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Abstract (221 words) 40 

Analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic 41 

sequences from household infections may provide useful epidemiological information 42 

for future control measures. Between December 2020 and July 2022, we conducted a 43 

case-ascertained household cohort study whereby households were recruited if a 44 

member was either a SARS-CoV-2 case or contact of a confirmed case. A total of 765 45 

members of 214 households were prospectively monitored for SARS-CoV-2 infection 46 

and transmission. Follow-up visits collected a nasopharyngeal/oropharyngeal (NP/OP) 47 

swab on days 1, 4 and 7 for RT-PCR diagnosis. If any of these were positive, further 48 

swabs were collected on days 10, 14, 21 and 28. Of 2,780 NP/OP swabs collected, 540 49 

(19.4%) tested SARS-CoV-2 positive and viral genome sequences were recovered for 50 

288 (53.3%) positive samples. The genomes belonged to 23 different Pango lineages. 51 

Phylogenetic analysis including contemporaneous Coastal Kenya data estimated 233 52 

putative transmission events involving 162 members of the 89 households, of which 60 53 

(25%) were intra-household transmission events while 173 (75%) were infections that 54 

likely occurred outside the households. In 34 (38%) households, multiple virus 55 

introductions were observed (up to six) within the one-month follow-up period, in 56 

contrast to high-income settings, where a single introduction seemed to occur during 57 

epidemic waves. Our findings suggests that in this setting control of respiratory virus 58 

spread by household member isolation will be ineffective.  59 
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Introduction 60 

Households are a fundamental unit of social structure and the frequent scene of 61 

respiratory pathogen transmission including for severe acute respiratory syndrome 62 

coronavirus 2 (SARS-CoV-2), the aetiological agent of coronavirus disease 2019 63 

(COVID-19) 1,2. The household secondary attack rate (i.e., the probability of infection of 64 

susceptible household members directly from the first case in the household) for SARS-65 

CoV-2 has been estimated to be about 21.1% (95%CI: 17.4-24.8%) with considerable 66 

heterogeneity observed over geographic regions and time periods 3-6. An improved 67 

understanding of SARS-CoV-2 household transmission, including the frequency of virus 68 

transmission within a household compared to transmission from outside into the 69 

household, may help refine local control measures.  70 

 71 

As of August 2022, Kenya had experienced six waves of SARS-CoV-2 infections 7. In 72 

this period, Kenya’s COVID-19 countermeasures as measured by the Oxford Stringency 73 

Index (SI), a measure based on nine key indicators rescaled from 0-100, fluctuated 74 

between 36 and 898 in response to the perceived threat. The different infection waves 75 

were dominated by distinct virus variants: the first two by the early ancestral virus 76 

lineage (mainly B.1), the third by the Alpha (B.1.1.7) variant of concern (VOC), the 77 

fourth by Delta VOC (B.1.617.2), the fifth by Omicron VOC (BA.1), and the sixth by 78 

Omicron sub-variants BA.4/5 9. Local epidemiological studies suggest many SARS-79 

CoV-2 infections have been asymptomatic or mild 10, as evidenced by the high 80 

seroprevalence (48.5% by March 2021 11) without high numbers of hospitalisations or 81 

excess mortality 12. However, confirmed active SARS-CoV-2 infections by the Kenyan 82 

Ministry of Health (MoH) have been reported in less than 1% of the Kenyan population 83 

indicating inadequate testing. Consequently, gaps exist in our quantitative 84 

documentation of SARS-CoV-2 circulation within the Kenyan population. 85 

 86 

To date, SARS-CoV-2 genomic analysis has played a key role in elucidating COVID-19 87 

pandemic transmission patterns 13-17. For instance, genomic analysis has helped 88 

uncover the nature of virus seeding into close living environments like,  hospitals 18,19, 89 

prisons20, cruise ships 21, long-term care facilities 22, or learning institutions 23, and has 90 
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also uncovered a number of superspreading events 19,24. Unlike many RNA viruses, 91 

