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Abstract  
 

The disconnection hypothesis of schizophrenia proposes that symptoms of the 

disorder arise as a result of aberrant functional integration between segregated 

areas of the brain. The concept of metastability characterizes the coexistence of 

competing tendencies for functional integration and functional segregation in the 

brain and is therefore well suited for the study of schizophrenia. In this study we 

investigate metastability as a neuromechanistic biomarker of schizophrenia 

pathology, including a demonstration of reliability and face validity. 

 

Group-level discrimination, individual-level classification, and pathophysiological 

relevance were assessed using two independent case-control studies of 

schizophrenia, the Human Connectome Project Early Psychosis (HCPEP) study 

(controls n=82, non-affective psychosis n=53) and the Cobre study (controls n=71, 

cases n=59). In this work we introduce a new framework that uses Leading 

Eigenvector Dynamic Analysis (LEiDA) to capture specific features of dynamic 

functional connectivity and then implements a novel approach to estimate 

metastability. We used non-parametric testing to evaluate group-level differences 

and a naïve Bayes classifier to discriminate cases from controls.  

 

Our results show that our new approach is capable of discriminating cases from 

controls with elevated effect sizes relative to published literature, reflected in an up to 

76% area under the curve (AUC) in out-of-sample classification analyses. 

Furthermore, our analyses demonstrated that patients with early psychosis exhibit 

intermittent disconnectivity of subcortical regions with frontal cortex and cerebellar 

regions, introducing new insights about the mechanistic bases of these conditions.  

 

Overall, these findings demonstrate reliability and face validity of metastability as a 

neuromechanistic biomarker of schizophrenia pathology.   
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Introduction  
Schizophrenia affects roughly 1% of the population, is associated with premature 

mortality and morbidity, and is accompanied by a large social and financial burden 

[1]. While schizophrenia can be a chronic disorder for a significant proportion of 

individuals [2], there is evidence that early diagnosis and treatment can lead to 

improved outcomes for patients [3]. Biomarkers of schizophrenia in early and 

established phases may differ, and hence may be informative of developing 

pathophysiology. 

 

The disconnection hypothesis of schizophrenia states that the disorder can be 

understood as a failure of functional integration in the brain. Functional integration is 

closely related with the functional connectivity, and with the influence of brain 

dynamics of one region on another [4,5]. Failure of functional integration manifests 

as a disruption of the coordination required for the normal functioning of distributed 

brain regions [6]. For example, abnormal functioning of the basal ganglia in 

schizophrenia has previously been found with fMRI in schizophrenia [7–10]. Indeed, 

ganglia hyperdopaminergia may be attributable to disconnectivity stemming from 

GABA parvalbumin interneuron disorder [11]. 

 

Disconnection in schizophrenia has been investigated with static functional 

connectivity (FC) [12–15]. However, static FC relies on statistical relationships 

between fMRI signals throughout the complete scan, which forces it to discard 

critical information about the brain’s dynamics. In contrast, it is reasonable to believe 

that dynamic approaches – which consider the temporal dynamics of fMRI signals - 

may have the potential to discover more precise and informative biomarkers [16–29]. 

Unfortunately, the literature provides no empirical studies investigating if approaches 

which rely on collective dynamical properties have better classification ability than 

those that rely on static FC properties, and whether dynamical approaches provide 

relevant insight for biological and cognitive interpretation. 

 

To address this important issue, in this work we analyze the suitability of a specific 

marker of brain dynamics: metastability. Metastability is a concept originating from 

dynamical systems theory which provides an explanation for the spontaneous and 

self-organized emergence and dissolution of spatiotemporal patterns of coordination 

activity [30,31]. In a neuroscientific context this reflects a tension established by the 
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competition between trends for functional specialization and functional integration 

within and between brain regions [32]. Metastability is nowadays an ubiquitous 

concept across diverse models of brain functioning including coordination dynamics 

[33] and complex systems [34], while its metrics have found application in both 

empirical studies and computational modeling [35–44]. Furthermore, a proxy 

measure of metastability was recently found to be stable and representative across 

multiple fMRI scans of healthy young adults, highlighting its potential as a group-

level biomarker of psychiatric disorders [42].  

 

Building on this previous work, here we investigate how metastability would perform 

as a neuromechanistic biomarker of schizophrenia at the group- and individual-level; 

if this performance would carry over to face validation; and what this putative 

biomarker would tell us about the pathophysiology of schizophrenia.  

 

We introduce a new measure for metastability as the mean variance of 

instantaneous phase-locking. Our rationale for this operationalization stems from the 

theory of Synergetics [45] and recent generalization of the Haken-Kelso-Bunz (HKB) 

model to multiple oscillators [46], which exhibits stable antiphase synchronization 

[47], and from the observation that differences in connectivity were not reflected in 

differences in the traditional measure for metastability within this study. We found 

that this novel proxy for metastability distinguished patients with established 

schizophrenia from healthy controls at the group-level with moderate effect size (d = 

0.77), delivered performance in the range of published individual-level classifiers for 

cross-validation, and out-of-sample testing, and highlighted dysfunctional 

connectivity in basal ganglia in early schizophrenia, and so demonstrated face 

validity of metastability as a neuromechanistic biomarker schizophrenia pathology. 

 

Results 
Derivation of spatiotemporal patterns of phase-locking 
We analyzed the resting-state fMRI activity from a total of 670 scanning sessions 

from the Human Connectome Project Early Psychosis (HCPEP) and Cobre datasets 

(see Materials and methods). In the HCPEP dataset healthy controls (CON, n=53) 

and subjects with non-affective psychosis (NAP, n=82) participated in 4 scanning 

sessions on 2 consecutive days. In the Cobre dataset CON (n=71) and subjects with 
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schizophrenia (SCHZ, n=59) participated in 1 scanning session. Each dataset 

consisted of whole-brain fMRI signals averaged over n=116 cortical, subcortical, and 

cerebellar brain regions as defined in the AAL116 anatomical parcellation [48].  

