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ABSTRACT  
 
OBJECTIVE: 
Clinical encounter data are heterogeneous and vary greatly from institution to institution. These 

problems of variance affect interpretability and usability of clinical encounter data for analysis. 

These problems are magnified when multi-site electronic health record data are networked 

together. This paper presents a novel, generalizable method for resolving encounter 

heterogeneity for analysis by combining related atomic encounters into composite ‘macrovisits.’ 

 
MATERIALS AND METHODS:  
Encounters were composed of data from 75 partner sites harmonized to a common data model  

as part of the NIH Researching COVID to Enhance Recovery Initiative, a project of the National 

Covid Cohort Collaborative. Summary statistics were computed for overall and site-level data to 

assess issues and identify modifications. Two algorithms were developed to refine atomic 

encounters into cleaner, analyzable longitudinal clinical visits. 

 
RESULTS: 
Atomic inpatient encounters data were found to be widely disparate between sites in terms of 

length-of-stay and numbers of OMOP CDM measurements per encounter. After aggregating 

encounters to macrovisits, length-of-stay (LOS)  and measurement variance decreased. A 

subsequent algorithm to identify hospitalized macrovisits further reduced data variability. 

 
DISCUSSION: 
Encounters are a complex and heterogeneous component of EHR data and native data issues 

are not addressed by existing methods. These types of complex and poorly studied issues 

contribute to the difficulty of deriving value from EHR data, and these types of foundational, 

large-scale explorations and developments are necessary to realize the full potential of modern 

real world data.  

  
CONCLUSION: 
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This paper presents method developments to manipulate and resolve EHR encounter data 

issues in a generalizable way as a foundation for future research and analysis.  
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BACKGROUND AND SIGNIFICANCE 
 
While the terms “encounter” and “visit” are used interchangeably to describe many different 

types of experiences in healthcare, these terms represent a much more specific concept within 

electronic health records (EHRs). In EHR data, the encounter is a transactional unit of health 

service delivery. Encounters can represent single, discrete health care services, such as an 

outpatient office visit; multiple unrelated care services, such as multiple outpatient events over a 

single or multiple days; or multiple related care events over short or long time periods, such as 

the variety of facility and professional services delivered during hospitalization. This tendency of 

encounters to function as the building blocks of larger and more complex care events 

contributes to their complexity, particularly when assessing patient care longitudinally. 

Unfortunately, methods to associate encounters into complete, clinically-recognizable care 

experiences are neither proscribed, straightforward, nor harmonized between different 

healthcare organizations, different EHR platforms, or even the same EHR platform implemented 

at different sites [[1–4]]. This data variation is the result of the significant variation in clinical 

service delivery that has been and continues to be widely documented[[5-7]], and also the 

equivalent variation in EHR implementation, utilization and clinical data documented and 

produced[8,9]. Unless resolved (generally on a project-by-project basis), this heterogeneity and 

ambiguity can undermine the encounter’s value in analysis and is a major obstacle to 

performing accurate, reliable analysis of EHR. 

 

While working with encounters in the EHR is challenging within a single institution the lack of 

recognized, shared standards for the encounter concept causes even greater harmonization 

and analytical issues in multi-institution, EHR-based research. Even when participating 

institutions use the same common data model (CDM, such as OMOP, PCORnet, or i2b2/ACT), 

each of which have mechanisms for incorporating encounters,[[10–12]] none of the CDMs 
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enforce common rules or definitions for what events constitute an encounter and how related 

encounters should be linked. Thus, when an institution populates a CDM with their EHR data, 

that institution is typically, simply translating their local definition(s) for encounters into the CDM, 

where these data become “harmonized” to the CDM but remain unstandardized to other 

encounters. As an example, one site may break inpatient encounters into a series of separate, 

discrete short encounters, and another may use one encounter record for the entire inpatient 

stay.  

