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ABSTRACT 

Efforts to track and model SARS-CoV-2 infection dynamics in the population have been 

complicated by certain aspects of the transmission characteristics, which include a pre-

symptomatic infectious phase as well as asymptomatic infectious individuals. Another problem 

is that many models focus on case count, as there has been (and is) limited data regarding 

infection status of members of the population, which is the most important aspect for 

constructing transmission models. This paper describes and explains the parameterization, 

calibration, and revision of the NC-COVID model, a compartmental model to estimate SARS-

CoV-2 infection dynamics for the state of North Carolina, US. The model was developed early in 

the pandemic to provide rapid, up-to-date state-level estimates of the number of people who 

were currently infected, were immune from a prior infection, and remained susceptible to 

infection. As a post modeling exercise, we assessed the veracity of the model by comparing its 

output to SARS-CoV-2 viral particle concentrations detected in wastewater data and to 

estimates of people infected using COVID-19 deaths. The NC-COVID model was highly 

correlated with these independently derived estimates, suggesting that it produced accurate 

estimates of SARS-CoV-2 infection dynamics in North Carolina. 
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INTRODUCTION 

A major obstacle in efforts to mitigate and prevent SARS-CoV-2 infection and COVID-19 disease 

has been the presence of people with asymptomatic infections and pre-symptomatic 

transmission, which has (and continues to) complicate efforts to track and model infection 

dynamics in the population (Gao et al., 2021). The complications arise because 1) transmission 

cannot be traced leading to unobserved transmission of the virus and 2) unobserved infections 

are not captured via disease surveillance mechanisms thus requiring models for estimating the 

true number of infections. While confirmed case counts are available from most government 

agencies, these values represent only those who have been infected, accessed testing, and 

received a positive test result from an entity that reports their results to some centralized 

agency. This issue has been present throughout the pandemic, but was especially problematic 

in its early days when the testing infrastructure was still under development and when testing 

was only available to those demonstrating symptoms of COVID-19 (Perkins et al., 2020a). A 

recent example occurred during the Omicron wave in late 2021 and early 2022 when the use of 

rapid at home antigen tests increased rapidly (Rader et al., 2022), but did not require reporting 

(and thus was not captured by surveillance systems). 

Population level epidemiological models, at a bare minimum, require estimates of the number 

of people who are infectious at any given time, as this value (and not the number of people 

who are confirmed cases) drives transmission dynamics. Unfortunately, this is not the metric 

captured in the COVID-19 testing and surveillance apparatus, which largely focused on people 

experiencing COVID-like symptoms or those with potential exposure to someone that tested 

positive for SARS-CoV-2 infection. Although lab confirmed infections (case counts) are a useful 

metric and can be used to estimate the true number of infections, there are a number of 

factors that affect the relationship between infections and confirmed cases including 1) the age 

distribution of the population because it impacts the presence of asymptomatic infections 

(Nikolai et al., 2020), 2) a host of aspects regarding testing such as the availability (ease of) of 

testing, the number of tests performed, the effectiveness of the testing approach (e.g., who 

gets tested), and the accuracy of the tests themselves, and 3) the number of people truly 

infected. While some of these factors likely remain relatively constant over time, others have 
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varied widely over the course of the pandemic (e.g., Brown and Walensky, 2020). Essentially, 

the most important aspect of infection dynamic models (people infected and infectious) has 

been (and is) unknowable and the parameters that could be used to estimate infections from 

confirmed case counts have varied over time (Omori et al., 2020). 

Another recurring setback for SARS-CoV-2 infection modeling efforts has been the lack of 

ground truth data that can be used to compare and validate modeled results (e.g., estimates of 

people who are infectious, remain susceptible, or have immunity via vaccination or prior 

infection) (Holmdahl and Buckee, 2020). This problem is especially formidable when paired with 

the relatively short time periods in which estimates and forecasts must be available to be useful 

for decision-making purposes, as well as the evolving nature of the pandemic and scientific 

understanding of SARS-CoV-2 transmission. This issue was exceptionally problematic during 

early efforts to plan and implement COVID-related mitigation efforts, as there was considerable 

uncertainty regarding many aspects of the virus and its characteristics (Holmdahl and Buckee, 

2020).  

