMSE 0.0025 0.0022 0.0025 0.0022 0.0021 0.0022 0.0023 0.0023 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 54.69 54.45 53.27 53.05 53.75 52.75 53.04 53.57 

RMSE 0.0016 0.0010 0.0018 0.0013 0.0020 0.0013 0.0013 0.0015 

2dB 

CGAN 
SNR(dB) 41.87 43.04 41.78 43.22 43.23 43.38 42.66 42.77 

RMSE 0.0023 0.0020 0.0023 0.0020 0.0020 0.0020 0.0021 0.0021 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.39 54.89 53.89 53.54 54.52 53.28 53.66 54.17 

RMSE 0.0013 0.0010 0.0014 0.0012 0.0015 0.0013 0.0011 0.0013 

3dB CGAN 
SNR(dB) 42.09 43.26 41.96 43.41 43.36 43.65 42.86 42.94 

RMSE 0.0023 0.0020 0.0023 0.0019 0.0020 0.0019 0.0021 0.0021 
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Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.86 55.07 54.10 53.72 54.99 53.47 53.96 54.45 

RMSE 0.0010 0.0009 0.0013 0.0011 0.0012 0.0013 0.0010 0.0011 

4dB 

CGAN 
SNR(dB) 41.96 43.04 41.74 43.20 43.13 43.40 42.65 42.73 

RMSE 0.0023 0.0021 0.0024 0.0020 0.0020 0.0020 0.0021 0.0021 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.92 54.95 54.04 53.63 55.09 53.37 53.87 54.41 

RMSE 0.0012 0.0010 0.0021 0.0014 0.0017 0.0014 0.0012 0.0014 

5dB 

CGAN 
SNR(dB) 41.10 41.75 40.59 41.80 41.93 42.03 41.28 41.50 

RMSE 0.0026 0.0024 0.0027 0.0024 0.0023 0.0023 0.0025 0.0025 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.52 54.26 53.14 53.04 54.41 52.56 53.17 53.73 

RMSE 0.0024 0.0011 0.0033 0.0017 0.0021 0.0016 0.0014 0.0019 

Table 1: Denoising results of 360Hz sampling rate by noise type and SNR 373 
 374 

Methods Input SNR 
Denoised 

Metrics 

Record Number 

103 105 111 116 122 205 213 219 223 230 Avg. 

Improved 

DAE 

0dB 

SNR(dB) 22.75 23.70 23.39 21.34 17.70 23.47 19.33 18.38 23.17 22.40 21.56 

RMSE 0.0290 0.0330 0.0340 0.0350 0.0500 0.0330 0.0400 0.0410 0.0310 0.0390 0.0365 

Adversarial 

Method 

SNR(dB) 38.09 34.27 33.07 30.02 28.74 38.44 30.27 28.24 31.75 30.87 32.38 

RMSE 0.0050 0.0080 0.0093 0.0115 0.0134 0.0048 0.0125 0.0150 0.0101 0.0119 0.0102 

CGAN 
SNR(dB) 39.49 38.89 39.65 40.97 39.76 38.45 41.28 40.40 39.72 42.34 40.09 

RMSE 0.0022 0.0032 0.0040 0.0027 0.0026 0.0026 0.0031 0.0027 0.0029 0.0034 0.0029 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 51.73 47.30 45.46 46.97 49.21 53.04 46.09 47.95 49.16 49.82 48.67 

RMSE 0.0022 0.0036 0.0058 0.0045 0.0039 0.0017 0.0054 0.0042 0.0061 0.0036 0.0041 

Improved 

DAE 

1.25dB 

SNR(dB) 22.97 23.94 23.57 21.82 18.76 23.57 19.79 19.07 23.55 22.54 21.96 

RMSE 0.0290 0.0330 0.0330 0.0330 0.0420 0.0330 0.0370 0.0380 0.0300 0.0380 0.0346 

Adversarial 

Method 

SNR(dB) 38.56 34.79 33.45 30.77 29.28 38.96 30.68 29.21 32.19 31.11 32.90 

RMSE 0.0049 0.0075 0.0089 0.0105 0.0126 0.0046 0.0119 0.0134 0.0096 0.0116 0.0096 

CGAN 
SNR(dB) 42.34 42.26 42.75 44.20 43.00 41.46 44.93 43.69 42.74 45.48 43.28 

RMSE 0.0016 0.0021 0.0027 0.0018 0.0018 0.0017 0.0020 0.0018 0.0020 0.0023 0.0020 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 53.32 49.05 48.91 49.03 51.06 54.98 47.31 49.31 51.15 52.57 50.67 