 

While many types of encounters are complex, hospitalizations (including inpatient, observation, 

extended recovery, and other longitudinal facility-based encounters) are most affected by 

encounter variation. Hospitalizations typically span a longer temporal period and tend to include 

a greater number of services and resources than outpatient encounters. At a minimum, 

hospitalizations require the combination of both facility and professional transactions to capture 

the full care experience. It is therefore common for hospitalizations to include many discrete 

encounter records to capture a wide variety of activities occurring during the hospitalization, 

such as imaging, pharmacy, surgery, and other services. A distinct challenge when working with 

encounter data for hospitalizations is cleanly identifying each discrete hospitalization from 

admission to discharge with all related, co-occurring services. EHR applications tend to solve 

this problem by having tables and methods separate from encounters to account for entire 

hospitalizations, such as bundled ‘accounts’ or ‘episodes’. However, these EHR-native methods 

are not currently represented outside of EHR platforms, and are notably missing in CDMs which 

frequently serve as data exchange standards for research. This means the most common 

research situation is that data users must attempt to identify and re-aggregate the components 

of hospitalizations on their own. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 16, 2023. ; https://doi.org/10.1101/2022.10.14.22281106doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.14.22281106
http://creativecommons.org/licenses/by-nc-nd/4.0/


The challenge of working with heterogeneous EHR encounter data can be practically illustrated 

by the National COVID Cohort Collaborative (N3C), which networks EHR data from 75 sites and 

four CDMs (OMOP, PCORnet, i2b2/ACT, TriNetX) into a single repository to support 

community-driven, reproducible, and transparent COVID-19 analytics[13]. Encounter-level data, 

particularly around hospitalizations, are highly desirable for COVID-19 and post-acute sequelae 

of SARS-CoV-2 (PASC) research; however, early in the process of assessing N3C data quality, 

several obstacles became apparent in the combined, harmonized visit data from participating 

sites. One issue is the combination of heterogeneous local encounter definitions such as the 

prior described differences in recording inpatient stays. Additionally, some sites are likely mis-

mapping a subset of their encounters to CDM visit types at the local level, such as incorrectly 

mapping facility-based outpatient encounters to an inpatient visit type. These issues result in 

encounter data that are difficult to analyze holistically, and greatly impact the ability of 

researchers to quantify and assess events occurring during hospitalizations. For this reason, the 

N3C community recognized the need to create an algorithmic method to collapse concurrent 

encounters for the same patient into a single analytical unit, approximating an aggregated care 

experience inclusive of all services.  

 
OBJECTIVE 
 

Local business rules defining inpatient encounters are entrenched in their home organizations, 

and are often put in place for pragmatic or business optimization purposes. For this reason, it is 

unlikely that encounters (inpatient or otherwise) can be fully standardized from the individual 

organizations’ EHRs, short of the creation of national health data standards. The objectives of 

this work are then 1) to identify and describe the heterogeneity of harmonized CDM encounter 

data in the context of hospitalizations, 2) to enumerate example algorithms for re-combining 

transactional EHR encounters post hoc into logical, longitudinal care experiences with 
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acceptable metadata characteristics, and 3) to examine the results of applying these algorithms 

in N3C. This process of combining atomic encounters back into longitudinal clinical experiences 

representative of the patient clinical experience, which we termed macrovisit aggregation, can 

be applied to an encounter dataset composed of mixed local definitions, and result in a 

consistently defined set of longitudinal, multi-encounter experiences, macrovisits, for use in 

further analyses.  

 
MATERIALS AND METHODS 
 
Data & Technology 
This study is part of the NIH Researching COVID to Enhance Recover (RECOVER) Initiative, 

which seeks to understand, treat, and prevent PASC.  For more information on RECOVER, visit 

https://recovercovid.org.   

 

The design of the N3C OMOP data repository, the N3C data transformation pipeline, and a 

comprehensive characterization of the data available prior to December 2020 have been 

previously described[[14,15]]. In the current study, we used N3C data ingested as of 8/26/2022, 

which included 75 contributing sites, 15,231,849 distinct patients, and 894,629,506 encounter 

records. All technical work was performed in the N3C secure data enclave utilizing the Foundry 

technology platform created and maintained by Palantir Technologies Incorporated. All data 

engineering and analysis was performed using a combination of SQL, R version 3.5, and 

Python version 3.6. 