In the early stages of the pandemic, we developed the NC-COVID model, a compartmental 

model to estimate SARS-CoV-2 infection dynamics for the state of North Carolina, US. The 

motivation for building the NC-COVID model was to provide rapid, up-to-date state-level 

estimates of the number of people who were currently infected, were immune from a prior 

infection, and remained susceptible to SARS-CoV-2 infection. The model results were updated 

daily and made freely available on the website https://www.nc-covid.org. Because the NC-

COVID model was developed and deployed early in the COVID-19 pandemic, we made 

numerous revisions and improvements, especially as more (and better) information and data 

became available.  

In this paper, we describe the NC-COVID model and explain its parameterization, calibration, 

and revision over time. We focus on the initial and final forms of the model. As a post modeling 

exercise, we compare the output to SARS-CoV-2 viral particle concentrations detected in 

wastewater data and to estimates of people infected using COVID-19 deaths, offering an 

additional assessment of the veracity of the model. 
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MODEL DESCRIPTION 

Overview 

The overall goal of the modeling effort was to use publicly available data to produce up-to-date 

estimates of the number of people newly infected with SARS-CoV-2, as well as the number 

currently infectious, susceptible, and immune, as these values drive short term infection 

dynamics in a population and are not readily available from surveillance systems. While we 

eventually used the model to make short-term forecasts, the focus of the effort was to estimate 

the “current” conditions based on the most up-to-date data; we updated our model each day 

that new data was released, which was daily for much of the modeling period.  

Structure 

We used a deterministic compartmental model to estimate state-level SARS-CoV-2 infection 

dynamics (Anderson and May, 1991). In the initial stage of development and implementation 

(prior to the availability of vaccines), the model included compartments for susceptible (S), 

exposed (E), infectious (I), removed (R, recovered from infection and immune), and dead (D). 

Because the initial modeling effort was planned to take place only over short period (e.g., 6-9 

months), we did not account for demographic changes in the population due to immigration, 

emigration, births, or natural deaths in the model. 

Once the COVID-19 vaccine became available, we added compartments for people who 

received a single dose of the two dose series vaccine and became immune (V1I), people who 

received a single dose of the two dose series vaccine and remained susceptible (V1S), and 

people who received the second dose of the two dose series and became immune (only those 

who did not become immune after the first dose) or received the single dose vaccine and 

became immune (V2I). 

Infection Parameters 

A compartmental model requires parameters to estimate the flow of people between the 

various compartments over time. In an SEIR model, these include the effective contact rate β, 

rate of loss of latency δ, and the recovery rate γ. The δ parameter is simply the inverse of the 
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incubation period (length of time that a person is infected but not yet infectious), while the γ 

parameter is the inverse of the infectious period (length of time that a person is infected and 

infectious, i.e., able to spread the infection). The Infection Fatality Rate (IFR) describes the 

proportion of people who die from the infection. 

During model development, inspection of the statewide daily lab confirmed cases suggested 

that SARS-CoV-2 transmission dynamics were altered following three distinct time points 

corresponding to statewide nonpharmaceutical interventions (NPIs). Hence, to account for 

various NPIs and behavioral changes that affected transmission, we allowed R0 to vary over 

time in the SEIR model. The incubation period and infectious period were not allowed to vary 

over time thus the δ and γ parameters did not change. As such, the effect of varying R0 over 

time was essentially to allow the β parameter to vary (β = R0 * γ). We divided the study period 

into distinct temporal periods using breakpoints (where noticeable deviations from a prior 

trend occurred), which were identified by visually examining the lab confirmed case count data 

along with a list of potential actions having the potential to affect transmission of SARS-CoV-2 

on a state level (e.g., when the statewide mask mandate went into effect). To implement this 

approach in the SEIR model framework, we solved the differential equations in a piecewise 

fashion (separately for each temporal period), using the number of people in each 

compartment at the end of one period as the starting state for the next temporal period (Hou 

et al., 2020). Generally, we attempted to limit the number of breakpoints to the minimum 

number necessary to capture major shifts in transmission. Moreover, it is important to note 

that this approach did not require that R0 change at a breakpoint, but allowed it to if supported 

by the observed data. 