 

We used instantaneous phase-locking to measure the interaction between fMRI 

signals related to different brain regions. The fMRI time-series of each subject was 

filtered within the narrowband 0.01-0.08 Hz which did not violate the Bedrosian 

Theorem (see Materials and methods) [42]. The filtered signal was then transformed 

into amplitude and phase via the Hilbert transform, and the resulting phase time 

series was analyzed via the Leading Eigenvector Dynamic Analysis (LEiDA) [42]. In 

order to identify recurrent spatiotemporal patterns of phase-locking – henceforth 

called ‘LEiDA modes’ – we performed k-means clustering on the phase-locked time-

series of each of the datasets that were analyzed (HCPEP CONx4, HCPEP NAPx4, 

Cobre CONx1, Cobre SCHZx1, see Materials and methods). We calculated the 

results for k=2-10 clusters, and then choose k=5 LEiDA modes - denoted as 𝜓!, 𝜓",	
𝜓#,	𝜓$,	𝜓% - according to silhouette values [49] (see S1 Fig), which is consistent with 

previous studies [42,50,51]. Additionally, we calculated the instantaneous 

magnetization as the ratio of in-phase regions to anti-phase regions, which indicates 

criticality [52].  Fig 1 shows the diversity of phase-locking behavior for two individual 

subjects from the HCPEP dataset. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.14.22281093doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.14.22281093
http://creativecommons.org/licenses/by/4.0/


 
Fig 1. Diversity of phase-locking behavior. A) Timeseries of mode eigenvectors from two subjects 

from the HCPEP dataset. Top panel shows phase-locking behavior. Middle panel shows 
instantaneous magnetization which is the ratio of in-phase to anti-phase regions. Bottom panel shows 

the mode assigned to the timepoint from k-means clustering. Interesting behavior is indicated with 

numbered circles. B) Blow-outs for points 1 to 5. C) Legend for the numbered circles. MAG, 

magnetization; M, mode. Gray dotted line shows where phase-locking is equal to zero. 

 
We found that the 5 modes reflected connectivity within and across known resting-

state networks, subcortical and cerebellar regions. Following Ref. [42],  we visualized 

each mode in 10mm voxel space by averaging the eigenvector values over all time 

instances assigned to a particular mode. We visualized FC as connectograms by 

taking the FC matrices for each mode and retaining regions that were collectively in-

phase but out-of-phase with the global mode (see Fig 2) 
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Fig 2. Spatial patterns of recurrent phase-locked connectivity in run 3 for controls. A) Phase-

locking patterns for the 5 modes in sagittal view. B) Phase-locking patterns for the 5 modes in axial 

view. C) Respective FC presented as connectograms color-coded as in Yeo [53] with the addition of 

dark blue for subcortical regions, and black for cerebellar regions. In Mode 𝜓! all regions are aligned 

in-phase and so there is no anti-phase connectivity. FC computed as the outer product of the leading 

eigenvector for each mode. D) Color coded legend for the Yeo resting-state networks, subcortical and 

cerebellar regions. VIS, Visual; SMT, Somatomotor; DAT, Dorsal attention; VAT, Ventral attention; 

LBC, Limbic; FPA, Frontal parietal; DMN, Default mode network; SC, Subcortical; CB, Cerebellar.   

 

Using the modes from RUN 3 in CON as an illustrative example, we find that Mode 

𝜓! represents a global mode where the fMRI signals in all regions are aligned in-

phase without anti-phase connectivity. Mode 𝜓" exhibits connectivity within Default 

Mode Network (DMN), Limbic network (LBC), and cerebellum (CB), and connectivity 

between DMN-LBC, DMN-subcortical (SC), DMN-CB, LBC-SC, LBC-CB. Mode 𝜓# 

shows connectivity within Somatomotor (SMT), Ventral Attention network (VAT), 

Frontal Parietal Area (FPA) and CB, and connectivity between SMT-FPA, SMT-CB, 

SMT-CB, VAT-FPA, VAT-SC, VAT-CB and FPA-CB. Mode 𝜓$	exhibits connectivity 

within SC and CB, and connectivity between LCB-FPA, LBC-SC, LBC-CB, FPA-SC, 

FPA-CB, and SC-CB. Finally, Mode 𝜓% shows connectivity within Visual network 

(VIS), and between VIS-CB. 
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Characteristics of spatiotemporal modes 
Before assessing differences in the modes across the case-control groups, we first 

controlled if the modes observed in HCPEP were stable and representative across 

the four runs. We calculated run reliability within groups with interclass correlation 

ICC(1,1) [54] (See Materials and methods). The modes extracted for CON showed 

substantial to almost perfect reliability between runs with median ICC values 𝜓! 

(0.96), 𝜓" (0.98), 𝜓# (0.64),	𝜓$ (0.89), and 𝜓% (0.77) The modes extracted for NAP 

also showed substantial to almost perfect reliability with median ICC values 𝜓! 

(0.97),  𝜓" (0.97), 𝜓# (0.96), 𝜓$ (0.77), and 𝜓% (0.82) (see S2 Fig for all ICC 

matrices). We therefore confirmed that the modes tended to be invariant across 

multiple acquisitions in both case and control groups in HCPEP. 

 

Concentrating first on HCPEP, we found that there was a strong contribution of basal 

ganglia regions to the leading eigenvector for Mode 𝜓$ in CON. We therefore 

assessed if there were differences in basal ganglia connectivity, measured as 

contribution to Mode 𝜓$, between the groups. Regional contribution was calculated 

as the mean value of instantaneous phase-locking over time for the region of interest 

(ROI). We first investigated group (CON, NAP), run (RUN1, RUN2, RUN3, RUN4), 

and interactions between group and run on bilateral caudate, putamen, pallidum, and 

thalamus. Using a 2x4 non-parametric ANOVA with the Aligned Rank Transform 

(ART) [55,56], we found significant interactions between group and run (Table 1). 

 

Table 1. Effects of group, run, and interactions between group and run, on contributions to 
mode 𝝍𝟒 connectivity in the bilateral caudate, putamen, pallidum, and thalamus. 

 
Bold font indicates statistical significance following Bonferroni correction for multiple comparisons. 

 

Region of Interest Interaction Group x Run

Z p effect size Z p effect size F p

Caudate_L 3296 <0.001 0.435 1179 <0.001 0.400 F(3,339) = 4.899 0.002
Caudate_R 3521 <0.001 0.523 656 <0.001 0.382 F(3,339) = 7.718 <0.001
Putamen_L 3079 <0.001 0.351 661 <0.001 0.335 F(3,339) = 7.923 <0.001
Putamen_R 3093 <0.001 0.357 668 <0.001 0.333 F(3,339) = 5.297 0.001
Pallidum_L 2804 0.005 0.245 1008 0.008 0.266 F(3,339) = 3.394 0.018
Pallidum_R 38175 0.054 0.083 F(3,339) = 1.673 0.083
Thalamus_L 3530 <0.001 0.526 1132 0.001 0.360 F(3,339) = 8.105 <0.001
Thalamus_R 3038 <0.001 0.335 635 <0.001 0.349 F(3,339) = 3.032 0.029

Main effect of group Main effect of run (largest)
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We found significant main effects of run in both groups for multiple ROIs. The effects 

and the drivers of these effects are detailed in S1 Supporting Information. The 

largest main effects of run are shown in Table 1.  

