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ABSTRACT  

Genome-wide association studies (GWAS) of suicidal thoughts and behaviors support the existence of 

genetic contributions. Continuous measures of psychiatric disorder symptom severity can sometimes 

model polygenic risk better than binarized definitions. We compared two severity measures of suicidal 

thoughts and behaviors at the molecular and functional levels using genome-wide data. We used 

summary association data from GWAS of four traits analyzed in 122,935 individuals of European 

ancestry: thought life was not worth living (TLNWL), thoughts of self-harm, actual self-harm, and 

attempted suicide. The fifth trait, suicidality, was constructed with phenotypically as an aggregate of 

these four traits and genetically using Genomic Structural Equation modeling. Suicidality and S-factor 

were compared at the level of SNP-heritability (h
2
), genetic correlation, partitioned h

2
, effect size 

distribution, transcriptomic effects in the brain, and cross-population polygenic scoring (PGS). The S-

factor had good model fit (χ2
=0.21, AIC=16.21, CFI=1.00, SRMR=0.024). Suicidality (h

2
=7.6%) had higher 

h
2
 than the S-factor (h

2
=2.54, Pdiff=4.78x10

-13
). Although the S-factor had a larger number of non-null 

susceptibility loci (πc=0.010), these loci had small effect sizes compared to those influencing suicidality 

(πc=0.005, Pdiff=0.045). The h
2
 of both traits was enrichment for conserved biological pathways. The rg 

and ρGE support highly overlapping genetic and transcriptomic features between suicidality and the S-

factor. PGS using European-ancestry SNP effect sizes strongly associated with TLNWL in Admixed 

Americans: Nagelkerke's R
2
=8.56%, P=0.009 (PGSsuicidality) and Nagelkerke's R

2
=7.48%, P=0.045 (PGSS-

factor). An aggregate suicidality phenotype was statistically more heritable than the S-factor across all 

analyses and may be more informative for future study genetic designs than individual suicidality 

indicator traits. 
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INTRODUCTION 

Death by suicide is responsible for more than 700,000 deaths per year.
1
 The World Health Organization 

invested in global advocacy and awareness programs towards reducing stigma and increasing access to 

care. However, death by suicide ranks as the fourth leading cause of death among teens and young 

adults.
2
 Twin, family, and adoption studies show a heritability (i.e., phenotypic variation explained by 

genetic differences) of suicidal thoughts and behaviors between 30-50%.
3
  

Large genome-wide association studies (GWAS) of individual thoughts and behaviors associated with 

death by suicide demonstrate small but robust heritability estimates attributed to common genetic 

variation (h
2
): 1.25% for attempted suicide (AS) in the Million Veteran Program (MVP),

4
 1.9%-4.6% in a 

Danish study of AS with and without considering mental health diagnoses,
5
 5.7%-6.8% in two large 

meta-analyses of AS lead by the International Suicide Genetics Consortium.
1, 6

 Among individuals with 

co-occurring diagnoses of major depressive disorder, bipolar disorder, and/or schizophrenia, the 

Psychiatric Genomics Consortium reported null h
2
 for AS.

7
 Taken together, these studies support a 

common genetic component to suicidal thoughts and behaviors that may be independent of other 

mental health diagnoses.  

Other suicidal behaviors occur well before AS and may include ideation and planning the attempt to end 

one’s life. Though death by suicide is not a diagnosis, these thoughts and behaviors may be modeled as 

a severity continuum termed ‘suicidality’ analogous to symptom severity measures used for formal DSM 

diagnoses. Among GWAS of psychiatric disorders and conditions associated with AS and death by 

suicide, continuous measures of symptom severity appear to better model polygenic risk than binarized 

case-control items, leading to increased statistical power in gene discovery.
8, 9

 This is especially true for 

traits strongly correlated with suicidal thoughts and behaviors such as posttraumatic stress disorder 
8
 

and major depressive disorder (MDD).
10

 It therefore stands to reason that a suicidality measure 

capturing continuous variation across suicidal thoughts and behaviors would be more statistically 

powerful than any individual dichotomized definition. Strawbridge, et al. reported a genome-wide 

association study of one definition of suicidality in the UK Biobank and reported an h
2
 of 7.6% in a 

sample substantially smaller than the most contemporary meta-analyses of SA.
1, 4, 6, 7, 11