Vaccination 

When vaccine administration began in December 2020, we added compartments to the SEIR 

model for vaccinated individuals as described above. We used observed vaccination data to 

determine the number of people who received their initial dose of an mRNA vaccine (Vobs,1) and 

a single dose of the Johnson and Johnson vaccine (Vobs,S); we assumed that the vaccinated 

individuals were drawn proportionally from the Susceptible and Recovered populations (people 

with an active SARS-CoV-2 infection are not recommended to receive the vaccine). We used a 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281271doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281271
http://creativecommons.org/licenses/by-nc-nd/4.0/


 6 

temporal lag to account for the time between receiving the vaccine and developing immunity 

and effectiveness multipliers to assign immune status to those who developed immunity after 

the first dose of an mRNA vaccine series (ρ1), after the second dose of an mRNA vaccine series 

(ρ2), and after a single dose of the Johnson and Johnson vaccine (ρS). We used a temporal lag to 

account for the recommended time between doses of the mRNA vaccine series (L); we assumed 

some people who received the first dose of an mRNA vaccine would not receive the second 

dose (Lost to Follow up, LTF). The compartments and flows among them for the entire model 

are detailed in Figure 1. 

 
Figure 1: Compartments and equations showing the flow of people among compartments in the final version of 

the SARS-CoV-2 model for North Carolina. 

 

Data 

All data used in later versions of the model, which included the daily number of reported cases, 

tests reported, and people vaccinated, were drawn from the North Carolina COVID-19 

Dashboard (North Carolina Department of Health and Human Services, NCDHHS, n.d.). Earlier 

versions of the model used cases and testing data from NCDHHS provided by WRAL (WRAL, 

2020).  
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MODEL CALIBRATION 

Overview 

To calibrate the model, we allowed numerous model parameters to vary given the high level of 

uncertainty (especially early in the pandemic). To account for this, we implemented a two-stage 

calibration approach that included an initial and tuning phase. We evaluated the goodness of fit 

of the model by estimating daily lab confirmed infections from the compartmental model 

output and comparing them to the observed data. The initialization and tuning process was 

implemented during major revisions of the model. When inserting a new temporal period, we 

estimated the R0 value for the two most recent time periods using only the tuning phase of the 

calibration process. Daily model updates were restricted to estimating the R0 value of the most 

recent temporal period.  

Model Calibration and Updates 

We calibrated the parameters in our model using a two-stage approach. In the initial stage, we 

used Latin Hypercube Sampling (McKay et al., 1979) to draw random values for the parameters 

from a uniform distribution with relatively large ranges for each model run. We did this for 

300,000 model runs to account for the high levels of uncertainty that characterized the early 

part of the pandemic. From the results of the initial stage, for each parameter value, we 

calculated the mean and standard deviation using the values from the 5,000 most accurate 

runs. In the tuning phase, we ran the model an additional 30,000 times while randomly drawing 

parameter values from a normal distribution based on the mean and standard deviation values 

calculated in the initial phase. We then chose the single set of parameter values that produced 

the best fit to the observed data for the final model. This process was reimplemented when a 

major revision was made to the model. 

When incorporating a new temporal period, we performed a simplified calibration process, only 

updating the R0 values for the two most recent temporal periods. The other parameter values 

were unchanged from the most recent implementation of the full calibration process. Daily 

model updates were limited to updating the R0 value of the most recent temporal period. 

Lab Confirmed Infections and Testing 
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To compare the results of our model to observed data required estimating the number of lab 

confirmed cases that would result from the number of people who were infected, as this was 

one of the only metrics available (and thus usable for calibration purposes). However, the 

number of lab confirmed cases is highly dependent on the nature of the testing infrastructure, 

and a person infected with SARS-CoV-2 might not be identified as a lab confirmed case for 

several reasons including 1) not getting tested because they are asymptomatic, 2) not getting 

tested because testing was not available to them at the time, and 3) getting tested after a 

potential exposure, but prior to detectability (Reese et al., 2021).  