 
The Macrovisit Aggregation Algorithm 
The macrovisit aggregation algorithm aims to combine individual OMOP visit records 

(“microvisits”) that appear to be part of the same care experience, and create a single macrovisit 

to represent the entirety of the care experience. Events occurring during any microvisit can then 

be analyzed in the context of the macrovisit rather than as individual, unrelated encounters.  
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In short, macrovisit aggregation merges overlapping microvisits with specific features to 

determine the total macrovisit’s duration; subsequently, any microvisits occurring within the 

timespan of the macrovisit duration are appended. Microvisits from individual sites are sourced 

from N3C’s visit_occurrence table. Microvisits qualified to initiate macrovisit aggregation meet 

the following criteria:  

● have non-null start and end dates 
● have a non-negative LOS, the difference between the visit’s end date and start date  
● have a recorded visit_type_concept of one of the following OMOP concepts: 262 

“Emergency Room and Inpatient Visit,” 8717 “Inpatient Hospital,” 9201 “Inpatient Visit,” 
32037 “Intensive Care,” 581379 “Inpatient Critical Care Facility” 
 

In addition to these inpatient-centric macrovisits, certain longitudinal, outpatient facility stays can 

generate macrovisits; namely, microvisits with LOS >= 2 days and type 9203 “Emergency Room 

Visit,” 8756 “Outpatient Hospital,” or 581385 “Observation Room.” 

Figure 1 illustrates macrovisit aggregation with example microvisit data. 

 

 

Figure 1: Visual representation of macrovisit aggregation.  Overlapping microvisits are 
merged into a continuous, bundled macrovisit and the earliest visit start date and latest visit end 
date are assigned to the macrovisit.  Microvisits that occur >=1 calendar day later with no other, 
overlapping microvisit generate distinct macrovisits.   
 

 
 
 
The High-Confidence Hospitalization Algorithm 
Initial analysis of macrovisit aggregation output showed an unusually high frequency of 0-day 

macrovisits, suggesting a substantially larger number of extremely short hospitalizations, and 

indicating a hospitalization length-of-stay deviating from the expected distribution[[16–18]]. The 

typical expected distribution of hospital length-of-stay for an acute care hospital is approximately 

Poisson or negative binomial distributed with a central tendency around 2 to 4 days.  This 
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indicated that a macrovisit was not equivalent to a hospitalization in all cases. There are several 

possible explanations for this finding, including mislabelling of outpatient visits by sites as 

inpatient type, mislabeling a brief inpatient service (such as critical care) as an entire 

hospitalization without sending additional data, or inaccurately recording the visit start and/or 

end date. It became clear that additional filtering was required to further classify macrovisits into 

the categories of “high-confidence hospitalization” and “non-hospitalization macrovisits.” Due to 

the heterogeneity of visit data submitted between the many N3C sites, an ensemble of 

approaches was constructed to attempt to perform this classification, independent of either LOS 

or site-submitted visit_concept_types. Criteria included:  

 
● Presence of diagnosis-related group (DRG) codes for any component microvisit  

OR 
● Presence of Centers for Medicare & Medicaid Services (CMS)-indicated inpatient-only 

Current Procedural Terminology (CPT) codes [[19]] on any component microvisit 
OR 

● Presence of either an inpatient or critical care (ICU) evaluation & management 
Healthcare Common Procedure Coding System (HCPCS) code on any component 
microvisit 
OR 

● Presence of either an inpatient or ICU SNOMED CT concept on any microvisit 
procedure 
OR 

● A minimum of 50 total resources recorded for at least 1 component microvisit (where 
total resources consists of the total count of all diagnoses, procedures, medications, 
measurements, and observations at the microvisit level) 

 
The resources attributed to each macrovisit (hereafter ‘resource density’) LOS are illustrated in 

Figure 2. Examination of all these indicators simultaneously facilitated identifying macrovisits 

with either inpatient hospital care delivery or with a resource pattern consistent with a likely 

longitudinal hospital encounter. 