  

Though showing higher h
2
 than individual thoughts and behaviors associated with death by suicide, 

aggregating these items at the phenotype level may induce phenotypic heterogeneity that limits the 

potential discovery of genome-wide significant loci and biological processes relevant for discrete, yet 
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related, behaviors. A primary limitation of some recently introduced phenotypically aggregated 

suicidality measures is the equal contribution of each questionnaire item to the final suicidality rating 

regardless of the heritability of each item or the relationship between items. Genomic structural 

equation modeling (gSEM
12, 13

) is a multivariate method that permits building factor structure(s) that 

account for the heritability of each indicator and the relationship between indicators. For example, 

gSEM has been used previously to describe how the 10-item Alcohol Use Disorder Identification Test 

reflects a correlated two-factor structure of problematic use and consumption.
14

 

This study asked whether there is any benefit to studying a gSEM derived “S-factor” in addition to a 

questionnaire-derived suicidality measure to inform suicide biology. We report h
2
 differences between 

suicidality and S-factor and compare these trait definitions on the basis of genetic correlation with other 

psychopathologies and mental health diagnoses, functional enrichment underlying their h
2
 estimates, 

and transcriptomic signatures across various relevant brain regions. Our findings reinforce the greater 

statistical power of a phenotypically-derived suicidality factor and demonstrate a systematic reduction 

of signal in all analyses when analyzing the S-factor.  

 

METHODS 

S-factor Modeling  

Using gSEM,
12, 13

 common factor GWAS was performed on the S-factor linking four traits describing the 

thoughts and behaviors associated with death by suicide and range in severity from ideation to attempt 

to end one’s life. The four common factor indicators were questions from the UK Biobank (UKB) self-

harm behaviors section of the online Mental Health Questionnaire and have been previously described 

by Strawbridge, et al.:
11

 thought life was not worth living (TLNWL), thoughts of self-harm or suicide 

(TSH), actual self-harm (ASH), and attempted suicide (AS). Note that participants could respond to ASH 

with “yes” for deliberate acts of self-harm whether or not they intended to end their own lives.   

Multivariable linkage disequilibrium score regression (LDSC) was used to obtain a genetic covariance and 

corresponding sampling matrix based on a European ancestry linkage disequilibrium reference panel 

reflecting the 1000 Genomes Project EUR superpopulation. All factor modeling used diagonally weighted 

least squares estimation and promax rotation. 
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Trait Description 

The UKB is a population-based cohort of >500,000 participants with deep phenotyping of lifestyle 

factors, mental and physical health outcomes, anthropometric measurements, and other traits. Our 

analysis used the self-harm behavior GWAS summary data from unrelated European ancestry 

participants adjusted for age, sex, genotyping chip, and within ancestry genetic principal components. 

TLNWL (UKB Field ID 20479) and TSH (UKB Field ID 20485) asked participants to respond “No,” “Yes, 

once,” or “Yes, more than once” to questions about thought/contemplation of self-harm. These items 

were dichotomized into “no” and “yes” for GWAS.
11

 ASH (UKB Field ID 20480) and AS (UKB Field ID 

20483) asked participants to respond with “no” or “yes” to questions about actual self-harm behavior. 

These four items also were aggregated into a single ordinal trait termed “suicidality” such that 

participants responding “no” to all four questions were assigned “0” and each “yes” increased the 

participants’ suicidality score up to 4 (most severe). UKB participants with death-by-suicide ICD codes 

X60-X84 (classified as intentional self-harm) were excluded from GWAS. Further description of these 

variables has been published previously.
11, 15, 16

 

 

Linkage Disequilibrium Score Regression (LDSC) 

LDSC was used to estimate the h
2
-SNP of the S-factor based on the 1000 Genomes Project European 

ancestry reference panel. Stratified-LDSC (S-LDSC) was implemented in GenomicSEM for >51 genomic 

annotations (baseline annotation v2.2 with flanking and continuous annotations excluded) related to 

allele frequency strata, genomic conservation, evolutionary selective pressure, epigenomic regulatory 

sites, etc.
17-20

 The major histocompatibility complex region was excluded from these analyses due to its 

complex linkage disequilibrium structure. 