 

Furthermore, we found significant main effects of group in Caudate_L, Caudate_R, 

Putamen_L, Putamen_R, Pallidum_L, Thalamus_L, and Thalamus_R (Table 1). We 

retained only group differences that were greater than these run effects. We thus 

found significant group differences in RUN2 for Caudate_L (p<0.001, effect size= 

0.435), Caudate_R (p<0, effect size= 0.523), Putamen_L (p<0.001, effect 

size=0.351), Putamen_R (p<0.001, effect size=0.357) and Thalamus_L (p<0.001, 

effect size=0.526).  

 

We therefore inferred that these group differences in basal ganglia contribution in 

RUN2 are not due to run effects, and indeed reflect group differences in regional 

contribution to Mode 𝜓$. (See Fig 3 and S1 Supporting Information for complete 

results of the statistical testing). 

 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.14.22281093doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.14.22281093
http://creativecommons.org/licenses/by/4.0/


 
Fig. 3 Group differences in regional contribution to the leading eigenvector for Mode 𝝍𝟒. 
Regional contribution was calculated as the mean value of instantaneous phase-locking over time for 

a particular anatomical region of interest. Raincloud plots show from left to right scatter plot for the 

raw data, boxplots showing the median, upper and lower quartiles, upper and lower extremes, and the 
distributions of the raw data. iPL, instantaneous phase-locking, *=0.05, **=0.01, ***=0.001, ****<0.001. 

Red * effect size between groups greater than effect size between runs. Blue * effect size between 

groups less than largest effect size between runs. 

 

Global and local metastability – group-level 
neuromechanistic biomarkers of schizophrenia 
 

To assess the performance of metastability at group-level, we computed and 

analyzed differences within and between groups based on the standard estimators 

for global and local metastability [57] (see S1 Supporting Text for the analysis, and 
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S2 Supplementary Information for complete statistical results). We were somewhat 

surprised that metastability in Mode 𝜓$ was not significantly different between groups 

in HCPEP given the differences found in basal ganglia connectivity. On reflection, we 

realized that the modes were extracted based on phase-locking, whilst metastability 

was computed on phase synchrony. In other words, the standard deviation of phase 

synchrony only captured the variability of the in-phase regions and ignored the anti-

phase regions. To rectify this methodological difference, we defined a new proxy for 

metastability as the mean variance of instantaneous phase-locking, VAR (See 

Materials and methods).  

 

For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2, 

RUN3, RUN4), and interactions between group and run, on global VAR. Using a 2x4 

non-parametric ANOVA with the Aligned Rank Transform (ART) [55,56], we found a 

significant interaction between group and run (Table 2).  

 
Table 2. Effects of group, run, and interactions between group and run, on global VAR 

 
Bold font indicates statistical significance. 

 
For the CON group, the effect of run was not significant. For the NAP group 

however, we found significant main effects of run, 𝜒" = 19.16, p<0.001, which were 

driven by significant differences in VAR between RUN1 and RUN3 (p=0.006, effect 

size=0.215), and between RUN1 and RUN4 (p=0.002, effect size=0.216).  

 

Additionally, we found significant main effects of group which were driven by 

differences in VAR between CON and NAP in RUN1 (p=0.001, effect size=0.278) 

and RUN2 (p=0.002, effect size=0.263). As the effect size between groups in RUN1 

and RUN2 were greater than the largest effect size between any pair of runs (Table 

3), we inferred that metastability as measured with VAR differs between CON and 

NAP in RUN1 and RUN2. For the Cobre dataset, a permutation t-test for global VAR 

found a statistically significant difference between CON and NAP t(126)=-4.17, 

p<0.001 for global VAR. 

 

Main effect of group Main effect of run (largest) Interaction Group x Run

Z p effect size Z p effect size F p

Global 1455 0.001 0.278 2492 0.002 0.216 F(3,339) = 8.411 <0.001
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Local metastability in the spatiotemporal modes 
While global VAR reflects the average VAR across the modes, it is also of interest to 

assess the local VAR within the modes. 

 

For the HCPEP dataset we first investigated group (CON, NAP), run (RUN1, RUN2, 

RUN3, RUN4), and interactions between group and run, on global VAR for each 

mode 𝜓!, 𝜓", 𝜓#, 𝜓$,	𝜓%. Using a 2x4 non-parametric ANOVA with the Aligned Rank 

Transform (ART) [55,56], we found significant interactions between group and run 

(Table 3). 

 
Table 3. Effects of group, run, and interactions between group and run, on local VAR in modes 
𝝍𝟏, 𝝍𝟐, 𝝍𝟑, 𝝍𝟒,	𝝍𝟓. 

 
Bold font indicates statistical significance.  

 

In the CON group, we found significant main effects of run in 𝜓$, 	𝜒" = 11.33, 

p=0.010. In the NAP group, we found significant main effects of run in 𝜓!,  𝜒" = 

18.88, p<0.001, in 𝜓", for 𝜒" = 10.60, p=0.014, in 𝜓#,  𝜒" = 20.12, p<0.001, and in 

𝜓$, 	𝜒" = 49.800, p<0.001. The drivers for these effects and the associated effect 

sizes are detailed in S3 Supplementary Information. The largest main effects of run 

are shown in Table 3. 

  

Moreover, we found significant main effects of group in modes 𝜓!, 𝜓", 𝜓#, and 𝜓$. 

The effect sizes of these differences were compared to the largest effect size 

between any pair of runs for that mode (Table 3). We thus found significant group 

differences for 𝜓! in RUN1 (p=0.007, effect size=0.234) and RUN2 (p=0.001, effect 

size=0.287), 𝜓" in RUN1 (p=0.003, effect size=0.258) and RUN2 (p=0.001, effect 

size=0.279), and in 𝜓$ in RUN1 (p<0, effect size=0.396, moderate) and RUN2 

(p=0.001, effect size=0.399, moderate). We found a significant main effect of group 

for 𝜓%, p=0.002, effect size=0.134. 

Mode of Interest Main effect of run (largest) Interaction Group x Run

Z p effect size Z p effect size F p

Mode 1 1434 0.001 0.287 2377 0.002 0.201 F(3,339) = 8.629 <0.001
Mode 2 1453 0.001 0.279 2322 0.025 0.168 F(3,339) = 7.970 <0.001
Mode 3 1548 0.005 0.242 2568 <0.001 0.278 F(3,339) = 6.395 <0.001
Mode 4 1145 <0.001 0.399 2851 <0.001 0.351 F(3,339) = 20.250 <0.001
Mode 5 29266 0.002 0.134    F(3,339) = 2.005 0.113

Main effect of group
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We thus inferred that mode VAR differed between CON and NAP in 𝜓!, 𝜓", 𝜓$, and 

𝜓% in RUN1 and RUN2, and in 𝜓% in all runs. For Cobre, we found statistically 

significant differences in mode VAR in all modes. (specifically, 𝜓!	t(125)=-3.423, 

p=0.003, 𝜓"	t(128)=-3.309, p=0.007, 𝜓#	t(124)=-3.584, p=0.002, 𝜓$ t(125)=-4.302, 

p<0.001, and 𝜓% t(128)=-4.745, p<0.001). Complete statistical details for global and 

local VAR statistics can be found in S3 Supplementary Information. Fig 4 shows the 

datasets with the most significant differences in mode VAR between groups. 