 

Figure 2: Resource density by length of stay. Visual representation of the variation in 
maximum resource density across macrovisits as LOS changes. Each color corresponds to a 
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maximum resource density bin. The macrovisits with greater than 50 maximum resources 
roughly follow the expected inpatient LOS distribution, and a majority of 0-day LOS 
macrovisits have no more than 25 maximum resources. 

 
Assessing Site-to-Site Encounter Heterogeneity  
To assess the performance of the macrovisit aggregation algorithm, the characteristics of 

microvisits labeled as inpatient (visit types 262 “Emergency Room and Inpatient Visit,” 8717 

“Inpatient Hospital,” 9201 “Inpatient Visit,” 32037 “Intensive Care,” or 581379 “Inpatient Critical 

Care Facility”) from the visit_occurrence table were compared to the generated macrovisits 

across all N3C sites. Measurement (defined as data from the OMOP measurements table, 

consisting of labs, vitals, and other structured quantitative clinical assessments) frequency is 

included to illustrate the data density compiled into the macrovisits from the component 

microvisits and to identify data quality issues, such as long macrovisits with a small number of 

associated measurements. The goal was to ensure that the algorithm behaved similarly across 

sites and decreased heterogeneity. The workflow for assessing performance is detailed in Table 

1. 

 

Analysis Step Rationale 

Length of Stay  

Filter out inpatient visits with negative LOS data Negative LOS visits excluded from macrovisits 

Compute summary statistics of LOS information 
for each site’s inpatient visits, macrovisits, high-
confidence hospitalizations 

Assess and compare distributions and measures 
of central tendency 

Visualize sites’ LOS summary statistics when visit 
aggregation causes median LOS change >=2 
days 

Assess impact of algorithms on summary statistics 

Measurements  

Filter out measurement data with missing result 
values  

Exclude data with extraction, mapping, and 
submission issues or otherwise missing data 

Calculate measurement frequency for inpatient 
visits, macrovisits, and high-confidence 
hospitalizations 

Quantify heterogeneity in a proxy of data quality 
before and after macrovisit creation 
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Compute summary statistics of measurement 
frequency for each site’s inpatient visits, 
macrovisits, high-confidence hospitalizations 

Assess and compare distributions and measures 
of central tendency 

Visualize sites’ measurement summary statistics 
when an algorithm causes median measurement 
frequency to change by >=30 

Assess impact of algorithms on summary statistics 

Macrovisit Composition  

Calculate microvisit frequency within each 
macrovisit and high-confidence hospitalization 

Quantify heterogeneity in microvisits being 
aggregated to larger care experiences 

Compute summary statistics of microvisit 
frequency for each site’s inpatient visits, 
macrovisits, high-confidence hospitalizations 

Assess and compare distributions and measures 
of central tendency 

Visualize sites’ microvisit frequency summary 
statistics when visit aggregation causes median 
microvisit frequency to change by >=1 

Assess impact of algorithms on summary statistics 

Overall  

Filter out data from sites with identified data 
quality issues (frequent data missingness or 
incorrect units in measurement data, unreliable 
visit information, systematic data errors) 

Exclude low-quality data to minimize 
measurement error and bias 

Table 1. Steps taken to asses site-level encounter heterogeneity 
 
 
RESULTS 
 
Macrovisit Composition Heterogeneity 
To illustrate variance in site-level encounter definitions, Figure 3 shows a sampling of 

macrovisit composition across N3C sites. Each facet represents a single, randomly selected 

macrovisit while the colored bars indicate the variety and duration of component microvisits 

making up the macrovisit. It is worth noting that the microvisits labeled as ‘office visit’ or 

‘outpatient visit’ might logically represent the professional component of facility care delivery 

instead of true, discrete ambulatory visits; however, that cannot be determined conclusively. 