LDSC also was used to estimate the genetic correlation (rg) between suicidality and the S-factor relative 

to various suicide-associated traits and risk factors including large GWAS of psychiatric disorders. These 

were: TLNWL, TSH, ASH, and AS reported by Strawbridge, et al. 
11

; suicide attempt among bipolar 

disorder, schizophrenia, and major depression cases from Mullins, et al. 
7
; psychiatric disorder GWAS 

from the Psychiatric Genomics Consortium including ADHD 
21

, anorexia nervosa 
22

, obsessive compulsive 

disorder 
23

, schizophrenia 
24

, Tourette syndrome 
25

 and the Million Veteran Program including 

problematic alcohol use 
26

, posttraumatic stress disorder and its symptom domains 
8
, broad depression 

10
, and generalized anxiety disorder 

27
; personality domains from the Genetics of Personality Consortium 
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including extraversion, agreeableness, conscientiousness, openness 
28

; and other related variables from 

the Social Science Genetic Association Consortium including subjective well-being 
29

, neuroticism 
29

, risky 

behavior 
30

, risk tolerance 
30

, cognitive performance 
31

, education years 
31

, and educational attainment 

31
.  

 

Effect size distribution 

The R package GENESIS
32

 was used to estimate common variant effect size distributions for suicidality 

and the S-factor. Effect size distributions are characterized by three statistics: πc describes the 

proportion of susceptibility SNPs, σ
2
 describes the variance in effect size for non-null SNPs, and α 

describes residual effects not captured by the variance of effect-sizes such as population stratification, 

underestimated effects of extremely small effect size SNPs, and/or genomic deflation. We performed 2-

component modeling to specify the effect of non-null SNPs.
20, 32, 33

 GWAS data were filtered to (i) include 

only HapMap3 SNPs (excluding the major histocompatibility complex due to its complex linkage 

disequilibrium structure), (2) exclude SNPs with Z
2
>80, and (3) exclude SNPs with effective samples sizes 

less than 0.67-times the 90th percentile of the total sample.  

We also included GWAS data for height
34

 and broad depression.
10

 Height was used as a model trait with 

broad effect size distribution representing a relatively large proportion of non-null SNPs with relatively 

large effect sizes. MDD was used as a model trait with narrow effect size distribution representing a 

relatively small proportion of non-null SNPs with relatively small effect sizes.  

 

GTEx v8 Tissue Enrichment 

Tissue transcriptomic profile enrichment was evaluated using Multi-marker Analysis of GenoMic 

Annotation (MAGMA).
35

  To identify tissue effects of each phenotype, gene-property analyses were 

applied with Functional Mapping and Annotation (FUMA) to test relationships between tissue-specific 

gene expression profiles and disease-gene associations.
36

  

 

Transcriptome-wide Association Studies 
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Summary-based transcriptome-wide association studies (TWAS) of suicidality and the S-factor were 

performed using the GTEx v8 TWAS expression weights for cerebellar hemisphere, cerebellum, 

hippocampus, and hypothalamus. Gene expression weights for 6,091 features of the cerebellar 

hemisphere are estimated in 157 individuals, for 7,272 features of the cerebellum are estimated in 188 

individuals, for 3,547 features of the hippocampus is estimated in 150 individuals, and for 3,543 features 

of the hypothalamus are estimated in 156 individuals. FUSION
37

 was used to perform TWAS of suicidality 

and all four S-factor indicators. TWAS of the S-factor was performed using gSEM and the TWAS summary 

association data from FUSION for each S-factor indicator. Multiple testing correction was applied using a 

Bonferroni threshold per tissue (P<8.21x10
-6

=0.05/6,091 genes for cerebellar hemisphere; P<6.88x10
-

6
=0.05/7,272 genes for cerebellum; P<1.41x10

-5
=0.05/3,547 genes for hippocampus; P<1.41x10

-

5
=0.05/3,543 genes for hypothalamus). RHOGE was used to estimate the genome-wide genetic 

correlation between suicidality and the S-factor as a function of predicted cis gene expression effects on 

each trait.
38

 

 

Cross-ancestry Translation of European-ancestry Polygenic Risk 

We applied cross-ancestry polygenic scoring in the UK Biobank (Application Number 58146) to evaluate 

how findings from individuals of European ancestry extend to diverse communities. We derived 

suicidality in five additional groups as described previously: African (N=876), Admixed American 

(N=256), Central/South Asian (N=1,106), East Asian (N=599), and Middle Eastern (N=269).
11, 16

 Ancestry 

groups were defined using a random forest classifier based on genetic principal components relative to 

a combined reference panel from the 1000 Genomes Project Phase III and the Human Genome Diversity 

Project. This procedure is described in detail at the Pan-Ancestry UK Biobank web-page: 

https://pan.ukbb.broadinstitute.org/docs/qc.  