SARS-CoV-2 replication is believed to be under some level of proof-reading25, limiting 92 

its substitution rate (estimated at 9.90 × 10-4 nucleotide substitutions/site/year) 26, a 93 

parameter critical in applying genomics to understand short-term epidemiological 94 

dynamics.  95 

 96 

Few studies have examined SARS-CoV-2 genomic diversity in putative within-97 

household transmission cases. In Ireland, Hare et al 27 found that most family members 98 

testing positive had indistinguishable consensus genome sequences from other family 99 

members and the early presumed index case had a divergent sub-lineage. In the 100 

present study, we document SARS-CoV-2 transmission patterns within households in 101 

coastal Kenya by analysing infections identified in a case-ascertained cohort (i.e. 102 

households enrolled if a member was confirmed case of SARS-CoV-2 or a contact of 103 

one) during successive local waves of infections 28. We undertook detailed genomic 104 

analyses to identify patterns of SARS-CoV-2 introductions into households and to 105 

document the frequency and patterns of infection spread within households in coastal 106 

Kenya. 107 

 108 

Results  109 

Baseline characteristics 110 

A total of 765 participants from 214 households were recruited between 10th December 111 

2020 and 29th July 2022. From these, 2,780 nasopharyngeal/oropharyngeal (NP/OP) 112 

swabs were collected, 540 (19.4%) of which tested SARS-CoV-2 positive by RT-PCR 113 

(Table 1). The positive swabs were from 254 infected participants in 119 households. 114 

The temporal distribution of the swab collections for all the 214 households and their 115 

RT-PCR testing results are shown in S1 Fig. The participants with a positive swab had 116 

a median age of 27 years (IQR: 12.0-46.0; Table 1), with 164 (64.6%) females. 117 

Compared to participants who remained SARS-CoV-2 negative during the follow-up 118 

period, positive cases were more likely to report at least one acute respiratory illness 119 

(ARI) symptom (67.7% vs 32.5%; p <0.001, chi-squared test). The household 120 

recruitments were predominantly coincidental with the national COVID-19 waves 3, 4, 5 121 
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and 6 (Fig. 1A and B) with only one household recruited during wave 2. The changes in 122 

the national countermeasures during the study period as estimated by the Oxford SI is 123 

provided in Fig. 1C. 124 

 125 

Table 1. Demographic characteristics of study participants. 126 

Characteristic Positive Negative Total 
NP/OP swabs 540 2240 2780 
Recruited households  119 95 214 
Recruited participants  254 511 765 
Sex    
  female (%) 164 (64.6) 297 (58.1) 461 (60.3) 
  male (%) 90 (35.4)  214 (41.9) 304 (39.7) 
Age distribution 
(years) 

   

  Median (IQR) 27.0 (12.0-46.0) 20.0 (10.0-40.0) 24.0 (11.0-44.0) 
Age categories     
  0-4 y (%) 31 (12.2) 54 (10.6) 85 (11.1) 
  5-9 y (%) 23 (9.1) 54 (10.6) 77 (10.1) 
  10-19 y (%) 48 (18.9) 133 (26.0) 181 (23.7) 
  20-39 y (%) 73 (28.7) 113 (28.6) 219 (28.6) 
  40-64 y (%) 63 (24.8) 92 (18.0) 155 (20.3) 
  65+ y (%) 14 (5.5) 31 (6.1) 45 (5.9) 
  Unknown  2 (0.8) 1 (0.2) 3 (0.4)  
Symptom status    
  asymptomatic 82 (32.3) 345 (67.5) 427 (55.8) 
  symptomatic 172 (67.7) 166 (32.5) 338 (44.2) 
    

IQR: Interquartile Range, y: years 127 

  128 
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 129 

 130 
Fig. 1. The timeline of the household study and genomic sequencing results.  131 
Panel A: Reported SARS-CoV-2 infections observed in Kenya between March 2020 and 132 
March 2022. Panel B: Temporal distribution of the collected NP/OPs and their RT-PCR 133 
diagnostic results. Panel C: The level of government restrictions. Panel D: Temporal 134 
distribution of the SARS-CoV-2 VOCs detected in the household study.  135 
 136 
 137 
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Genomic sequencing and lineage/VOC classification 139 

 Near complete genomes (over 80% coverage) were obtained from 288 samples (53.3% 140 

of positive samples) collected from 162 participants from 89 households. The samples 141 

that failed sequencing (n = 252) had high Ct values (corresponding to low viral load; 142 

>33.0; S2. Fig.) or yielded low quality PCR products during library preparation. The 288 143 

genomes were classified into non-VOC (Pango lineage B.1; n = 11), Alpha VOC (n = 144 

70), Beta VOC (n = 22), Delta VOC (n = 88) and Omicron VOC (n = 97; Fig.1D). All 145 

Alpha and Beta sequences fell within lineage B.1.1.7 and B.1.351, respectively. Within 146 

the Delta VOC, six Pango lineages were identified while within the Omicron VOC 14 147 