 

 
Fig 4. Most significant group differences in local VAR in the modes for HCPEP and Cobre 
datasets. Raincloud plots show from left to right the raw data, boxplots showing the median, upper 

and lower quartiles, upper and lower extremes, and the distributions of the raw data. A) HCPEP 

RUN1. B) HCPEP RUN2. C) Cobre dataset.  *=0.05, **=0.01, ***=0.001, ****<0.001. Red * effect size 
between groups greater than effect size between runs. Blue * effect size between groups less than 

largest effect size between runs. 

 

Relationship with neuropsychological processes 
Based on the group-level results, and the results from our basal ganglia analysis, we 

now highlight the differences between CON and NAP in HCPEP for Mode 𝜓$ in 

RUN2, and CON and SCHZ in Cobre for Mode 𝜓$. To do so we compared the 

connectograms for each node and the associated behavioral topics from Neurosynth 

meta-analysis [58]. For the meta-analysis, we applied reverse inference to gain 
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insights into potential behavior-relevant differences between cases and controls 

based on their spatiotemporal modes. Following the approach of [59], we used t=130 

terms, ranging from umbrella terms (attention and emotion) to specific cognitive 

processes (visual attention and episodic memory), behaviors (eating and sleep) and 

emotional states (fear and anxiety). The coordinates reported by Neurosynth were 

parcellated into 116 cortical, subcortical, and cerebellar regions. The probabilistic 

measure reported by Neurosynth can be interpreted as a quantitative representation 

of how regional fluctuations in activity are related to psychological processes. We 

present the comparison in Fig 5. 

 

 

 

 
Fig 5. Connectograms and word clouds for Mode 𝝍𝟒 in RUN2. A) Group-level FC in Mode 𝜓& for 

HCPEP controls. B) Group-level FC in Mode 𝜓& for HCPEP Non-affective psychosis. C) The word 
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cloud presents the top terms derived from Neurosynth using reverse inference for the regions in Mode 

𝜓& for HCPEP controls. Word size represents the strength of the probabilistic association of the term 

to the regions. D) Top terms for Mode 𝜓& in HCPEP Non-affective psychosis. E) Group-wide FC in 

Mode 𝜓& for Cobre controls. F) Group-wide FC in Mode 𝜓& for Cobre Schizophrenia. G) Top terms for 

Mode 𝜓& in Cobre controls. H) Top terms for Mode 𝜓& in Cobre Schizophrenia. I) Color coded legend 

for the Yeo resting-state networks, subcortical and cerebellar regions. VIS, Visual; SMT, 

Somatomotor; DAT, Dorsal attention; VAT, Ventral attention; LBC, Limbic; FPA, Frontal parietal; 

DMN, Default mode network; SC, Subcortical; CB, Cerebellar.   

 
We see from the meta-analytical terms in HCPEP that there is an absence of 

anticipation and reward anticipation in the NAP group compared with the CON 

group. In Cobre, fear, emotion, and anxiety are present in the SCHZ group but 

absent in the CON group.  

 

Global and local metastability – individual-level 
neuromechanistic biomarkers of schizophrenia 
Our group-level results indicated that differences in VAR across groups were 

statistically significant in some modes, with effect sizes being small to moderate in 

HCPEP, and moderate to large in Cobre (S5 Table). We therefore decided to 

investigate the capability of these differences to classify subjects into their relevant 

groups. As VAR in Mode 𝜓$ showed very large significant differences between 

groups in both HCPAP and Cobre, we decided to use this metric as an a-priori 

feature in a machine learning classifier.  

 

Briefly, we used a naïve Bayes classifier with repeated k-fold cross validation (k=10, 

repetitions=20) on balanced samples for training and cross-validation in each dataset 

(HCPEP: 4 runs, Cobre: 1 run). We then tested each classifier on an out-of-sample 

dataset, that is trained on HCPEP, tested on Cobre, or trained on Cobre, tested on 

HCPEP (Table 4). HCPEP RUN2 performed best as measured by AUC when used 

as the training sample for out-of-sample testing in Cobre, and as the out-of-sample 

test for the classifier trained in Cobre. This implies that VAR in RUN2 captures best 

the feature that discriminates CON from NAP and SCHZ.  

 
Table 4. Results of out of sample testing for each HCPEP run.  
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HCPEP RUN2 was chosen as the training sample for external validation in Cobre, and as the 

validation sample for classifier trained in Cobre. 

 

We found that although the HCPEP classifier performed better than the Cobre 

classifier in cross-validation (HCPEP:AUC=0.73, p<0.001, Cobre:AUC=0.71, 

p=0.007), the Cobre classifier performed better for out-of-sample testing 

(HCPEP:AUC=0.71, p=0.03, Cobre:AUC=0.76, p=0.039) as illustrated in Fig 6. 

 

 

Train Test AUC B. Accuracy Sensitivity Specificity p-value

RUN1 Cobre 0.37 0.38 0.17 0.60 0.004
RUN2 Cobre 0.71 0.58 0.19 0.96 0.030
RUN3 Cobre 0.59 0.55 0.66 0.43 0.058
RUN4 Cobre 0.57 0.56 0.87 0.25 0.049

Train Test AUC B. Accuracy Sensitivity Specificity p-value

Cobre RUN1 0.74 0.50 0.96 0.04 0.080
Cobre RUN2 0.76 0.57 0.93 0.21 0.039
Cobre RUN3 0.52 0.51 0.96 0.06 0.080
Cobre RUN4 0.40 0.51 0.93 0.09 0.080
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Fig 6. naïve Bayes classifier results for discriminating cases from controls using a single a-
priori feature VAR in Mode 𝝍𝟒 . A) Results for HCPEP model trained and cross-validated in RUN 2. 

B) Results for HCPEP model trained and cross-validated in RUN 2 and tested in Cobre. C) Results for 

Cobre model trained and cross-validated. D) Results for Cobre model trained and cross-validated in 

Cobre and tested in HCPEP RUN 2. Auc/Balanced accuracy/Sensitivity/Specificity; p value calculated 

from the binomial distribution. AUC, area under receiver operating characteristic curve. 
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Discussion 
In this study we set out to assess the face validity of metastability as a 

neuromechanistic biomarker of schizophrenia. Our results provide preliminary 

evidence to support the premise that metastability measures dysfunctional 

connectivity in schizophrenia from 3 complementary perspectives. 