Suicidality and S-factor polygenic scores (PGS) with continuous shrinkage were calculated for individuals 

from each ancestry group using PRS-CS.
39

 PRS-CS is a Bayesian polygenic prediction method that 

imposes continuous shrinkage priors on SNP effect sizes. LD-independent SNPs were selected based on 

the UK Biobank European ancestry reference panel. We further required that each SNP have a minor 

allele frequency greater than 5% in the target ancestry group. Generalized linear models associating 

suicidality with suicidality and S-factor polygenic scores included age, age
2
, sex×age, sex×age

2
, and ten 

within-ancestry genetic principal components. We also tested the association of polygenic scores with 
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each suicidality indicator trait (note that AS had too few observations to test) and depression 

(endorsement of either UKB Field ID 2090 or 2100),
40

 total neuroticism score (inverse rank normalized, 

UKB Field ID 20127), and standing height (in centimeters; UKB Field ID 50). 

 

RESULTS 

The S-factor Structure 

Using GenomicSEM, we constructed a common factor model that we refer to as the S-factor as it reflects 

the multivariate effects of the thoughts and behaviors proceeding death by suicide. We considered four 

indicators in the S-factor: thought life not worth living = “TLNWL,” thoughts of self-harm = “TSH,” actual 

self-harm = “ASH,” and attempted suicide = “AS.” TLNWL, TSH, and ASH had significant non-zero h
2
 

(Table S1) but AS did not (h
2
=3.34%, P=0.099) so we considered two S-factor models: model-1 included 

TLNWL, TSH, ASH, and AS (Figure 1A) and model-2 included only TLNWL, TSH, and ASH. Genetic 

correlations (rgs) for each pair of indicators are shown in Table S2. Model-1 (χ2
(2)=0.21, AIC=16.21, 

CFI=1.00, SRMR=0.024) had superior fit statistics relative to model-2 (χ2
(2)=3.14, AIC=19.14, CFI=0.999, 

SRMR=0.025) and was chosen for all subsequent S-factor analyses (Table S3). TSH was the indicator 

most strongly loaded onto the S-factor (standardized loading = 1 ± 0.17).  

 

Genetic Architecture of the S-factor 

There were no loci associated with the S-factor at the level of genome-wide significance (GWS, P<5x10
-8

; 

Figure 1). All three suicidality loci from Strawbridge, et al.
11

 were nominally replicated in the S-factor 

GWAS (Table S4) with no significant difference in effect size between the two studies.  

We quantified several metrics of genome-wide polygenicity (Figure 1B) using GENESIS.
41

 Relative to 

suicidality (πc=0.005±0.002), the S-factor has a significantly higher proportion of non-null susceptibility 

SNPs (πc=0.010±0.001, Pdiff=0.045). However, the suicidality effect size distribution is broader than that 

of the S-factor, suggesting that suicidality SNPs effect sizes are generally greater and may require 

smaller samples sizes to detect by GWAS.
11

 When projected sample sizes reach 500,000 the S-factor 

GWAS is estimated to remain uninformative while the suicidality GWAS should yield 60 GWS SNPs (95% 

CI: 15-139). At projects of 1-million individuals, the S-factor remains relatively uninformative (4 GWS 

SNPs, 95% CI: 0-18). Only when projected to 5-million individuals does the S-factor GWAS become an 
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informative source of associated loci (539 GWS SNPs, 95% CI: 208-1117); however, the suicidality GWAS 

remained the more lucrative study in terms of susceptibility loci discovered at all projected sample sizes 

(Table S5). 

 

Heritability Comparisons 

The h
2
-SNP of the S-factor was 2.54% (P=1.72x10

-12
) which is significantly lower than the h

2
-SNP for a 

pooled suicidality phenotype (h
2
-SNP=7.6%, Pdiff=4.78x10

-13
).