During the initial phase of model development and implementation (in May 2020), while the 

COVID-19 testing program was ramping up, we estimated the percent of all new infections 

confirmed via testing as a parameter that linearly increased based on point estimates 

calculated for the first date of data (March 13th, 2020) and the most recent date of observed 

data at the time the model was run (two parameters). A later version of the model estimated 

the percent of infections that were lab confirmed as a linear rescaling function of the number of 

tests performed each day (parameters based on endpoints of 1,000 and 40,000 daily tests 

performed). We calculated the 7-day floating average of the daily number of tests reported 

given the noisiness of the daily data. We lagged the 7-day average of daily tests by four days 

prior to July 7th, 2020 to account for the longer delay in processing and reporting test results 

very early in the pandemic (no lag afterwards). To calculate lab confirmed cases from the 

compartmental model output, we multiplied the estimated daily number of new people 

infected (those moving into the Exposed compartment) by the estimated percent of infections 

confirmed via testing (based on the estimated number of tests that day).  

Assessing Goodness of Fit 

We assessed the model’s goodness of fit using the root mean squared error (RMSE) of the daily 

estimated lab confirmed cases compared with observed data from NCDHHS. We used the 7-day 

floating average of the observed data given the high amount of day-to-day noise in the raw 

data. The observed case data were lagged by seven days to account for the delay between 

when a person was infected and when they would be reported as a positive case. 
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Initial Date and Conditions 

Although the North Carolina Health and Human Services reported the first lab-confirmed SARS-

CoV-2 infection on March 3, 2020 (NCDHHS, 2020), SARS-CoV-2 was likely circulating prior to 

this initial positive test result. Preliminary efforts to initialize the model with a low number of 

infections the week prior to this date did not produce plausible results suggesting there was a 

far higher number of people infected before the first case was reported. As such, we initialized 

our model on February 24, 2020 with 200 people in the infectious compartment and 400 

people in the exposed compartment. Later work showing that the SARS-CoV-2 virus may have 

been circulating in the US population well before late January 2020 supported this approach 

(Basavaraju et al., 2021). 

Temporal Periods 

In the initial version of the model, we included four time periods with breakpoints assigned at 

the beginning of the statewide Stay-At-Home order (March 30, 2020), the beginning of Phase 1 

of the “Staying Ahead of the Curve” reopening plan (May 8, 2020), and the beginning of Phase 2 

reopening plan (May 22, 2020). As we continued to update the model and transmission 

conditions changed (e.g., lifting of NPIs or during the phased reopening plan), we added 

additional periods. The dates of statewide actions were gathered from NCDHHS (NCDHHS, n.d.). 

In an attempt to distinguish between true changes and small deviations that may have been 

influenced by data anomalies, we waited approximately 1-2 weeks after a noticeable deviation 

between the observed data and the modeled estimates or a visible deviation in the trend of the 

daily case data (e.g., a pronounced peak or valley) to add an additional breakpoint. The final set 

of temporal periods with a short description of the event (or events) associated with the 

beginning of each are presented in Table 1. 
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Period Start date Description 
1  February 24, 2020  Start date 
2  March 30, 2020  Beginning of Stay-at-Home order  
3  May 8, 2020  Beginning of Phase 1 of reopening plan  
4  May 22, 2020  Beginning of Phase 2 of reopening plan 
5  July 6, 2020  Beginning of statewide mask mandate, post-July 4th holiday 
6  September 4, 2020  Beginning of Phase 2.5 of reopening plan 
7  November 23, 2020 Thanksgiving holiday  
8  January 4, 2021 Post-New Year Holiday 

9  March 4, 2021 Modified Stay-at-Home order lifted, further easing of 
restrictions  

10  June 21, 2021 Introduction of Delta variant 
11  August 4, 2021 Decrease in transmission 
12  September 8, 2021 Further Decrease in transmission 

Table 1: Temporal periods with start (breakpoint date) and description. 