 

First, we found statistically significant differences in group-level metastability 

between healthy controls and subjects with schizophrenia. Effect sizes were 

negligible to small (d=-0.16 to d=0.36) for early disorder subjects (NAP group) and 

moderate to large (d=-0.58 to d=-0.82) for subjects with established schizophrenia 

(SCHZ group). Previous discrimination analysis on the same Cobre dataset using a 

distance measure between patterns of instantaneous phase synchrony reported a 

moderate effect size (d=0.67) [28], as did another study using the mean probability of 

dwell time in a global state (Hedge’s g=0.73) [60]. In contrast, one study reported 

significantly lower effect sizes (d=0.06 to d=0.31) using measures of metastability in 

its original form, and using measures of between-network FC (d=0.04 to d=0.52) 

[61]. Although there are many studies that assess group-level differences in dFC, 

few report effect size. Therefore, limited to this small comparison, we consider that 

metastability, when calculated as the mean variance of instantaneous phase-locking, 

performs better than alternative group-level metrics reported in the literature. 

 

Second, group-level differences in metastability (as measured with VAR) revealed 

group-level differences in dFC for both early and established schizophrenia. 

Specifically, intermittent functional disconnectivity was found for bilateral caudate, 

putamen left, and bilateral thalamus in early schizophrenia. The caudate and 

putamen are part of the dorsal striatum which is a key component in the basal 

ganglia. Fig 7 shows a very simple scheme of basal ganglia connectivity with the 

thalamus and cortex highlighting the substantia nigra pars compacta (SNc) which is 

the source of the neurotransmitter dopamine.  
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Fig 7. Simple scheme of basal ganglia connectivity. A) Location of the basal ganglia in an axial 

cartoon view of the brain. B) Basal ganglia connectivity. Arrows indicate direction of connectivity. 

Glutamatergic (Glu) structures are shown in rose, GABAergic nuclei are shown in cyan, and the 
dopaminergic (DA) nucleus is shown in green. STN, subthalamic nucleus; SNC, substantia nigra pars 

compacta; GPe, global pallidus external; GPi, global pallidus internal; SNr, Substantia nigra; MLR, 

midbrain locomotor region; diencephalon locomotor region. 

 

Elevated dopamine synthesis and storage have been implicated in the 

pathophysiology of schizophrenia [62]. Hyperactivity of the substantia nigra was 

found to be associated with decreased prefrontal FC with basal ganglia regions in 

schizophrenia subjects during a working memory task [8]. In resting-state fMRI 

increased functional integration in the caudate and decreased FC with the prefrontal 

and cerebellar regions was found in subjects with schizophrenia [7]. Interestingly, 

striatal connectivity indices have been used to identify treatment response in first 

episode psychosis subjects, with higher indices associated with non-responders and 

lower indices associated with responders [63], which supports the hypothesis that 

non-responders do not possess elevated striatal dopamine synthesis capacity [64]. 

These findings from the literature provide evidence that that our neuromechanistic 

biomarker is relevant in the pathophysiology of schizophrenia.  

 

Third, using metastability as a single a-priori feature achieved classification 

performance in the range of previously published studies (see Table 5). Using the 

Cobre dataset, one study reported quite high levels of accuracy [65] in comparison to 

our study, and that of Morgan et al. [66]. However, it appears that the authors did not 

remove cases with significant frame-wise displacement which could explain the 

discrepancy.  
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Table 5. Comparison of classifier performance using FC and dFC.  

 
Case positive indicates that either NAP or SCHZ was taken as the positive class for the classifier. 

Down-sampled indicates that the lack of balance between classes was rectified with random down-

sampling. Random sampling indicates that a specific number of samples were randomly chosen to 

allow balanced classes for external cross-validation. Blank cells indicate that the information was not 

available in the study manuscript. 

 

When considering classification performance in different datasets, it appears that our 

classifier did not perform as well as the one from Morgan et al. [66] in the Dublin 

dataset, or with the one from Rashid et al. [18] in the Hartford dataset. However, in 

both cases the classes were not balanced (Dublin, cases:controls = 25:75, Hartford, 

cases:controls = 87:135) and there was no evidence that this was taken into 

consideration when reporting the performance, which may explain the discrepancy in 

the results.  

 

We note that our cross-validation performance is comparable to the cross-validation 

performance in the other studies. Given these comparisons, we consider that our 

classifier had similar performance to those reported in the literature for cross-

validation. 

 

When we compare external validation of our classifier to that of Morgan et al. [66], 

we see that performance is similar with the same caveat pertaining to the Dublin 

dataset. We therefore consider that our cross-dataset analysis based on a single a-

priori feature of metastability (as measured with VAR) performs similarly to one in the 

literature based on over 40’000 features in FC. 

 

Cross validation

Study Dataset Controls Cases # features AUC B Accuracy Sensitvity Specificity Comments

Lei et al. (2020) FC COBRE 72 68 4'095 0.82 0.69 0.94
Morgan et al. (2021) FC COBRE 73 60 42'778 0.75 0.70 0.62 0.77
Hancock et al. (2022) dFC COBRE 71 59 1 0.71 0.62 0.64 0.60 Case Positive

Downsampled
Morgan et al. (2021) FC Maastricht 53 59 42'778 0.74 0.65 0.77 0.59

Dublin 72 25 42'778 0.82 0.86 0.50 0.97
Rashid et al. (2016) dFC Hartford 135 87 15  0.84 0.83 0.92
Du et al. (2020) dFC BSNIP-1 238 113 >1'000 0.69 0.66 0.73
Hancock et al. (2022) dFC HCPEP 53 82 1 0.73 0.67 0.59 0.73 Case Positive

Downsampled

External validation

Study Dataset Controls Cases # features AUC B Accuracy Sensitvity Specificity

Morgan et al. (2021) FC Maastricht->Dublin 53 59 42'778 0.77 0.56
Dublin->Maastricht 72 25 42'778 0.76 0.69

Hancock et al. (2022) dFC COBRE->HCPEP 53 53 1 0.76 0.57 0.93 0.21 Case Positive
HCPEP->COBRE 53 53 1 0.71 0.58 0.19 0.96 Case Positive

Random Sampling
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It is interesting to note that the HCPEP->Cobre external validation returned very high 

specificity whilst the Cobre->HCPEP external validation returned very high 

sensitivity. This may reflect that the cases in HCPEP are in the early stages of 

schizophrenia whilst the cases in Cobre are in a well-established stage of 

schizophrenia. It appears that disruptions in connectivity in early psychosis are not 

sufficient to distinguish SCHZ from CON. However, disruptions in SCHZ are 

sufficient to distinguish NAP from CON. This seems to imply that the disruptions in 

early psychosis are a subset of those in established schizophrenia. 