Similarly, it is not possible to determine what true visit types might be represented by the 

abundance of microvisits labeled as “no matching concept” in the OMOP vocabulary. Despite 

these unknowns, it is clear that, as expected, macrovisits are diverse and represent a wide 

variety of encounter types and durations over longitudinal care. 
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Figure 3: Microvisit heterogeneity within macrovisits. Visual representation of varied 
composition of a randomly-selected macrovisit for each site. Small colored markers indicate 
individual microvisits included in the macrovisit. For example, site 37 has a macrovisit 
consisting of one longitudinal inpatient visit with a variety of 0-day visits spread throughout the 
stay.  Site 8 has a macrovisit consisting of 2 overlapping inpatient stays, again with a variety 
of 0-day visits over the entire macrovisit. 
 
 
Assessing Algorithm Impact 
In addition to the composition of macrovisits, the impact of algorithms was also assessed by 

examining LOS, measurement frequency, and microvisit frequency within macrovisits. As 

illustrated previously when assessing composition in Figure 3, microvisit frequency is an 

important exploratory metric to understand the makeup of macrovisits and the underlying visit 

data heterogeneity.  LOS is also a vital metric to identify the algorithm’s success in 

aggregating microvisits into plausible longitudinal stays that are usable for other analyses. 

The results of these assessments are shown in Table 2.  

 

 

 Feature p1 Q1 median mean (sd) Q3 p99 

Inpatient Visit 
n = 16,421,633 

Length of stay 0 0 1 5.4 (19.3) 5 61 

Macrovisit 
n = 10,577,329 

 0 0 2 4.5 (12.4) 5 44 

High-Confidence 
Hospitalization  
n = 7,434,312 

 0 2 3 5.9 (13.8) 6 49 

        

Inpatient Visit Measurements per 
longitudinal stay 

1 14 58 192.4 (750.6) 166 2,150 

Macrovisit  1 27 82 244.3 (1288.7) 205 2,646 

High-Confidence 
Hospitalization  

 3 44 103 279.1 (1,378.5) 237 2,904 

        

Macrovisit Microvisits per 
macrovisit 

1 1 2 5.6 (14.9) 6 48 
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High-Confidence 
Hospitalization 

 1 1 3 7.0 (17.5) 7 58 

 
Table 2. Summary statistics of measured features for inpatient microvisits and both  
algorithms. 
 
 
 
 
Length-of-Stay Impact 
From Table 2 and supplemental Figure 1 it is apparent that both inpatient microvisits and 

macrovisits have a large proportion of zero-day care experiences, which would be unusual in 

true hospitalizations. In the N3C inpatient visits data, over 40% of all visits are reported as zero-

day inpatient visits, which is extremely dissimilar from clinical practice. The characteristics of 

LOS are improved somewhat by the macrovisit algorithm as the median moves from 1 to 2 

days; however, zero-day hospitalizations are still over-represented. Applying the high-

confidence hospitalization algorithm moves the LOS distribution further to the right, bringing the 

median to 3 days. These effects are illustrated in Figure 4 for a subset of sites, showing the 

increase in LOS from visits to macrovisits to high-confidence hospitalizations. Additional LOS 

data is shown in supplemental Figures 1 and 2. 

 
 
Figure 4: Length-of-stay. LOS distributions for inpatient visits, macrovisits, and high-
confidence hospitalizations for the subset of sites with most variance between raw data and 
algorithm results (median=circle, mean=triangle, IQR=line). 
 
 
 
Microvisit Frequency Impact 
The fundamental composition of macrovisits was explored by examining the frequency of 

microvisits within macrovisits. The mean microvisits per macrovisit were 5.6 and 7.0 for base 

macrovisits and high-confidence hospitalizations, respectively. Similarly, the median shifted 

from 2 to 3 from macrovisits to hospitalizations, collectively indicating a small increase in 

microvisit density from the macrovisit algorithm to the high-confidence hospitalization algorithm. 
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Both sets of data retain a sizable amount of heterogeneity in microvisit composition with a 

standard deviation of 14.9 and 17.5, respectively for macrovisits and high-confidence 

hospitalizations. These data are illustrated for a subset of sites in Figure 5, showing the 

interquartile range, mean, and median of microvisit frequency for both macrovisits and high-

confidence hospitalizations. The overall tendency of the algorithms to create increasingly 

microvisit-dense macrovisits is apparent from this figure. 