 

Calibration Results 

The first version of the NC-COVID model was run for the period of February 24, 2020 to June 11, 

2020 (the most up-to-date data at the time the model was run). Model fit was evaluated from 

March 13, 2020 (the first date with the number of tests reported) to June 11, 2020. The set of 

parameters from the initial model calibration are presented in Table 2, including the parameter 

ranges used for the initial calibration phase (initial parameter ranges were drawn from Lauer et 

al., 2020; Ma et al., 2020; Perkins et al., 2020b), the mean and standard deviation of the 

parameters used in tuning calibration phase, and the resulting values of the best fit model. The 

RMSE of the daily lab confirmed case data in the initial version of the model was 25.61 (cases 

per day). 
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  Initial Tuning Final 
Parameter  Unit  Low High Mean Std Dev Tuned 
Incubation Period  Days  4 8 5.77 1.11 5.85 
Infectious Period  Days  5 12 7.42 1.63 6.09 
Infections Lab Confirmed, 3/13/20 Percent  4 10 7.87 1.55 7.44 
Infections Lab Confirmed, 6/11/20  Percent  10 25 17.33 4.28 20.38 
R0 (Period 1)  Unitless  2 3 2.69 0.23 2.67 
R0 (Period 2)  Unitless  1 2 1.28 0.16 1.13 
R0 (Period 3)  Unitless  1 2 1.26 0.17 1.17 
R0 (Period 4)  Unitless 1 2 1.36 0.18 1.27 

Table 2: Parameter values from the initial model including the range used in the initial stage, the mean and 

standard deviation used in the tuning stage, and the final values from the best fit model. 

 

The final "full” calibration of the model was performed on October 9, 2020 using data from 

March 13, 2020 (the first date with the number of tests reported) to October 8, 2020 (the most 

up-to-date data at the time). The results are presented in Table 3. In this version of the model, 

the RMSE of the daily case estimates was 98.45 (cases per day).  

  Initial Tuning Final 
Parameter  Unit  Low High Mean Std Dev Tuned 
Incubation Period  Days  5 7 5.86 0.54 5.99 
Infectious Period  Days  5 7 5.80 0.52 6.05 
Infections Lab Confirmed, 1,000 tests Percent  4 10 7.31 1.68 10.89 
Infections Lab Confirmed, 40,000 tests  Percent  30 40 35.03 2.88 37.13 
R0 (Period 1)  Unitless  2.5 2.9 2.74 0.11 2.73 
R0 (Period 2)  Unitless  1 1.25 1.15 0.07 1.17 
R0 (Period 3)  Unitless  1 1.3 1.16 0.09 1.25 
R0 (Period 4)  Unitless 1.1 1.4 1.25 0.07 1.21 
R0 (Period 5)  Unitless 0.8 1.2 0.98 0.04 0.99 
R0 (Period 6)  Unitless 1 1.4 1.16 0.10 1.04 

Table 3: Parameter values from the final full calibration of model including the range used in the initial stage, the 

mean and standard deviation used in the tuning stage, and the final values from the best fit model. 
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Vaccination Parameters 

We lagged the observed data of people who received a first dose of an mRNA vaccine by 14 

days to account for time delay from vaccine administration to immunity; we estimated that 

60% of susceptible people would gain immunity after the first dose (ρ1) (Britton et al., 2021). 

We assumed that the people receiving this first dose were drawn proportionally from the 

Susceptible and Recovered population at that time. Those who were already immune via prior 

infection (in the Recovered compartment) were not moved from that compartment (regardless 

of whether they were scheduled to gain immunity via vaccination), and those who were 

vaccinated but did not gain immunity were not moved from their respective compartment. We 

used a waiting period of 24.5 days from the date of receiving the first dose of an mRNA vaccine 

to receipt of a second dose. This represents the average of the recommended time between 

doses for the Pfizer (28) and Moderna (21) vaccine series. We assumed that 95% of people 

would receive their second dose of an mRNA vaccine, meaning 5% would be lost to follow-up 

(Kriss et al., 2021). We included an additional 14-day lag after receipt of the second dose prior 

to developing immunity. We estimated that 80% of those who received both doses of an mRNA 

vaccine would develop immunity (ρ2) (Baden et al., 2021; Dagan et al., 2021; Polack et al., 

2020). Since 60% of people had already gained immunity after the first dose in our model, this 

meant 50% of those who did not acquire immunity after the first dose acquired it after the 

second dose. For those that received the single dose COVID vaccine, we assumed 80% would 

gain immunity after 14 days (Sadoff et al., 2021). 