11
 Though different with respect to 

phenotypic variance explained by common genetic variation, the rg between the S-factor and suicidality 

is almost perfect (rg=0.996, P<9.21x10
-308

).  

S-LDSC was applied to quantify the overlap between genomic annotation contributions to h
2
-SNP in the 

suicidality and S-factor GWAS. We partitioned the h
2
-SNP of the S-factor three ways: with LDSC, with 

gSEM S-LDSC using all indicators, and with gSEM S-LDSC removing the least well-powered indicator (AS). 

This approach permitted comparison across methods for robust detection of enriched genomic 

categories using the various strengths of each method (e.g., gSEM S-LDSC reports a Z-smooth value 

quantifying the degree of smoothing applied to the data with clear guidelines for enrichment 

interpretation given these values). The most consistently enriched annotation described sites conserved 

across primates as measured by PhastCons 46-way alignment (converved_primate_phastcons46way, 

mean enrichment=19.80±5.68, Figure 2 and Table S6). Regardless of trait definition or partitioning 

method applied, there were no significant differences in genomic enrichment (P≥0.147). 

 

Genetic Correlation 

We next compared rg estimates of suicidality and the S-factor relative to 32 mental health traits, 

including other genetic assessments of the thoughts and behaviors associated with death by suicide. 

Because of the high genetic overlap between the S-factor and suicidality, the rg estimates with other 

mental health traits were nearly identical (Figure 3, adjusted R
2
=0.984, P=8.55x10

-188
). Though not 

significantly different, the largest magnitude of difference in rg estimates stems from comparisons with 

TLNWL (rg with suicidality=0.870, rg with S-factor=0.941, Pdiff=0.284). 
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Comparison of Brain Region Transcriptomic Effects 

Consistent with prior findings from this study, tissue transcriptomic profile enrichments for suicidality 

and the S-factor are highly correlated (R
2
=0.861, P=3.265x10

-34
). Though the S-factor GWAS yielded two 

significant tissue transcriptomic profile enrichments, there was no difference in effect size for the 

enrichments derived from suicidality or the S-factor. Gene expression weights from four brain tissues 

were used for TWAS comparisons of suicidality and the S-factor due to their significant enrichments in 

the suicidality GWAS: cerebellar hemisphere, cerebellum, hippocampus, and hypothalamus (Table S8).  

Though no gene reached GWS in any of the TWAS performed (Table S9), the genetic correlation 

between genetically predicted gene expression effects underlying suicidality and the S-factor in each 

tissue was high: ρGE=0.990, P=1.31x10
-296

 considering cerebellar hemisphere weights; ρGE=0.991, 

P<9.21x10
-308

 considering cerebellum weights; ρGE=0.991, P=8.96x10
-175

 considering hippocampus 

weights; ρGE=0.992, P=1.81x10
-193

 considering hypothalamus weights. The most significant protein-

coding gene expression effects discovered from the more powerful suicidality TWAS were RBM26 in the 

cerebellar hemisphere (suicidality Z=3.95, P=7.53x10
-5

; S-factor Z=2.78, P=0.005) and COLQ in the 

hippocampus (suicidality Z=-3.90, P=9.53x10
-5

; S-factor Z=3.12, P=0.001). 

 

Cross-population Polygenic Scoring 

Using SNP effect sizes estimated from large European-ancestry GWAS, PGS for suicidality and the S-

factor in diverse ancestries were highly correlated (minimum Pearson’s r=0.726, P=3.25x10
-214

 in AFR; 

maximum Pearson’s r=0.824, P=1.92x10
-121

 in MID; Figure 4a). PGS for suicidality associated with 

suicidality (R
2
=11.1%, P=0.017), TLWNL (Nagelkerke’s R

2
=8.56%, P=0.009), and ASH (Nagelkerke’s 

R
2
=14.3%, P=0.034) in the AMR population; PGS for the S-factor associated with TLNWL in AMR 

(Nagelkerke’s R
2
=7.48%, P=0.045) and with ASH in MID (Nagelkerke’s R

2
=7.71%, P=0.046; Table S10 and 

Figure 4b). PGS for the S-factor also associated with neuroticism scores and depression in several diverse 

populations but the analogous test with suicidality PGS were generally not significant. However, there 

were no differences in effect size for the PGS regardless of the GWAS used to train them. In the CSA 

population, suicidality (Nagelkerke’s R
2
=4.39%, P=0.048) and S-factor (Nagelkerke’s R