RMSE 0.0016 0.0030 0.0059 0.0025 0.0021 0.0013 0.0053 0.0037 0.0034 0.0036 0.0032 

Improved 

DAE 

5dB 

SNR(dB) 23.45 24.66 23.65 23.08 20.81 23.66 20.69 21.01 24.00 22.81 22.78 

RMSE 0.0270 0.0300 0.0330 0.0300 0.0350 0.0300 0.0340 0.0300 0.0280 0.0370 0.0314 

Adversarial 

Method 

SNR(dB) 39.39 35.67 34.10 21.72 30.01 39.89 31.37 31.23 32.96 31.53 32.79 

RMSE 0.0044 0.0068 0.0082 0.0095 0.0116 0.0041 0.0110 0.0106 0.0088 0.0111 0.0086 

CGAN 
SNR(dB) 41.05 40.72 41.18 42.65 41.89 40.29 42.72 42.03 41.43 43.56 41.75 

RMSE 0.0018 0.0033 0.0056 0.0022 0.0020 0.0021 0.0026 0.0022 0.0024 0.0029 0.0027 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 54.31 50.01 51.37 50.20 52.12 55.79 49.42 51.08 52.45 52.93 51.97 

RMSE 0.0010 0.0028 0.0016 0.0015 0.0011 0.0008 0.0023 0.0023 0.0013 0.0012 0.0015 

Table 2: Comparison of EM denoising results. 375 
 376 

Methods Input SNR 
Denoised 

Metrics 

Record Number 

103 105 111 116 122 205 213 219 223 230 Avg. 

Improved 

DAE 

0dB 

SNR(dB) 21.38 24.72 23.15 19.22 19.57 24.23 19.59 18.80 22.91 22.58 21.62 

RMSE 0.0340 0.0300 0.0350 0.0450 0.0400 0.0310 0.0380 0.0390 0.0320 0.0380 0.0360 

Adversarial 

Method 

SNR(dB) 41.36 36.49 35.90 35.47 31.06 40.58 33.73 32.37 33.46 33.98 35.14 

RMSE 0.0042 0.0073 0.0079 0.0107 0.0126 0.0045 0.0100 0.0112 0.0100 0.0098 0.0088 

CGAN 
SNR(dB) 37.94 38.28 39.21 39.81 38.28 36.98 40.31 39.65 39.00 41.42 39.09 

RMSE 0.0027 0.0035 0.0042 0.0030 0.0031 0.0029 0.0035 0.0030 0.0031 0.0039 0.0033 

Cardio-

NAFNET 

SNR(dB) 53.66 50.29 51.20 49.55 51.19 54.73 48.74 50.14 52.49 52.28 51.43 

RMSE 0.0023 0.0025 0.0030 0.0025 0.0019 0.0017 0.0047 0.0039 0.0013 0.0020 0.0026 
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(proposed) 

Improved 

DAE 

1.25dB 

SNR(dB) 22.41 24.86 23.27 20.22 20.02 24.49 19.78 19.63 23.41 22.60 22.07 

RMSE 0.0310 0.0290 0.0340 0.0400 0.0380 0.0300 0.0370 0.0340 0.0300 0.0380 0.0340 

Adversarial 

Method 

SNR(dB) 42.10 37.46 36.16 33.67 31.88 41.19 34.26 33.40 34.36 34.22 35.87 

RMSE 0.0038 0.0065 0.0076 0.0093 0.0115 0.0042 0.0094 0.0100 0.0090 0.0096 0.0081 

CGAN 
SNR(dB) 40.59 41.43 42.74 42.50 41.33 39.67 43.79 42.68 41.75 44.88 42.14 

RMSE 0.0019 0.0023 0.0027 0.0022 0.0021 0.0021 0.0022 0.0021 0.0022 0.0024 0.0022 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.02 51.66 52.12 50.72 52.18 56.21 49.86 51.15 53.75 53.26 52.59 

RMSE 0.0010 0.0020 0.0019 0.0021 0.0019 0.0009 0.0039 0.0047 0.0010 0.0019 0.0021 

Improved 

DAE 

5dB 

SNR(dB) 23.33 25.13 23.33 22.41 20.63 24.67 20.63 21.97 24.21 22.63 22.89 

RMSE 0.0270 0.0280 0.0340 0.0310 0.0360 0.0300 0.0340 0.0270 0.0280 0.0380 0.0310 

Adversarial 

Method 

SNR(dB) 43.24 39.55 36.66 35.88 33.50 42.22 34.95 35.38 36.35 34.55 37.23 

RMSE 0.0033 0.0050 0.0072 0.0072 0.0096 0.0037 0.0087 0.0080 0.0072 0.0092 0.0069 

CGAN 
SNR(dB) 39.34 39.65 40.66 40.92 40.08 38.25 42.18 41.08 40.42 43.23 40.59 

RMSE 0.0023 0.0030 0.0035 0.0026 0.0025 0.0026 0.0028 0.0025 0.0025 0.0030 0.0027 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 55.50 51.77 53.28 51.37 52.84 56.33 51.24 52.36 54.16 53.79 53.26 

RMSE 0.0008 0.0016 0.0011 0.0013 0.0010 0.0008 0.0014 0.0012 0.0009 0.0011 0.0011 

Table3: Comparison of MA denoising results. 377 
 378 

 379 

Methods Input SNR 
Denoised 

Metrics 

Record Number 

103 105 111 116 122 205 213 219 223 230 Avg. 