Final Results 

The final version of the model was run on October 15, 2021 using data from March 3, 2020 to 

October 14, 2021. The R0 values for the first five time periods are found in Table 3; the R0 

values for time periods 7 to 12 were 1.19, 1.44, 1.01, 1.61, 3.76, 2.94, 2.33. The final version of 

the model resulted in an overall RMSE of 287.2 (cases per day) based on daily lab-confirmed 

cases. Observed lab confirmed cases and the modeled results for the entire study period are 

presented in Figure 2.  
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Figure 2: Observed lab confirmed COVID-19 cases (grey line), 7-day rolling average of lab confirmed cases (black 

line), and modeled results (red line) in North Carolina. The temporal breakpoints (Table 1) are shown using grey 

lines on the X axis. 

 

The estimated percent of SARS-CoV-2 infections that were lab confirmed over the study period 

is presented in Figure 3. Given that this is a linear rescaling of the observed testing data, the 

temporal pattern is quite similar in nature to that data. The overall magnitude of the values 

appears feasible, as the NC-COVID model estimated that just over 10% of all SARS-CoV-2 

infections were being confirmed via testing in the early stages of the pandemic and just over 

60% were being confirmed when the number of infections reached its (pre-Omicron) peak 

(when roughly 60,000 to 80,000 test results were being reported daily).  
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Figure 3: Estimated percent of true SAR-CoV-2 infections confirmed via testing in North Carolina. For reference, 

the cases multiplier to calculate infections is provided on the right side Y axis (the inverse of percent confirmed). 

 

A simplified version of the compartment distribution of NC’s population in the NC-COVID model 

is shown in Figure 4. For display purposes, people who were vaccinated but remain susceptible 

(V1S) are included with greater susceptible (S) population, the people who are exposed (E) and 

those infectious (I) are combined, those who gained immunity after a first dose of the mRNA 

vaccines (V1I) are grouped with those who gained it after the second mRNA dose (V2I) and those 

who gained it after the first dose of the Johnson and Johnson vaccine (also included in V2I). 

Finally, those who died (D) are included with those who recovered from infection (R). When 

viewed in the context of the entire state population and over a roughly 20-month period, the 

peaks and valleys in Figure 2 are quite muted, and the people gaining immunity via SARS-CoV-2 

infection steadily increased over time. A similar observation can be made with regards to those 

gaining immunity via vaccination; despite the ebbs and flows in the number of people 

vaccinated since the first vaccinations in December of 2021, the cumulative number of people 

with immunity increased at a relatively steady pace. In the last run of the NC-COVID model 

(which was completed prior to the surge in infections of the SARS-CoV-2 Omicron variant), 

there was (roughly) a similar proportion of NC’s population in each of the three simplified 

compartments (Susceptible, Immune from vaccination, and Recovered from infection).  
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Figure 4: Summary of people in NC-COVID model compartments over time. Susceptible includes those who had not 

been infected and those who had been vaccinated but had not developed immunity. Immune includes those who 

gained immunity via vaccination (but not infection). Recovered includes those who gained immunity via infection 

(but not vaccination). Infected includes people in the Exposed compartment (not yet infectious) as well as the 

Infectious compartment. 

 

MODEL VALIDATION 

During the development and dissemination period of the NC-COVID model, our focus was on 

providing rapid, up-to-date estimates of infections in NC (we updated the model every day that 

new data were released by NCDHHS). Hence, at the time, we did not conduct model validation 

using any outside data. Given an opportunity to look back on the model, we conducted a post 

hoc model validation exercise using two external data sources, wastewater surveillance data 

and reported COVID-19 deaths. 

