Understanding the chronic kidney disease landscape using patient representation learning from electronic health records
View ORCID ProfileKaren Kapur, Moritz Freidank, View ORCID ProfileMichael Rebhan
doi: https://doi.org/10.1101/2022.10.25.22280440
Karen Kapur
1Novartis Institutes for BioMedical Research, Basel, Switzerland
Moritz Freidank
2Novartis Pharma AG, Basel, Switzerland
Michael Rebhan
1Novartis Institutes for BioMedical Research, Basel, Switzerland

- Supplementary table 1[supplements/280440_file03.xlsx]
- Supplementary table 2[supplements/280440_file04.xlsx]
- coi_disclosure[supplements/280440_file05.zip]
Posted October 26, 2022.
Understanding the chronic kidney disease landscape using patient representation learning from electronic health records
Karen Kapur, Moritz Freidank, Michael Rebhan
medRxiv 2022.10.25.22280440; doi: https://doi.org/10.1101/2022.10.25.22280440
Subject Area
Subject Areas
- Addiction Medicine (417)
- Allergy and Immunology (739)
- Anesthesia (216)
- Cardiovascular Medicine (3162)
- Dermatology (268)
- Emergency Medicine (469)
- Epidemiology (13130)
- Forensic Medicine (15)
- Gastroenterology (876)
- Genetic and Genomic Medicine (4957)
- Geriatric Medicine (456)
- Health Economics (761)
- Health Informatics (3115)
- Health Policy (1112)
- Hematology (417)
- HIV/AIDS (984)
- Medical Education (460)
- Medical Ethics (121)
- Nephrology (509)
- Neurology (4705)
- Nursing (249)
- Nutrition (698)
- Oncology (2430)
- Ophthalmology (690)
- Orthopedics (272)
- Otolaryngology (335)
- Pain Medicine (314)
- Palliative Medicine (88)
- Pathology (523)
- Pediatrics (1260)
- Primary Care Research (531)
- Public and Global Health (7275)
- Radiology and Imaging (1625)
- Respiratory Medicine (952)
- Rheumatology (465)
- Sports Medicine (409)
- Surgery (527)
- Toxicology (66)
- Transplantation (224)
- Urology (194)