 

Our three complementary perspectives of group-level discrimination, individual-level 

classification, and pathophysiological relevance, provide preliminary evidence for the 

face validation of metastability as a neuromechanistic biomarker of schizophrenia.  

 

There are several limitations that should be considered when evaluating the findings 

from this study. First, we used a novel proxy for metastability. Although the concept 

of metastability is generally accepted, its operationalization takes a number of forms 

from the entropy of spectral density [31], to the variability in spatial coherence [67], 

and to the most commonly used form, the standard deviation of the Kuramoto order 

parameter (phase coherence) [57]. We chose the mean variance of instantaneous 

phase-locking as an alternative proxy for metastability based on the theory of 

Synergetics [45] and recent generalization of the Haken-Kelso-Bunz (HKB) model to 

multiple oscillators [46], which exhibits stable antiphase synchronization [47]. See 

Fig 8 reproduced with permission from [47]. It should be noted that the generalized 

HKB model reduces to the Kuramoto model when second-order coupling is removed 

(i.e. Bij = 0), and so can be seen as an extension of the Kuramoto model as in [68–

70]. 
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Fig 8. Attractor landscape for the extended HKB model of multi-adic coordination. A plot of the 

relative phase potential function landscape for Aij = 2Bij = 1 for each i, j. Note the many valleys 
(marked with red asterisks) in which an oscillator moving around in this landscape will become 

trapped. These valleys are the local minima corresponding to the coordination states. There are two 

types of valleys in this landscape: in-phase valleys, which have relatively very deep and wide basins 

of attraction, and antiphase valleys, which are narrower and shallower, reflecting the fact that the in-

phase state is more stable than the antiphase state. Each of these valleys is separated by a distance 

of Π, and repeats infinitely on the potential surface in a 2	Π -periodic pattern. A, B, effective coupling 

parameters; i,j, ith and jth oscillator. Reproduced with permission from [47]. 

 

The generalized HKB model may explain the phase-locking behavior we illustrated in 

Fig 1 including mono-stability, bi-stability, switching (‘sans switch’) [71] , and 

chimeras [57]. We have used a phenomenological understanding of the generalized 

HKB model to propose the mean variation of instantaneous phase-locking as a new 

proxy measure for metastability. In future work we need to perform a more thorough 

theoretical investigation of the phenomenon of metastability, complemented with a 

computational model that predicts empirical findings. 

 

Second, from the perspective of alternative dFC approaches and pipelines, we did 

not perform global signal, white matter or cerebral spinal fluid regression. From a 

complexity science perspective [34], one cannot explore any subsystem of a 

complex system such as the brain in isolation, and accumulating evidence points to 

contributions other than neuronal to the fMRI signal [72–74]. As in [42], we defined 
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communities of oscillators directly from the phase-locking data and not from intrinsic 

connectivity networks [36] nor predefined templates [61]. This allows regions to 

participate in multiple communities reflecting transient coalitions between the regions 

as evidenced by spatial overlap between networks [75,76]. 

 

Third, the switching behavior observed in the phase-locking behavior in Fig 1 may 

appear to be artifactual. In LEiDA the leading eigenvector time-series is smoothed 

through a technique called “half-switching”. We reproduced the time-series for one 

subject without this smoothing and compared the results to the smoothed version. As 

may be seen in S5 Fig switching also occurs in the non-smoothed version, but with 

higher frequency than in the smoothed version. 

 

However, since this smoothing was applied to all subjects, it does not affect the 

results, but may impact the ability to compare results with those obtained with 

alternative dFC approaches. 

 

Conclusion 
This study claims face validity of metastability as a neuromechanistic biomarker of 

schizophrenia based on group-level discrimination, individual-level classification, and 

pathophysiological relevance, congruent with published literature. While diagnostic 

biomarkers of schizophrenia — such as metastability — may still have limited clinical 

utility, they can provide mechanistic insights for the discovery of prognostic 

biomarkers that could support treatment decisions. For example, the ability to identify 

treatment resistance or transition likelihood from high risk to first episode psychosis 

would address a real clinical need. Developing a deeper understanding of 

metastability may one day help us to gain sufficient mechanistic insight into the 

disconnection phenomenon of schizophrenia, which may lead in turn into the 

development of such effective biomarkers.   
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Materials and methods 
Participants 
HCPEP 
Healthy controls (CON, n = 53) and non-affective psychosis (NAP, n = 82) 

participants were scanned at one of four sites (Indiana University, Beth Israel 

Deaconess Medical Center – Massachusetts Mental Health Center, McLean Hospital 

and Massachusetts General Hospital) as part of the Human Connectome Project-

Early Psychosis (Principal Investigators: Shenton, Martha; Breier, Alan; 

U01MH109977-01, HCP-EP; 

 doi:10.15154/1524263 https://nda.nih.gov/edit_collection.html?id=2914) with funding 

from the National Institute of Mental Health (NIMH). A Data Use Certification (DUC) 

is required to access the HCPEP on the NIMH Data Archive (NDA). 

 

NAP participants met DSM-5 criteria for schizophrenia, schizophreniform, 

schizoaffective, psychosis NOS, delusional disorder, or brief psychotic disorder with 

onset within the past five years prior to study entry. Additional inclusion/exclusion 

criteria may be found in 

https://www.humanconnectome.org/storage/app/media/documentation/data_release/

HCP-EP_Release_1.0_Manual.pdf. See Table 6 for group demographics.  

 

Procedures were approved by the Partners Healthcare Human Research 

Committee/IRB and complied with the Declaration of Helsinki. Participants provided 

written informed consent, or in the case of minors, parental written consent and 

participant assent. 

 

Cobre 
Neuroimaging data was obtained from the publicly available repository Cobre ( 

http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html ) preprocessed with NIAK 

0.17—lightweight release (Calhoun et al., 2012; Bellec, 2016). The neuroimaging 

data included preprocessed resting-state fMRI data from healthy controls (CON, n = 

72) and schizophrenia patients (SCHZ, n = 72), in which participants passively 

stared at a fixation cross. Subject recruitment and evaluation may be found in (Aine 

et al., 2017). The study was approved by the institutional review board (IRB) of the 
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University of New Mexico (UNM) and all subjects provided written informed consent. 

See Table 6 for group demographics.  