 

Figure 5: Microvisit density. Distribution of the number of component microvisits within 
macrovisits and high-confidence hospitalizations for the subset of sites with most variance 
between macrovisit algorithm and high-confidence hospitalization algorithm results 
(median=circle, mean=triangle, IQR=line). 
 
 
 
Measurement Frequency 
OMOP measurements data was explored for macrovisits as a proxy of overall clinical data 

contained within each macrovisit. As the macrovisit and high-confidence hospitalization 

concepts should represent longitudinal care experiences rich with clinical data compared to 

single visits, measurement frequency per macrovisit is a valuable quality indicator of the 

function of the algorithms. This general trend is apparent as the mean measurements per 

inpatient visits is 192.3 compared to 244.3 and 279.1 for broad macrovisits and high-

confidence hospitalizations, respectively. Similarly, the medians for these groups increase 

from 58 to 82 to 103, illustrating the rightward shift of the distributions and overall increasing 

density of measurements data. Measurement frequency data are shown in Figure 6, showing 

the site-level IQR, mean, and median for sites with the most variation from raw visits to 

macrovisits and hospitalizations. 

 
Figure 6: Measurement Density. Distribution of the number of measurements within 
inpatient visits, macrovisits, and high-confidence hospitalizations for the subset of sites with 
most variance between raw data and algorithm results (median=circle, mean=triangle, 
IQR=line). 
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Clinical Application of Macrovisits to ECMO 
In addition to assessing the overall, dataset-wide characteristics previously examined, 

macrovisit utility was also practically assessed by examining the clinical application to an extra 

corporeal membrane oxygenation (ECMO) cohort. ECMO is a highly invasive procedure to 

oxygenate the blood outside of the body, bypassing the lungs and heart and is an extremely 

resource intensive procedure requiring intensive care-level hospitalization. Macrovisits were 

assessed in ECMO cases by examining the hospital LOS and numbers of partial thrombin 

time(Ptt) labs performed during ECMO (Ptt is a coagulation lab required regularly when on 

ECMO) in Table 3.  Examining microvisits with ECMO showed impossibly short LOS and 

small numbers of Ptt labs performed with medians of 0 for both.  Bundling ECMO microvisits 

into macrovisits changes both the LOS and Ptt administration medians to 33 days and 25 Ptt 

labs per hospitalization with ECMO, respectively.  Previous systematic review has shown 

mean hospital LOS for hospitalizations including ECMO to span from 12 days to 50 days.[20]    

 
 

 1% 25% 50% 75% 99% 

Visit LOS 
n=39,809 

0 0 0 1 148 

Macrovisit LOS 
n=9,830 

0 16 33 59 282 

Visit Ptt 
n=39,809 

0 0 0 0 188 

Macrovisit Ptt 
n=9,831 

0 9 25 60 327 

Table 3.  Distributions of LOS and Ptt labs in ECMO visits and macrovisits.   
Comparing the distribution of hospital LOS and coagulation lab tests for microvisits including 
ECMO versus macrovisits including ECMO.   
 
 

 
DISCUSSION 
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The present study provides an illustration of the service delivery heterogeneity present in EHR 

data across 75 N3C partner sites in the US, and demonstrates that this heterogeneity is not 

resolved through the application of CDMs and data harmonization efforts alone. We have 

demonstrated successful use of an algorithm in addition to CDM harmonization to aggregate 

and classify EHR visits generated from varied, site-specific operational rules and data extraction 

approaches into comprehensive macrovisits more reflective of actual clinical experience. 