2
=4.31%, P=0.048) 

PGS both associated with depression (Table S10). As a null control, we observed no relationship 

between PGS for suicidality or S-factor and height.  
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DISCUSSION 

The use of continuous or ordinal phenotypes for GWAS of psychiatric disorders and related 

psychopathologies has proven a powerful way to identify risk loci and related biological pathways 

underlying common diagnoses.
8-10

 This approach has been previously applied to studies of suicidality 

that apply an equal weight to each questionnaire item.
11

 In other words, regardless of the relationship 

between questionnaire items or the sensitivity of those items for an outcome, each contributed equally 

to the outcome. We compared this approach to capturing a suicidality phenotype to gSEM-derived S-

factor which explicitly considers the relationship between each indicator variable in the model.  

All four suicidal thoughts and behaviors significantly loaded onto the observed S-factor. Relative to 

epidemiological data supporting attempted suicide as the leading predictor of future death by suicide, 

the genetic component of the S-factor was most associated with TSH. AS was the least heritable 

indicator in this study but removing AS from the S-factor reduced model fit suggesting that this indicator 

is relevant on the genetic level. Therefore, AS may require larger sample sizes to become highly relevant 

to the S-factor structure. Instead, we suspect the major contribution of TSH to the S-factor stem from a 

balance between (i) heritability and power and (ii) increased specificity for suicidal thoughts and 

behaviors. TLNWL was the most powerful indicator GWAS but has previously shown extremely high 

phenotypic and genetic correlation with MDD (rg=0.46) and neuroticism (rg=0.56)
11

 and is even a 

component of the Personal Health Questionnaire 9-item measure of depressive symptoms.
42

 

The potential for risk locus discovery in GWAS of suicidality and the S-factor produced the most notable 

differences. Though the S-factor had a significantly larger number of non-null SNPs, these loci required 

substantially larger sample sizes to detect their relatively small effect sizes. It would require an 

estimated 5-million individuals with a similar prevalence of S-factor indicator endorsement to yield GWS 

SNPs in numbers already surpassed in GWAS of correlated traits like major depressive disorder
10

 and 

schizophrenia.
43

 The phenotypically aggregated suicidality item had an earlier return on investment 

producing hundreds of GWS SNPs with cohorts ranging from 500-thousand and 1-million participants. 

Furthermore, suicidality had a significantly higher h
2
 estimate suggesting this phenotype is more 

informative for inferring relevant biology through downstream in silico analyses. This is reinforced by a 

lack of significant differences in SNP effect sizes between the GWAS of suicidality and the S-factor and 

may stem from utilizing a linear regression for the suicidality GWAS relative to the individual logistic 

regressions performed for each of the UKB items contributing to the S-factor GWAS. The application of 

linear models to an ordinal trait like suicidality complicates the interpretation of how GWS loci increase 
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or decrease risk for such thoughts and behaviors due to the forced linear relationship in a non-linear 

space. An ordinal-trait aware SNP-phenotype regression may better model the skew in ordinal data 

commonly observed for traits ascertained through biobank surveys.
44

 Future work is necessary to 

understand the benefit of explicitly modeling ordinal data in genotype-phenotype associations of 

suicidal thoughts and behaviors. For example, to better understand how GWS loci increase or decrease 

risk for suicidality in a potentially non-linear fashion across suicidality categories. 

To our knowledge, the enrichment of SNP-annotations related to conserved genomic regions is the first 

of its kind for traits along the suicidality spectrum but was consistent across approaches. The magnitude 

of enrichment also was consistent with those reported for major depressive disorder
40

 and across 

psychiatric disorders more broadly.
45

 In the context of loci identified in GWAS of major depression, 

genes found in conserved regions of the genome were part of networks relevant for organismal 

development and function across the lifetime such as synaptic function and brain development.
46, 47

 

These enrichments in major depression GWAS suggest a rich interaction between genetic factors and 

the environment that has been empirically demonstrated for suicidality and select environments related 

to stress,
16

 substance use,
15

 and depression.
48

  

Several tissue transcriptomic profiles from brain regions were nominally enriched in the GWAS of 

suicidality but the S-factor GWAS was underpowered to detect similar enrichments. We further tested 

these enrichments using a TWAS approach in the cerebellar hemisphere, cerebellum, hippocampus, and 

hypothalamus. There were extremely high correlations between the suicidality and S-factor regardless 

of tissue; however, these relationships were estimated using only cis-elements only.
38

 We therefore 

cannot rule out the contribution of trans-regulatory elements to gene expression differences between 

suicidality and the S-factor.  