Improved 

DAE 

0dB 

SNR(dB) 23.78 25.40 23.31 23.51 20.07 20.07 21.30 23.02 24.25 22.72 22.74 

RMSE 0.0260 0.0280 0.0340 0.0270 0.0500 0.0500 0.0320 0.0240 0.0270 0.0370 0.0340 

Adversarial 

Method 

SNR(dB) 40.26 39.49 34.13 32.81 32.09 39.70 31.64 31.23 34.59 32.36 34.83 

RMSE 0.0032 0.0035 0.0066 0.0068 0.0075 0.0034 0.0086 0.0086 0.0059 0.0081 0.0062 

CGAN 
SNR(dB) 38.62 39.07 39.44 39.99 39.31 37.74 40.86 39.70 39.64 41.52 39.59 

RMSE 0.0025 0.0031 0.0040 0.0030 0.0027 0.0027 0.0032 0.0030 0.0028 0.0039 0.0031 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 53.29 48.96 49.13 46.49 50.25 54.30 45.68 44.19 51.66 51.02 49.50 

RMSE 0.0023 0.0038 0.0070 0.0083 0.0026 0.0019 0.0105 0.0119 0.0034 0.0026 0.0054 

Improved 

DAE 

1.25dB 

SNR(dB) 22.82 25.42 23.32 23.59 20.08 20.08 21.36 23.31 24.41 22.74 22.81 

RMSE 0.0260 0.0280 0.0340 0.0270 0.0500 0.0500 0.0320 0.0270 0.0370 0.0370 0.0330 

Adversarial 

Method 

SNR(dB) 40.72 39.87 34.53 33.51 32.42 40.34 32.05 32.09 35.12 32.44 35.31 

RMSE 0.0031 0.0034 0.0063 0.0063 0.0072 0.0031 0.0082 0.0078 0.0056 0.0080 0.0059 

CGAN 
SNR(dB) 40.83 41.56 42.42 42.68 41.70 40.06 43.63 41.95 41.92 44.47 42.12 

RMSE 0.0019 0.0023 0.0028 0.0021 0.0021 0.0020 0.0023 0.0023 0.0022 0.0026 0.0022 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 53.92 50.29 49.66 48.59 51.38 55.06 47.87 46.93 52.16 51.78 50.76 

RMSE 0.0025 0.0029 0.0077 0.0066 0.0014 0.0024 0.0076 0.0104 0.0035 0.0036 0.0049 

Improved 

DAE 

5dB 

SNR(dB) 23.89 25.45 23.35 23.76 20.08 20.08 21.46 24.08 24.64 22.79 22.96 

RMSE 0.0250 0.0270 0.0340 0.0260 0.0500 0.0500 0.0310 0.0210 0.0260 0.0370 0.0330 

Adversarial 

Method 

SNR(dB) 41.60 40.56 35.27 34.99 32.89 41.73 32.89 34.05 36.33 35.58 36.29 

RMSE 0.0027 0.0031 0.0058 0.0053 0.0068 0.0027 0.0074 0.0062 0.0048 0.0079 0.0053 

CGAN 
SNR(dB) 40.09 40.29 41.18 41.79 40.72 39.52 42.63 40.71 40.87 43.15 41.10 

RMSE 0.0021 0.0027 0.0033 0.0024 0.0023 0.0022 0.0026 0.0027 0.0025 0.0031 0.0026 

Cardio-

NAFNET 

(proposed) 

SNR(dB) 54.25 50.20 51.37 48.87 51.56 55.23 49.96 49.25 52.65 52.04 51.54 

RMSE 0.0016 0.0027 0.0045 0.0094 0.0012 0.0009 0.0040 0.0051 0.0021 0.0015 0.0033 

Table4: Comparison of BW denoising results. 380 
 381 

 382 
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Table 5: Denoising results of 8 secs samples with 64Hz sampling rate by noise type and SNR 383 
 384 

Noise Type 
Denoised 

Metrics 

Record Number 

103 105 111 116 122 205 213 219 223 230 Avg. 