Pango lineages were identified. The lineages within Omicron VOC included those that 148 

classified under BA.1, BA.2, BA.4 and BA.5 sub-variants. A summary of the temporal 149 

distribution of the 23 Pango lineages that were identified across the sequenced cases 150 

and their history of global detection is presented in S2 Fig. and S1 Table. 151 

 152 

Phylogenetic clustering of the household study genomes  153 

To investigate the genetic diversity in the household study genome sequences, we 154 

reconstructed a maximum likelihood (ML) phylogeny that included background coastal 155 

Kenya co-circulating viruses (n = 2,555). As expected, the household genome 156 

sequences clustered by VOC and Pango lineages with other Kenyan coastal sequences 157 

(S3 Fig.). Notably, lineage B.1 sequences were found in multiple branches of the 158 

phylogeny, including some at the base of branches leading to Beta and Delta VOCs. To 159 

assess the genetic relatedness of the recovered genomes within and between 160 

households, we reconstructed VOC-specific phylogenies with tips coloured by the 161 

household of sampling (Fig. 2). Here we observed both intra- and inter-household 162 

clustering (i.e., multiple sequences of a single clade identified in one household or 163 

shared between two or more households). In a few households, sequences of a single 164 

VOC but distinct clades were observed, indicating multiple distinct virus introductions 165 

into the same household (Fig. 2). 166 

 167 
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 168 
Fig. 2. Phylogenetic patterns of variants of concern (VOC) in the household study 169 
using maximum-likelihood methods. These household study VOC phylogenies 170 
include other SARS-CoV-2 genome sequences generated from samples collected in six 171 
Kenyan coastal counties (Mombasa, Kwale, Kilifi, Taita Taveta, Tana River and Lamu) 172 
during the study period as background diversity (tips without symbols). On the 173 
phylogenies, household sample derived sequences are displayed as filled circles, 174 
coloured distinctly by household. In the Alpha, Beta, Delta, and Omicron phylogenies, 175 
370, 175, 535 and 574 genome sequences were included, respectively.  176 
 177 

Estimating the number of introductions into the households 178 

SARS-CoV-2 has been reported to have a genomic evolutionary rate of ~2 nucleotide 179 

substitutions per genome per month 29. A heterogenous distribution of the pairwise 180 

nucleotide differences of specimens identified in the same household was observed 181 

(range 0-63; median 0.0, mean 2.8; S4 Fig.). More than two nucleotide differences 182 

between genomes from the same household were observed in 25 households, implying 183 
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possible multiple introductions into these households. We further investigated the 184 

number of virus introductions into each household using ancestral state reconstruction 185 

(ASR) along the dated ML phylogeny 16,30. A total of 155 virus introductions were 186 

predicted into the 89 households where we recovered SARS-CoV-2 sequence data. On 187 

classifying the transition events by sequence origin ("non-household" events - those 188 

individuals not from same household - and "household" events - those where both 189 

involved individuals were members of same household), we found that most transitions 190 

were "non-household" compared to "household" transition events (75% vs. 25%; Fig. 191 

3A). Overall, we estimated that a single virus introduction occurred for 55 households 192 

(61%), two introductions for 16 households (17%), three introductions for nine 193 

households (10%), four introductions for five households (6%), five introductions for 194 

three households (3%) and six introductions in one household (Fig. 3B).  195 

 196 

 197 
Fig. 3. Patterns of SARS-CoV-2 introductions into studied households as determined by 198 
ancestral state reconstruction. Panel A: Alluvial plot showing the number of viral imports 199 
and exports into and out of study households. Panel B: Frequency of distinct 200 
introductions into the study households.  201 
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Discussion 203 

We provide evidence of frequent multiple introductions of SARS-CoV-2 into rural coastal 204 