Additionally we have demonstrated that, depending on the desired outcomes, multiple 

successive algorithms may be necessary to parse aggregated data into data suitable for 

analysis. 

 

While we refer to the macrovisit as a new concept, it is necessary to differentiate it from pre-

existing clinical service aggregation methods such as bundles and care episodes. Care bundles 

typically refer to the linking of care services occurring over various time periods for the same 

underlying medical situation for the purpose of paying a limited number of bundled payments as 

opposed to transactional fee-for-service or DRG-based payments. Care episodes may be short 

and discrete, such as an episode for the care following minor trauma, or long such as the long-

term range of services for chronic conditions with exacerbations, such as sickle cell anemia. In 

contrast to bundles and episodes, macrovisits are intended for the much more focused purpose 

of linking encounters together to fully represent the services experienced during a discrete 

hospitalization, very similarly to the intrinsic linking of encounters inside many EHR systems for 

actions such as facility billing. Additionally, the strategy employed in the currently described 

macrovisit aggregation algorithm is similar to existing strategies that have both been published 

and anecdotally used in other datasets[[21,22]].   

 

While the algorithms discussed are rule-based and lack the apparent dynamism of a machine-

learning based approach, they are foundational steps in formally identifying and quantifying 
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EHR data heterogeneity within and between sites and creating generalizable solutions to 

resolve these issues. There is conjecture around the necessity of this type of work due to the 

perception that these issues will be resolved  through the inherent ingestion and harmonization 

pipelines of CDMs or through new data interfacing paradigms, such as Health Level Seven’s 

Fast Healthcare Interoperability Resources (FHIR) [[23]]. FHIR accounts for the possibility of 

aggregating encounters with the partOf element in the Encounter resource. However, because 

partOf is not a required field in FHIR, it remains to be seen what proportion of FHIR-ready sites 

will choose to use this element and how much variation will be seen in its use. Similarly, the 

experience of working across N3C, the largest harmonized CDM repository in the US, has 

demonstrated that the CDM harmonization mechanisms currently in place are not sufficient to 

harmonize encounter data.  

 

Ultimately, assessing encounter heterogeneity and methods to aggregate encounters into larger 

hospitalizations is important because utilizing raw visit data misleads many analyses. Notably, 

using raw inpatient visits to identify hospitalizations, and therefore more severe encounters, in 

N3C data led to an undercounting of severe cases of COVID-19. While it may be tempting to 

attempt to solve this issue at the source (the EHR itself), it may be more advantageous to 

combine visits into macrovisits post hoc instead, which allows for more definitional flexibility for 

projects and research questions with different needs. Using a post hoc method, the “raw” 

transactional visits are always available in the source data instead of destroyed in a 

transformation that may be upstream and opaque to the end user. This also leaves room for 

multiple shared macrovisit-like algorithms to serve different use cases, which, for example, may 

wish to preserve differences between inpatient stays and extended holds in the emergency 

department. It would also be valuable and worthwhile to consider CDM schema extensions to 

facilitate the loading of hospitalization and hospital facility data and groupings that already occur 

in EHR platforms, such as the “account” concept in the Epic platform. While these concepts are 
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unlikely complete solutions to the visit issues described and would likely have their own 

heterogeneity both within and between sites, they offer a significantly more evolved and refined 

mechanism for dealing with hospitalizations from the EHR.  

 

To put encounter and other EHR data issues into perspective, we must step back and consider 

the policy landscape that heralded in our current national landscape of electronic health records.   

A major goal of the HITECH Act, as a component of American Recovery and Reinvestment Act 

(ARRA), was to incentivize the adoption of EHRs at a national scale in the US - an effort which, 

by almost any measure, has been successful [cite]. While this evolution from paper to digital 

health records has arguably had some intended effect of facilitating more interoperability, data 

sharing, and care delivery innovations, it has also had the unintended consequence of making 

transparent the enormous variations in clinical care, care documentation, and EHR 

implementation in the US healthcare system [[24]]. From an informatics perspective these 

issues are manifest in the tremendous heterogeneity present in EHR data, both intra- and inter-

site. In the short-term following HITECH, programs such as Meaningful Use [[25]] attempted to 

create a standard functionality floor for EHRs by requiring such data as vitals to be able to be 

input and retrieved, or computerized physician order entry to be performed, but the focus of 

these programs was to incentivize the adoption of functional, reliable EHR platforms, not to 

create EHR data standards. Similarly, the private market of EHR vendors has facilitated this by 

allowing and supporting local customization EHR implementation and maintenance.  

