Understanding the chronic kidney disease landscape using patient representation learning from electronic health records
View ORCID ProfileKaren Kapur, Moritz Freidank, View ORCID ProfileMichael Rebhan
doi: https://doi.org/10.1101/2022.10.25.22280440
Karen Kapur
1Novartis Institutes for BioMedical Research, Basel, Switzerland
Moritz Freidank
2Novartis Pharma AG, Basel, Switzerland
Michael Rebhan
1Novartis Institutes for BioMedical Research, Basel, Switzerland

Data Availability
All data produced in the present work are contained in the manuscript
Posted October 26, 2022.
Understanding the chronic kidney disease landscape using patient representation learning from electronic health records
Karen Kapur, Moritz Freidank, Michael Rebhan
medRxiv 2022.10.25.22280440; doi: https://doi.org/10.1101/2022.10.25.22280440
Subject Area
Subject Areas
- Addiction Medicine (416)
- Allergy and Immunology (736)
- Anesthesia (216)
- Cardiovascular Medicine (3155)
- Dermatology (268)
- Emergency Medicine (468)
- Epidemiology (13121)
- Forensic Medicine (15)
- Gastroenterology (876)
- Genetic and Genomic Medicine (4945)
- Geriatric Medicine (456)
- Health Economics (758)
- Health Informatics (3112)
- Health Policy (1110)
- Hematology (416)
- HIV/AIDS (983)
- Medical Education (460)
- Medical Ethics (121)
- Nephrology (508)
- Neurology (4699)
- Nursing (249)
- Nutrition (696)
- Oncology (2425)
- Ophthalmology (690)
- Orthopedics (272)
- Otolaryngology (334)
- Pain Medicine (313)
- Palliative Medicine (88)
- Pathology (523)
- Pediatrics (1258)
- Primary Care Research (530)
- Public and Global Health (7265)
- Radiology and Imaging (1625)
- Respiratory Medicine (950)
- Rheumatology (464)
- Sports Medicine (408)
- Surgery (525)
- Toxicology (66)
- Transplantation (223)
- Urology (193)