Kenyan households within a month, a finding that was unexpected. The conventional 205 

view has been that households with concurrently infected members most likely acquire 206 

the infection introduced through a single index case. This assumption has been 207 

repeatedly supported by several genomic studies. For instance, a phylogenetic analysis 208 

performed in a Dutch study following 85 households showed a single introduction into 209 

all the studied households 4. By contrast, in the present study, about one-third of 210 

infected households (38%) had two or more introduction events within a distinct 211 

epidemic wave. 212 

 213 

A variety of factors may explain the differences in household SARS-CoV-2 introduction 214 

patterns identified in our study compared to previous observations. First, in our setting, 215 

multiple families may live in one compound and eat from one kitchen and these were 216 

defined as a single household in this study 31. Such living arrangement results in 217 

relatively larger household sizes that may be associated with higher chances of multiple 218 

virus introductions, especially at the peak of epidemic waves.  Second, the dominance 219 

of informal sector jobs in this setting may have made options like working from home 220 

difficult to implement. As result the potential for acquiring infection outside the 221 

household setting was high relative to high-income settings. 222 

 223 

Our study followed-up participants for a period of up to 1 month with serial sample 224 

collection and recovered genomes were analysed in the context of contemporaneous 225 

locally circulating diversity in coastal Kenya 32. Despite observing minimal nucleotide 226 

variation between samples from members of the same household infection clusters, 227 

when we incorporated sampling dates through the ASR analysis, we were able to 228 

partially reconstruct potential within-household transmission events. This allowed the 229 

identification of multiple introductions into the households of closely related viruses, 230 

observation of putative within-household transmission and short-interval reinfections.  231 

 232 
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Few studies have examined SARS-CoV-2 households transmission dynamics within 233 

Africa 33-35, and these have resulted in diverse findings. In rural Egypt, a 6-month study 234 

reported a SAR of 89.8% 33, in South Africa a 13-month study reported a 25% infection 235 

rate among vulnerable household contacts 34, and in Madagascar, a SAR of 38.8% 236 

(CI:19.5-57.2) 36 was reported. None of these studies included a viral genomic analysis 237 

to support any conclusions that the inferred household transmission clusters were 238 

epidemiologically linked and arose from a single index case.  239 

 240 

The Kenyan government countermeasures in place during the study period may have 241 

had an impact on the spread of SARS-CoV-2 within the study households. In June 242 

2020, the Kenyan government announced guidelines for home-based care for 243 

asymptomatic or mildly symptomatic patients without co-morbidities 37. Kenya started 244 

vaccinating its population in March 2021, but the coverage was low (<15%) during the 245 

study period 38, and thus it is unlikely that it affected transmission during our study. The 246 

stringency index in the country during the study period fluctuated from 35% to 75%. 247 

However, we did not detect variation in the pattern of introductions over time, which 248 

could suggest that the various restrictions had minimal impact at the household level. 249 

However, concluding on this would likely require more advanced epidemiological 250 

modelling. 251 

 252 

This study had several limitations. First, several positive NP/OP samples (46.7%) failed 253 

to yield viral genome sequences or had large genome sequencing gaps due to PCR 254 

amplicon drop-off. With such a high level of genome data missingness, the overall 255 

phylogenetic signal was reduced in trying to establish who infected whom or 256 

directionality of transmission. Second, we cannot rule out that a few of the sequence 257 

changes observed could be sequencing or assembly artifacts 39. Third, the case-258 

ascertained study design we used had the drawback that by the time the first sample 259 

was collected, multiple positive cases had already occurred in most households. Most of 260 

the index cases were recruited following presentation to a health facility with ARI. This 261 

complicated our effort of fully determining who infected whom back in the household. To 262 

overcome this challenge, future studies should observe members before entry of the 263 
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virus into households and genomic data co-analysed with other relevant epidemiological 264 

data 40. Fourth, our sampling interval, especially after week two, may have missed 265 

persons who had been positive for less than the 7 days sample collection interval. 266 

Higher density sampling has previously been associated with a higher attack rate4. 267 

Finally, we did not bring in other datatypes like,  contact patterns, symptoms and shared 268 

intra-host variation 41, which would have  provided further insights into potential 269 

transmission linkages. An analysis of secondary attack rates is being conducted that 270 

includes all data, including serological evidence of infection, which is not included here. 271 

 272 

In conclusion, we identified an unusually high number of independent virus introductions 273 

into households in coastal Kenya during household temporally clustered infections. Our 274 

findings suggests that control of SARS-CoV-2 transmission by household member 275 

isolation alone may not stop community transmission in this setting. Our study further 276 

highlights the importance of examining genomic data for accurate estimation and 277 

interpretation of SARS-CoV-2 household epidemiological parameters.  278 

 279 

Methods  280 

Study design and recruitment 281 

We conducted a case-ascertained study in coastal Kenya, where new households were 282 

recruited into the study via five local health facilities or the Kilifi County Department of 283 

Health rapid response team (RRTs). Households were defined as dwellings or groups of 284 

dwellings that share the same kitchen or cooking space (S2 Table). Many of the 285 

recruited households were from within the Kilifi Health and Demographic Surveillance 286 