Though no gene reached genome-wide significance, the two most significantly associated genes harbor 

interesting functional relevance worth discussing. RBM26 was associated with schizophrenia in a recent 

study but only at a level of suggestive significance (P=3.41x10
-7

).
49

 Within the first decade of diagnosis, 

people who suffer from schizophrenia are at the highest risk for suicidality, with a total suicide rate of 

10%.
50

 Though there are several factors contributing to decreased life expectancy in schizophrenics, 

suicide is the largest one. COLQ is associated with cardiovascular traits such as resting heart rate 

(P=1.59x10
-12

).
51

  An increased baseline resting HR of 10 beats per minute increased the suicide rate by 

19% in one study.
52

 Though accounting for many essential covariates such as smoking status, sex, body 

mass index, stress, depressed mood, and use of psychotropic medications, this study, to our knowledge, 
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failed to account for population stratification and socioeconomic status. Though not directly related, 

RBM26 and COLQ may have pleiotropic links to suicidality. Further research is required to untangle the 

cause-effect relationships between these potential risk factors and the severity of suicidal thoughts and 

behaviors.  

We performed a cross-ancestry PGS analysis with respect suicidality and the S-factor which showed (i) 

limited portability to the AMR population with respect to suicidality measures, (ii) strong portability to 

the CSA population with respect to the S-factor indicator TLNWL, (iii) limited association between 

suicidality or S-factor PGS with other mental health outcomes associated with death by suicide, and (iv) 

lack of association between PGS and height, an unrelated trait. These findings are in line with the limited 

translation of EUR-derived PGS in existing cross-ancestry studies of transdiagnostic mental health 

characteristics.
53

 Of note from our study is the relatively large variance explained by the PGS in some of 

the diverse ancestries tested. This may partially be attributed to methodological benefits of a Bayesian 

approach but may also suggest consistent genetic architectures of suicidality across populations. Large 

studies are ongoing to learn about the genetic components of suicidal thoughts and behaviors in diverse 

ancestries and will permit deeper investigation of the S-factor and suicidality.  

We demonstrated that the genetic and transcriptomic signatures of suicidality and the S-factor strongly 

overlap but our study has some limitations to consider. First, this body of work relies on large studies of 

European ancestry individuals clustered into this grouping using genetic principal components. Our 

results support limited translation of these results to diverse populations. It is well documented that 

these communities experience (i) social and cultural stigma surrounding suicidal thoughts, behaviors, 

and associated death
54, 55

 and (ii) vastly different face-to-face interactions with the healthcare system.
56

 

For these reasons, our findings may not translate across diverse communities that disproportionately 

experience these thoughts and behaviors. Dedicated community outreach, sample recruitment, and 

educational programs are necessary to perform robust studies of suicidal thoughts and behaviors in 

other contexts, especially as they relate to community stressors that may interact with underlying 

genetic factors. Second, the UK Biobank is limited by the potential for recruitment, survivor, and recall 

bias as this cohort is generally older, wealthier, and better educated than a general community 

sampling. This cohort may therefore be depleted for the more extreme ends of the suicidality spectrum 

and better reflect milder suicidality ratings than those from a more representative sampling. Finally, 

death by suicide and the preceding thoughts and behaviors routinely co-occur with psychiatric 

diagnoses. The GWAS used to construct the S-factor did not take into consideration the effects of co-
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morbid depression, anxiety, chronic pain, or other necessary experiences or diagnoses. There is 

evidence that genetic findings related to suicidality are independent of psychiatric diagnoses
1, 6, 7, 11

 but it 

remains unclear how best to account for these variables to make discoveries with as much specificity for 

suicidal thoughts and behaviors as possible. Finally, we used dichotomous measures of suicidality as 

indicator traits to construct the S-factor. The construction of these items (e.g., the suicidal and non-

suicidal self-injury in the ASH phenotype) may underestimate heritability and its contribution to the S-

factor structure. 