 

These issues of variation and heterogeneity have always been present and problematic locally, 

but have become more obtrusive as EHRs have become more prominent and multi-site clinical 

research networks have developed. In the N3C data enclave, the largest centralized repository 

of multi-site, harmonized EHR data produced to-date in the US, the full scale of these national 

issues is manifest. At a high level, this begs the question of how to improve EHR data and CDM 
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ingestion and standardization to make EHR data more usable in future work. There are 

incremental modifications that could be made within individual sites, EHR platforms, or CDMs 

that begin to ameliorate these varied issues. One such suggestion would be for CDMs to require 

both atomic encounters from EHR data and also the EHR-native hospitalizations with keys 

between the two. The more systemic solution, though, would be for healthcare, like many 

sectors before, to adopt widespread data standards either through regulation, as in finance, or 

through industry-sponsored, multilateral working groups, as many standards in technology use. 

Until that point, an excess of time will continue to be spent on figuring out how to get value from 

healthcare data instead of getting value from healthcare data.      

 
Limitations 
In retrospect, the heterogeneity and resulting issues of visits data in N3C could possibly have 

been mediated by a more formal use of the OMOP visit_detail table for atomic visits data and 

the visit_occurrence table for modified or aggregated visits data. At the time of initial 

development, all OMOP-native data sites only populated the visit_occurrence table with 

transactional visits data, and N3C followed this data loading paradigm. While this differs from 

the theoretically intended use of the OMOP tables, it also represents the real world adoption 

and utilization of common data models in multi-site networked research. It is unrealistic to rely 

inherently and solely on informatics tools like common data models and ontology-mapping to resolve the 

tribalism and heterogeneity inherent in American healthcare and the resulting data. The current study 

highlights these issues and the ongoing need to have both post-hoc tools for resolving data issues and 

significant expertise in understanding healthcare data to utilize EHR data. 

 
As has been well documented, missingness is a common issue with all EHR data, N3C 

included. When data is missing or null it is not possible to make assumptions about the data or 

the intent of the data provider[[26–29]]. Similarly, some data, while present, appears to be 

illogical or mis-mapped, which is equally difficult to interpret and use. Due to the nature of the 
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N3C data ingestion and de-identification policies, it is not possible to validate our algorithms’ 

assumptions using chart review. Thus, a logical next step for this work is to perform validation 

by running the macrovisit algorithms on local site data--preferably a selection of sites with 

different local definitions for encounters. 
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Supplemental Figures 
 
 
Figure 1. Comparison of LOS distribution between inpatient visits (green bars), macrovisits (red 
bars), and high-confidence hospitalizations (blue bars) across all sites. 
 
 
Figure 2. Comparison of cumulative distribution functions showing reduction in LOS variation 
between macrovists and high-confidence hospitalizations following the macrovisit and high-
confidence hospitalization algorithms (sites with largest change noted by color). 
 
 
 
Figure 3. Microvisit heterogeneity within macrovisits across all sites. 
 
 
 
Figure 4. LOS distributions for inpatient visits (blue), macrovisits (orange), and high-confidence 
hospitalizations (purple) across all sites (median=circle, mean=triangle, IQR=line). 
 
 
Figure 5. Distribution of the number of measurements within inpatient visits, macrovisits, and 
high-confidence hospitalizations across all sites (median=circle, mean=triangle, IQR=line). 
 
Figure 6. Distribution of the number of component microvisits within macrovisits and high-
confidence hospitalizations across all sites (median=circle, mean=triangle, IQR=line). 
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