System (KHDSS) area located in Kilifi County, Coastal Kenya 42. To get enrolled, a 287 

household needed to have at least two occupants, to be accessible by road, and to 288 

obtain permission from the household head. In the beginning, only households with a 289 

member who was a contact of a confirmed case from a different household were 290 

recruited, but due to slow enrolment, we revised the protocol to include households with 291 

confirmed cases at first sampling. A household was exempted if at the time of 292 

recruitment: two or more members had already developed COVID-19 symptoms (e.g. 293 
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fever, sore throat, cough etc), a member had been hospitalized due to COVID-19, or the 294 

household had been enrolled in a trial of therapeutic COVID-19 product.  295 

 296 

Follow-up 297 

During each household visit, a NP/OP swab was obtained from all participants and 298 

transported in cool boxes with ice packs to KEMRI-Wellcome Trust Research 299 

Programme (KWTRP) laboratories within 48 hr for real-time RT-PCR testing. The study 300 

had broadly two follow-up arms: "reduced follow-up" and "intense follow-up". 301 

Households in the "reduced follow-up" arm were those where all the members tested 302 

SARS-CoV-2 negative at day 1, 4, and 7. Therefore, in that case, follow-up was 303 

discontinued henceforth with a few exceptions (S1 Fig.). The "intense follow-up arm" 304 

was activated when a household member tested positive on day 1, 4, or 7. In that case, 305 

the household was sampled again on day 10, 14, 21, and 28. Data on baseline 306 

household and demographic characteristics were collected by the study team at 307 

enrolment. During all households’ visits, data on presence of ARI symptoms (e.g., fever, 308 

cough, runny nose, sore throat, headache) were collected.  309 

 310 

Laboratory procedures 311 

SARS-CoV-2 diagnosis 312 

SARS-CoV-2 testing of study samples was undertaken alongside samples collected in 313 

six coastal counties of Kenya as part of the national COVID-19 testing as previously 314 

described 10. Four different viral RNA extraction kits (namely, QIAamp Viral RNA Mini 315 

Kit, RNeasy ® QIAcube ® HT Kit, TIANamp Virus RNA Kit and Da An Gene Nucleic 316 

acid Isolation and Purification Kit) were deployed in combination with five different RT-317 

PCR kits/protocol (namely, Da An Gene Co. detection Kit, European Virus Archive-318 

Global (EVAg) E gene protocol, Standard M Kit, Sansure Biotech Novel Coronavirus  319 

(2019-nCoV) Nucleic Acid Diagnostic Real-time RT-PCR kit10). Positives were 320 

determined using the kit/protocol-defined cycle thresholds (Ct). In kits where multiple 321 

SARS-CoV-2 genomic regions were targeted, the average cycle threshold (Ct) was 322 

calculated from the individual Cts. 323 

 324 
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Genome sequencing 325 

We aimed to sequence whole genomes of all the RT-PCR positive samples with a cycle 326 

threshold of < 33.0. Viral RNA was re-extracted from the specimens using QIAamp viral 327 

RNA mini-Kit following the manufacturer’s instructions and converted to cDNA using 328 

Lunascript kit with ARTIC protocol primers 43. Genome amplification was conducted 329 

using Q5 PCR kit and ARTIC protocol primers (initially v3 and then v4). Sequencing 330 

libraries were prepared using Oxford Nanopore Technologies (ONT) ligation sequencing 331 

kit SQK-LSK109 and the ONT Native Barcoding Expansion kit as described in the 332 

ARTIC protocol 43. Sequencing was performed on Oxford Nanopore Technologies’ 333 

MinION or GridION devices using R9.4.1 flow cells.  334 

 335 

Bioinformatic analysis 336 

Genome assembly and lineage assignment 337 

The ONT’s raw sequencing reads (FAST5) were base-called and demultiplexed using 338 

ONT's Guppy v3.5-4.2. The resultant files (FASTQ) were assembled into consensus 339 

genomes using ARTIC bioinformatic pipeline reference-based approach 340 

(https://artic.network/ncov-2019/ncov2019-bioinformatics-sop.html; last accessed 2022-341 

09-17). Only nucleotides with a read depth of more than × 20 were included into the 342 

consensus sequence. Only sequences with >80% genome coverage were further 343 

analysed. The genomes were assigned Pango lineages using the command-line 344 

installation of pangolin v4.1.3, PUSHER-v1.3, scorpio v0.3.16 and constellation v0.1.6 345 
44,45.  346 