Wastewater Surveillance Data 

We compared the model’s estimate of the current number people infected to estimates 

derived from wastewater surveillance data. Wastewater surveillance is a well-established 

method for detection and monitoring of waterborne and enteric pathogens (CDC, 2019a, 
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2019b; Sims and Kasprzyk-Hordern, 2020). RNA fragments from SARS-CoV-2 are reliably shed in 

human feces, both before the infected individual becomes symptomatic and in the absence of 

symptom development. As such, infectious people who were not identified via testing would be 

represented in wastewater surveillance if they lived within a sewershed being monitored. This 

post hoc analysis of the model’s performance provides additional layer of validation that was 

not available during the model development process. 

Wastewater data were gathered from the North Carolina Wastewater Monitoring Network, 

part of the Centers for Disease Control and Prevention’s (CDC) National Wastewater 

Surveillance System (NWSS).  This program samples wastewater from 25 sewersheds across the 

state, representing a mix of large, medium, and small municipalities (North Carolina 

Wastewater Monitoring Network, 2022) and containing roughly 22% of the state’s population 

(exact value has changed over time as sewersheds were added to the network). We used the 

viral gene copies per person metric, which is a normalized value that accounts for varying levels 

of viral genes in the water, the wastewater flow, and the number of people in the sewershed. 

The data were reported twice weekly over the study period. 

We calculated the statewide value of the SARS-CoV-2 viral gene copies per person using a 

weighted average of the sewershed-level data (using sewershed population as the weights). We 

used a linear interpolation to convert the data to a daily representation (from the twice weekly 

observations) to match the model output, and then calculated the 7-day moving average to 

smooth temporal fluctuations. The data were evaluated over a period of January 3, 2021 (the 

first available wastewater data) to October 15, 2021 (the final available model data). 

COVID-19 Deaths Data 

We compared our modeled estimates of people newly infected to estimates derived from 

reported COVID-19 deaths. Despite being subject to potential overcounts and undercounts, 

COVID-19 death data has been used for this purpose in prior analyses (Flaxman et al., 2020; 

McCulloh et al., 2020; Phipps et al., 2020). We adopt the general approach of Flaxman et al. to 

“backcast” the number of infections that would have generated the observed number of 

deaths. We simplified their approach using point estimates for the parameters (rather than 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 25, 2022. ; https://doi.org/10.1101/2022.10.21.22281271doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.21.22281271
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

drawing from a distribution) using the following equation: It-lag = Dt / IFR where the number of 

deaths that occur on any day (Dt) are assumed to be generated by the people who were newly 

infected on an earlier date (It-lag). Deaths are divided by the infection fatality rate (IFR) to 

estimate infections.  

We used an IFR of 0.065%, which was calculated by averaging the values reported from the CDC 

(2022) (0.063%) and a meta-analysis (Meyerowitz-Katz and Merone, 2020) (0.068%). Estimates 

of the lag time from infection to death varies across sources, but generally are reported to be 

20-25 days (CDC, 2021a; Irons and Raftery, 2021; Verity et al., 2020). We evaluated each integer 

value over this range and report the best fit with the NC-COVID model result. 

Validation Methodology 

We used Pearson and Spearman correlation to assess the relationship between the daily 

number of people currently infected from the model and the SARS-CoV-2 viral gene copies per 

person as well as the relationship between people newly infected (entering the Exposed 

compartment of the NC-COVID model) and the estimates of new infections from the observed 

death data.  

Validation Results 

The number of people infected estimate from the NC-COVID model and the SARS-CoV-2 viral 

gene copies per person data are plotted over time in Figure 5(A); we used a linear rescaling 

factor of 17.5 to align the two Y axes. Figure 5(B) contains a scatterplot with histograms of the 

two variables. The Pearson R was equal to 0.92, p < 0.001 (Spearman R = 0.96, p < 0.001), 

signaling an extremely strong relationship between estimated people infected and SARS-CoV-2 

virus detected in the wastewater. The temporal plot shows a somewhat large deviation in the 

wastewater data around September, 2021. Because the wastewater data covers less than 25% 

of NC’s population, the deviation could have been due to a surge of infections occurring 

specifically in the reporting sewersheds. 
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Figure 5: Relationship between the number of infectious people from the NC-COVID model and the viral gene 

copies data from the wastewater. In (A), both variables are plotted over time with the infection people plotted in 

black and the wastewater data plotted in red. (B) contains a scatterplot with histograms for each variable and the 

results of the Pearson correlation analysis (R = 0.92, p < 0.01). 