BW 
SNR(dB) 54.22 48.74 51.10 48.60 51.84 53.96 48.64 48.30 51.64 49.79 50.68 

RMSE 0.0010 0.0028 0.0015 0.0019 0.0011 0.0011 0.0019 0.0019 0.0013 0.0018 0.0016 

EM 
SNR(dB) 55.90 54.38 53.86 49.46 53.66 55.75 50.48 51.33 53.08 52.93 53.08 

RMSE 0.0008 0.0011 0.0010 0.0019 0.0009 0.0008 0.0016 0.0013 0.0011 0.0012 0.0012 

MA 
SNR(dB) 51.93 49.55 50.08 47.10 50.70 52.71 47.14 47.90 50.72 48.43 49.63 

RMSE 0.0015 0.0020 0.0019 0.0022 0.0014 0.0016 0.0022 0.0020 0.0014 0.0021 0.0018 

BW+EM 
SNR(dB) 55.76 52.45 53.93 50.01 54.26 55.58 50.53 51.32 53.23 53.72 53.08 

RMSE 0.0008 0.0016 0.0010 0.0018 0.0008 0.0009 0.0016 0.0013 0.0011 0.0011 0.0012 

BW+MA 
SNR(dB) 53.72 50.16 51.65 48.60 52.06 53.94 49.40 49.14 52.04 48.03 50.87 

RMSE 0.0011 0.0021 0.0014 0.0020 0.0011 0.0011 0.0017 0.0016 0.0012 0.0021 0.0015 

MA+EM 
SNR(dB) 55.64 52.23 53.91 50.13 53.69 55.78 50.62 51.55 53.23 52.54 52.93 

RMSE 0.0009 0.0016 0.0010 0.0017 0.0009 0.0008 0.0015 0.0012 0.0011 0.0013 0.0012 

BW+MA+EM 
SNR(dB) 55.99 52.75 53.97 49.93 53.96 55.66 50.54 51.26 53.14 50.97 52.82 

RMSE 0.0008 0.0014 0.0010 0.0019 0.0009 0.0008 0.0015 0.0013 0.0011 0.0015 0.0012 

Table 6: Denoising results of 8 secs samples with 64Hz sampling rate by record number and noise type 385 
 386 

 Clean Noisy Denoised Improved 

BW 98.03% 73.27% 97.90% 24.62% 

EM 98.02% 71.42% 97.88% 26.46% 

MA 97.91% 73.10% 97.52% 24.42% 

BW+EM 98.05% 70.25% 97.97% 27.72% 

BW+MA 98.04% 73.36% 97.93% 24.57% 

MA+EM 97.76% 70.28% 97.58% 27.30% 

BW+MA+EM 97.83% 69.73% 97.83% 27.99% 

Input SNR 
Denoised 

Metrics 

Noise Type 

BW EM MA BW+EM BW+MA MA+EM BW+MA+EM Avg. 

0dB 
SNR(dB) 49.33 51.00 46.81 51.70 49.47 50.99 51.34 50.09 

RMSE 0.0019 0.0015 0.0029 0.0013 0.0018 0.0015 0.0014 0.0018 

1dB 
SNR(dB) 50.98 52.52 49.22 52.71 51.35 52.79 52.86 51.78 

RMSE 0.0015 0.0013 0.0021 0.0012 0.0015 0.0012 0.0012 0.0014 

2dB 
SNR(dB) 51.69 53.22 50.38 53.33 52.19 53.24 53.14 52.47 

RMSE 0.0014 0.0012 0.0017 0.0011 0.0013 0.0011 0.0013 0.0013 

3dB 
SNR(dB) 51.75 53.52 50.69 53.72 52.03 53.42 53.61 52.68 

RMSE 0.0014 0.0011 0.0016 0.0011 0.0014 0.0011 0.0012 0.0013 

4dB 
SNR(dB) 51.19 53.89 50.55 53.51 51.71 53.38 53.33 52.51 

RMSE 0.0015 0.0011 0.0016 0.0012 0.0014 0.0011 0.0011 0.0013 

5dB 
SNR(dB) 50.41 53.11 49.54 52.82 51.05 53.31 52.88 51.87 

RMSE 0.0017 0.0012 0.0018 0.0012 0.0015 0.0011 0.0012 0.0014 
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Table 7: Classification comparison between clean, noisy, and denoised signals 387 
 388 

Table 8 389 

 390 
Table 5: The histogram demonstrates the distribution of signal quality when the unfiltered mobile ECG samples and their corresponding 391 
denoised outputs from Cardio-NAFNet when reviewed by physicians. While the majority of the signals that were uninterpretable stayed 392 

uninterpretable, Cardio-NAFNet was able to significantly improve the quality of the signals as shown in figure 3. 393 
 394 
 395 
  396 
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