 
Table 6. Demographic characteristics of participant groups 

 
 

Image acquisition - HCPEP 
All MRI scans were acquired on Siemens MAGNETOM Prisma 3T scanners with a 

multiband acceleration factor of 8, and a 32/64channel head coil. Each participant 

underwent four scans of resting-state fMRI collected over two experimental sessions 

on consecutive days (two scans in each session). The four datasets are referred to 

as run 1 to run 4. During each scan 410 frames were acquired using a multiband 

sequence at 2 mm isotropic resolution with repetition time (TR) of 0.72 sec over the 

space of 4 min 55 secs. The two scans in each session differed only in the phase 

encoding direction of anterior-posterior (AP) followed by posterior-anterior (PA) on 

both days. 

 

Image acquisition - Cobre 
The resting-state fMRI data featured 150 echo planar imaging volumes obtained in 5 

min, with repetition time (TR) = 2 s, echo time = 29 ms, acquisition matrix = 64×64 

mm2, flip angle = 75◦ and voxel size = 3×3×4 mm3. The acquisition is fully described 

in detail in (Aine et al., 2017). 

 

Preprocessing 
HCPEP 
Data were pre-processed with the HCP’s minimal pre-processing pipeline, and 

denoising was performed by the ICA-FIX procedure (Glasser et al., 2013; Griffanti et 

al., 2014; Salimi-Khorshidi et al., 2014). A complete description of the pre-processing 

Characteristics

HCs (n=53) NAPs (n=82) HCs (n=72) SCHZs (n=72)

Age (years) 24.85 ±  4.15 23.42 ±  3.57 35.88 ±  11.74 37.89 ±  13.86

Gender (male/female) 34/19 55/27 51/21 56/16

Site (IU/BIDMC/MGH/MH) 25/5/10/13 51/14/5/12   

IQ (QASI-II) (160 subjects recorded) 116.30 ±  10.96 97.52 ±  17.55   

HCP EP COBRE

HCP EP = Human Connextome Project for Early Psychosis; HC = Healthy Controls; NAP = patients with non-affective psychosis;  SCHZ 
= patients with schizophrenia; IQ = intelligence quotient
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details may be found at the HCP website 

https://www.humanconnectome.org/software/hcp-mr-pipelines. Briefly, fMRI data 

was gradient-nonlinearity distortion corrected, rigidly realigned to adjust for motion, 

fieldmap corrected, aligned to the structural images, and then registered to MNI 

space with the nonlinear warping calculated from the structural images. ICA-FIX was 

then applied on the data to identify and remove motion and other artifacts in the 

time-series. 

 

Cobre 
The preprocessing of the fMRI data is fully described in detail in [77,78]. 

In brief, preprocessing included slice-timing correction, co-registration to the 

Montreal Neurological Institute (MNI) template and resampling of the functional 

volumes in the MNI space at a 6 mm isotropic resolution. We resampled the 

functional volumes in MNI space at a 2 mm isotropic resolution with 3dresample from 

AFNI [79]. Inspection of the fMRI data for each subject resulted in the exclusion of 

one subject whose data did not include all 150 volumes. 13 NAP subjects with 

framewise displacement > 0.7mm were also removed. The final dataset therefore 

used for the Cobre analysis included n=59 SCHZ cases and n=71 HCs. 

 
Substantial material in the following subsections is recycled from our prior publication 

[42]. 

Parcellation 
We parcellated the pre-processed fMRI data by averaging time-courses across all 

voxels for each region defined in the anatomical parcellation AAL [48] considering all 

cortical, subcortical, and cerebellar regions, N = 116. We chose the AAL parcellation 

as subcortical and cerebellar regions are relevant in studies with psychiatric cohorts 

[2,7,80–82].  

 

Bandpass filtering 
To isolate low-frequency resting-state signal fluctuations, we bandpass filtered the 

parcellated fMRI time-series within 0.01-0.08 Hz with a discrete Fourier transform 

(DST) computed using a fast Fourier transform (FFT) algorithm in MATLAB 2021b. 

We applied Carson’s empirical rule (Carson, 1922; Pachaud et al., 2013) on the 

analytical signal which was calculated using the Hilbert transform of the real signal 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 17, 2022. ; https://doi.org/10.1101/2022.10.14.22281093doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.14.22281093
http://creativecommons.org/licenses/by/4.0/


(Gabor, 1946), to confirm non-violation of the Bedrosian theorem for our band-

passed signals in both datasets (see S3 and S4 Figs).  

 

Functional connectivity through phase-locking 
We estimated functional connectivity (FC) with the nonlinear measure of phase-

locking which may be more suitable than linear measures such as Pearson 

correlation for analyzing complex brain dynamics. Specifically, nonlinear methods 

provide insight into interdependence between brain regions at both short and large 

time and spatial scales allowing the analysis of complex nonlinear interactions 

across space and time [83,84]. From a practical perspective, unlike correlation or 

covariance measures, phase synchronization can be estimated at the instantaneous 

level and does not require time-windowing. When averaged over a sufficiently long-

time window, phase-locking values provide a close approximation to Pearson 

correlation, varying within the same range of values [50,85]. 

 

Following [50] we first calculated the analytical signal using the Hilbert transform of 

the real signal [86]. Then, the instantaneous phase-locking between each pair of 

brain regions n and p was estimated for each time-point t as the cosine difference of 

the relative phase as 

𝑖𝑃𝐿(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑠1θ(𝑛, 𝑡) − θ(𝑝, 𝑡)4 (1) 

 

Phase-locking at a given timepoint ranges between -1 (regions in anti-phase) and 1 

(regions in-phase).  For each subject the resulting iPL was a three-dimensional 

tensor of size NxNxT where N	is the dimension of the parcellation, and T is the 

number of timepoints in the scan. 

 

LEiDA – Leading Eigenvector Dynamic Analysis 
To reduce the dimensionality of the phase-locking space for our dynamic analysis, 

we employed the Leading Eigenvector Dynamic Analysis (LEiDA) [50] method. The 

leading eigenvector V1(t) of each iPL(t) is the eigenvector with the largest magnitude 

eigenvalue and reflects the dominant FC (through phase-locking) pattern at time t. 

V1(t) is a Nx1 vector that captures the main orientation of the fMRI signal phases 

over all anatomical areas. Each element in V1(t) represents the projection of the fMRI 

phase in each region into the leading eigenvector. When all elements of V1(t) have 
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the same sign, this means that all fMRI phases are orientated in the same direction 

as V1(t) indicating a global mode governing all fMRI signals. When the elements of 

V1(t) have both positive and negative signs, this means that the fMRI signals have 

different orientations behaving like opposite anti-nodes in a standing wave. This 

allows us to separate the brain regions into two ‘communities’ (or poles) according to 

their orientation or sign, where the magnitude of each element in V1(t) indicates the 

strength of belonging to that community [87]. For more details and graphical 

representation see [51,88,89]. The outer product of V1(t) reveals the FC matrix 

associated with the leading eigenvector at time 𝑡. 