 347 

Phylogenetic analysis 348 

Multiple sequence alignments were generated using Nextalign v.1.10.1 referenced-349 

based aligner within the Nextclade tool v0.14.2 46 using the command: 350 

 351 

nextalign -r NC_045512.fasta -r <input_file.fasta> 352 

 353 

Alignments were visualized using a custom Python script and “snipit” tool 354 

(https://github.com/aineniamh/snipit; last accessed 2022-05-20). Pairwise distances 355 
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were calculated using pairsnp.py (https://github.com/gtonkinhill/pairsnp/; last accessed 356 

2022-05-20) using the command: 357 

 358 

pairsnp -f <input_file.fasta> --csv --output <output_file.fasta> 359 

 360 

Phylogenetic relationships between all recovered genomes and between viruses 361 

classified under the same VOC were obtained through the inference of maximum 362 

likelihood (ML) trees performed with the program IQTREE v2.1.3 with a general time 363 

reversible (GTR) substitution model using the command: 364 

 365 

Iqtree -s <input_alignment.fasta> -nt <no_of_cores> -m GTR 366 

 367 

We included contemporaneous genomes from the six coastal Kenya counties 368 

(Mombasa, Kilifi, Kwale, Taita Taveta, Tana River, and Lamu) that were sequenced as 369 

part of the national SARS-CoV-2 genomic surveillance to provide phylogenetic context 370 

to the household study genomes. Each ML tree was subsequently time-calibrated using 371 

the program TreeTime, assuming a constant evolutionary rate of SARS-CoV-2 genome 372 

of 8.0 × 10-4 using the command: 373 

 374 

treetime –tre <tree_file> --aln <alignment_file> --clock-rate 0.00084 --dates 375 

<metadata_file.csv> 376 

 377 

The phylogenetic trees were combined with metadata and visualized with the R 378 

package "ggtree" v2.4.2 47. 379 

 380 

Virus introductions and putative transmissions 381 

The number of independent virus introductions into the households was investigated 382 

using two approaches. 383 

  384 
i. Pairwise nucleotide substitution.   385 
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Here, we compared observed nucleotide differences between pairs of household 386 

genomes with the number of nucleotide mutations expected over the time interval 387 

between the two sampling dates. The pairwise differences between the household study 388 

genomes were computed using the program pairsnp 389 

(https://github.com/gtonkinhill/pairsnp; accessed 06-Feb-2023).  390 

 391 
ii. Ancestral state reconstruction (ASR)  392 

ASR approach was used to identify the introduction events into a household and count 393 

the transitions between household members 16.  This was performed along the time-394 

scaled phylogeny obtained for each VOC. To infer the number of introduction events 395 

into each household, a variable "source" was generated for which the sequences were 396 

assigned the household ID or noted as "non-household". Using the dated phylogeny, 397 

the nucleotide sequence alignment, the "source" metadata file, a mugration analysis 398 

was run using TreeTime48, using the command: 399 

 400 

treetime mugration --tre <dated_tree_file> --states <metadata_file.csv> --attributes 401 

<source_attribute> 402 

 403 

To infer within household transition events, a variable "participant" was generated for 404 

which the sequences were assigned the participant ID or noted as "non-household". 405 

The mugration analysis was rerun using the dated phylogeny and transitions between 406 

members of the same households noted using python scripts described in 16,30. 407 

 408 

Statistical analysis 409 

Summary statistics were computed for key demographic characteristics including mean, 410 

median, standard deviation as appropriate. Infection prevalence was expressed using 411 

proportions and comparison between groups included appropriate statistical tests (e.g., 412 

chi-square or Fisher's exact). All statistical analyses were performed in R version 4.0.5. 413 

  414 
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 424 

 425 

Data availability 426 

The consensus genome sequences obtained in this study that passed our quality 427 

control filters have been submitted to both GISAID and GenBank database (accession 428 

numbers available in appendix pages of the supplementary material). The raw data files 429 

have been prepared for deposition in Harvard DataVerse. For more detailed information 430 

beyond the metadata used in the paper, there is a process of managed access requiring 431 

submission of a request form for consideration by our Data Governance Committee 432 

(http://kemri-wellcome.org/about-us/#ChildVerticalTab_15). 433 

 434 

Code availability 435 

The code for the analyses presented in this manuscript is available from Github using 436 

the link https://github.com/cnyaigoti/Household_study_2021-2022.  437 
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