 

The results of the comparison between new daily infections from the NC-COVID model and the 

backcasted estimates from observed death data are presented in Figure 6. The observed deaths 
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were lagged by 21 days from the date of death for the estimate; however, the fit was only 

slightly weaker using other lag values (Supplemental Table S1). Given a lag of 21 days, the 

evaluation period was from February 24, 2020 to September 17, 2021. There was an extremely 

high level of agreement among the two estimates with Pearson R = 0.92, p < 0.001 (Spearman R 

= 0.89). The infection estimates from the death data are generally less than the estimates from 

the NC-COVID model. One explanation for this outcome is that NC had a lower IFR than the 

general estimate. Another notable aspect of Figure 6(B) is that the lag period appears to shift 

early in 2021; this may be due to improvements in COVID-19 treatment or the effects of 

vaccination, ultimately leading to a longer average period between SARS-CoV-2 infection and 

death.  

 

DISCUSSION 

Decision-making in the early stages of the COVID-19 pandemic was characterized by uncertainty 

due to the novelty of the virus and the evolving nature of its scientific and medical 

understanding (Paulik et al., 2020), as well as by the widespread circulation of mis- and 

disinformation (Sauer et al., 2021; Zarocostas, 2020). One difficult aspect for both individuals 

and decisionmakers to navigate seemed to be how to assess the risk of infections for various 

activities given the incomplete, uncertain, changing, and in some cases erroneous information. 

It was particularly difficult to understand the level of community prevalence and transmission 

occurring at this stage due a testing program that was still largely under development. A 

common misunderstanding at that time was that “reported cases” did not represent all people 

who had been infected with SARS-CoV-2 (Raubenheimer, 2020). In early to mid 2020, the CDC 

estimated that there were 10 people infected for every reported case (Kniesner and Sullivan, 

2020). Although this may have been somewhat common knowledge at the time, estimates of 

the infection status of the population (e.g., susceptible, infected but not infectious, infectious, 

and recovered from infection and immune) were not readily available.  

One of the main motivators behind the development and deployment of the NC-COVID model 

was to rapidly estimate the SARS-CoV-2 infection status of the NC population, and to make the  
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Figure 6: Relationship between the number of new people infected from the NC-COVID model and based on 

observed death data. In (A), both variables are plotted over time with the NC-COVID model estimates plotted in 

black and the estimates based on death data plotted in red. (B) contains a scatterplot with histograms for each 

variable and the results of the Pearson correlation analysis (R = 0.92, p < 0.01). 

 

information freely available to any interested parties via the nc-covid.org website. While we did 

not keep record of every example of use of our model estimates and website, we do know they 
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were used (at least as a reference) by public school districts, small businesses, city and regional 

planners, university administrators, health care professionals, and local and state government 

officials. The NC-COVID model and website were also featured in more than 25 news pieces 

(including articles and television spots) between July, 2020 and August 2021 (https://nc-

covid.org/press.html). 

The presence of pre-symptomatic and asymptomatic transmission adds complexity and 

difficulty to population-level SARS-Cov-2 infection dynamics models. Early in the pandemic, 

when it was important to provide information rapidly, we developed a relatively 

straightforward model to accomplish this. In this work, we explain its parameterization, 

calibration, and revision over time in an effort to shed light on not only the importance of the 

model itself, but also on the process of quickly developing a model and disseminating its results 

early in a pandemic when finding useful, trustable information can be troublesome. While we 

knew at the time of modeling that the NC-COVID model results fit the observed case data quite 

well, the results of our post-modeling analysis demonstrate that it is highly correlated with two 

independent approaches to modeling the number of people who were infected thus 

corroborating its accuracy.  
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