Despite these limitations, this study empirically investigated the differences and similarities between 

definitions of suicidality. Across all analyses presented, the phenotypically-aggregated suicidality item 

was more statistically powerful and informative than the S-factor for downstream in silico 

characterization of the biology underlying this complex trait. In conclusion, our study informs one path 

forward for the analysis of participant responses related to thoughts and behaviors associated with 

death by suicide. By aggregating multiple informative items into a suicidality phenotype, studies are 

likely to generate more information about suicide biology compared to individual binary items or a 

genetically-defined S-factor. 
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FIGURES 

 

Fig 1. Factor structure and genetic architecture of the S-factor. (A) The four thoughts and behaviors 

associated with death by suicide (thought life not worth living = TLNWL, thoughts of self-harm = TSH, 

actual self-harm = ASH, and attempted suicide = AS) fit a single common factor (S-factor fit statistics are 

shown in the top left corner). The TSH indicator loading was constrained to 1; Table S3 shows indicator 

loadings before and after Heywood-case correction. (B) Genetic effect size distribution and associated 

statistics of the S-factor relative to suicidality using height and broad depression as comparative traits 

with relatively large and small proportions of relatively high effect size SNPs, respectively. 

Fig 2. Genomic annotation enrichment. Enrichment of 9 genomic annotations at least nominally 

enriched (asterisks indicate P<0.05) in the GWAS of suicidality and/or the S-factor. Genomic annotations 

have been described previously.
17, 18, 20

 All genomic annotation enrichments are provided in Table S6. 

Fig 3. Genetic correlation estimates for suicidality and S-factor and mental health/psychopathology 

traits. Each data point reflects a single mental health/psychopathology trait genetically correlated with 

suicidality and the S-factor (Table S7). Error bars denote the standard error associated with each point 

estimate. The adjusted-R
2
 reflects a linear prediction of S-factor rg with no intercept and weighted by the 

standard error of each rg with suicidality.  

Figure 4. Cross-population polygenic scoring. (A) Linear relationships between suicidality and S-factor 

polygenic scores estimated using European ancestry GWAS summary association data in five diverse 

ancestry groups. (B) Portability of suicidality and S-factor polygenic scores into Admixed American 

suicidality data from the UK Biobank. Asterisks indicate a significant difference in polygenic score 

relative to the control (suicidality scale = 0).  
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SUPPLEMENTARY MATERIAL 

Table S1. SNP-based heritability estimates for the four indicator traits used to derive the S-factor. 

Table S2. Genetic correlation estimates (s.e.) for the four indicator traits used to derive the S-factor. 

Table S3. Structure of the S-factor using two separate models. Model 1 includes attempted suicide in 

the factor structure while model 2 removes it due to lack of significant SNP-based heritability estimate.  

Table S4. Comparison of effect sizes for three prior suicidality SNPs discovered in Strawbridge, et al.
11

 

Table S5. Summary of effect size distribution comparisons between suicidality and the S-factor. Table A 

compares effect size distribution metrics; B compares the projected number of SNPs recovered from 

increasing sample sizes of each trait; C compares the projected variance explained from increasing 

sample sizes of each trait. 

Table S6. Partitioned heritability results for enrichment of genomic annotations. Yellow boxes denote 

significant enrichments. 

Table S7. Genetic correlation estimates for 32 mental health traits related to suicidality and the S-factor.  

Table S8. Tissue transcriptomic profile enrichment for suicidality and the S-factor using GTEx v8. 

Table S9. TWAS results for suicidality and S-factor in four brain tissues (GTEx v8): cerebellar hemisphere, 

cerebellum, hippocampus, and hypothalamus.  

Table S10. Results of cross-population polygenic scoring. Yellow highlight indicates a significant result in 

either the suicidality test or the S-factor test. Yellow highlight plus red text indicates a significant result 

in both tests.  
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TLNWL TSH ASH AS

Sg

.81 (.20).57 (.15)1 (.17).84 (.15)

UTLNWL UTSH UASH UAS

1 111

.30 (.24) .00 (.32) .67 (.23) .34 (.59)

1
c2 = 0.21
AIC = 16.2
CFI = 1
SRMR = 0.02
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Adjusted R2=0.984
P=8.55x10-188
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