 

Mode extraction 
To identify recurring spatiotemporal modes 𝜓 or phase-locking patterns, we 

clustered the leading eigenvectors for each of the 12 phase-locked time-series 

datasets (3 conditions x 4 runs) with K-means clustering with 300 replications and up 

to 400 iterations for 2-10 centroids. K-means clustering returns a set of K central 

vectors or centroids in the form of Nx1 vectors Vc. As Vc is a mean derived variable, 

it may not occur in any individual subject data set. To obtain time courses related to 

the extracted modes 𝜓& at each TR we assign the cluster number to which Vc(t) is 

most similar using the cosine distance. 

 

Mode representation in voxel space 
To obtain a visualization in voxel space of the spatial modes Vc we first reduced the 

spatial resolution of all fMRI volumes from 2mm3 to 10mm3 to obtain a reduced 

number of brain voxels (here N = 1821) to be able to compute the eigenvectors of 

the NxN phase-locking matrices. The analytic signal of each 10mm3 voxel was 

computed using the Hilbert transform, and the leading eigenvectors were obtained at 

each time point (with size NxT). Subsequently, the eigenvectors were averaged 

across all time instances assigned to a particular cluster, obtaining in this way, for 

each cluster, a 1xN vector representative of the mean phase-locking pattern 

captured in voxel space. 
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Mode representations as connectograms 
We visualized FC as connectograms by taking the FC matrices for each mode and 

retaining regions that were collectively in-phase but in anti-phase with the global 

mode. 

 

Neurosynth functional associations 
Probabilistic measures of the association between brain coordinates and overlapping 

terms from the Cognitive Atlas [90] and the Neurosynth database [58] were obtained 

as in [59]. The probabilistic measures were parcellated into 116 AAL regions and 

may be interpreted as a quantitative representation of how regional fluctuations in 

phase-locking are related to psychological processes. The resulting functional 

association matrix represents the functional relatedness of 130 terms to 116 brain 

regions (see S7 Table for a full list of terms).  

 

Metastability  
Empirical metastability studies to date have used pre-defined resting-state networks 

(RSN) extracted with ICA [36] , with network masks [61], or with functional templates 

[91] to represent communities of oscillators for investigation of network synchrony 

and metastability. In contrast, as in [42] we decided to take a purely data driven 

approach, using the recurrent modes extracted with K-means clustering to represent 

communities of oscillators. As we decided to retain 5 recurrent modes (see Results), 

we therefore have 5 communities of oscillators 𝜓! - 𝜓%. Note that the AAL regions 

are not constrained to a single community and so the communities reflect time-

varying coalitions among regions.  

 

Based on phase synchrony 
Synchronization was calculated as the time-average of the Kuramoto order 

parameter in each community, which is given by  

𝑍'(𝑡) = 〈𝑒()(+,-)〉, 	+∈'		 (1) 

 

Above, 𝑍'(𝑡) is a complex value where its magnitude, and hence 	𝑆𝑌𝑁𝐶'= |𝑍'(𝑡)|, 

provides a quantification of the degree of synchronization of the community at each 

time t, taking values between 1 (for fully synchronized systems) and 0 (for fully 

desynchronized systems). Metastability was calculated as the standard deviation 
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over time of the Kuramoto order parameter in each community. The mean value of 

this measure across communities denoted as global metastability, represents the 

overall variability in the synchronization across communities. 

 

 

Based on phase-locking 
The instantaneous phase-locking between each pair of brain regions n and p was 

estimated for each time-point t as the cosine difference of the relative phase as 

 

𝑖𝑃𝐿(𝑛, 𝑝, 𝑡) = 𝑐𝑜𝑠1θ(𝑛, 𝑡) − θ(𝑝, 𝑡)4 (1) 

 

Metastability, denoted as VAR to distinguish it from metastability above, was 

calculated as the mean of the variance of instantaneous phase-locking over time in 

each community. The mean value of this measure across communities denoted as 

global VAR represents the overall variance in the phase-locking across communities. 

 

Statistical analysis 
Interclass correlation coefficient 
ICC is a relative metric that is used for test-retest reliability in measurement theory 

[92]. It is generally defined as the proportion of the total measured variance that can 

be attributed to within subject variation. As such, ICC coefficients may be low when 

there is little variance between subjects, that is in a homogeneous sample, or when 

the within-subject variance is large [93]. In this study we use the ICC forms from [94].  

There are many scales for ICC, so for clarity we will use those of Landis and Koch 

[95]: 

low (0 < ICC < 0.2) 

fair (0.2 < ICC < 0.4)   

moderate (0.4 < ICC < 0.6 

substantial (0.6 < ICC < 0.8)  

almost perfect (0.8 < ICC < 1)  

We calculated the run reliability of mode 𝜓 extraction with ICC(1,1) in search of 

agreement rather than consistency across runs [54].  
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Parametric testing 
Before performing statistical tests, we checked if the assumptions for parametric 

testing were met. In all cases, the assumptions were violated. The results of these 

tests can be found for basal ganglia in S1 Table, global metastability in S2 Table, 

local metastability in S3 Table, global VAR in S4 Table, local VAR in S5 Table. 

 

Non-parametric ANOVA testing 
We used Align rank transform (ART) [55,56] to perform multi-factor non-parametric 

testing with dependent groups in R (ARtool::art). We then followed the statistical 

testing flowchart shown in Fig 9. All results were Bonferroni corrected for multiple 

comparisons.  

 

 
Fig 9. Statistical flowchart for non-parametric testing of differences between groups across 
runs. 1) 2x4 non-parametric ANOVA using Align rank transform (ART). 2) Friedmann repeated 

measures test. 3) Paired Wilcoxon test. 4) Friedmann repeated measures test. 5) Paired Wilcoxon 

test. 6) Independent Wilcoxon test for each run. 7) Independent Wilcoxon test across all runs. 
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Non-parametric permutation t-tests 
We used permutation Welch 2 sample t-tests with n = 9999 Monte Carlo 

permutations implemented in R (MKinfer::perm.t.test) as the majority of distributions 

were not normally distributed when assessed with a Shapiro test . 

 

Classification of condition based on metastability 
Supervised machine learning algorithms were trained to classify cases and controls 

for each dataset independently using a single a-priori feature of metastability as 

measured by VAR. Classification was performed using a naïve Bayes non-linear 

classification model [96] in R implemented with Caret [97]. We used a naïve Bayes 

classifier as we had just one feature with no issue of independence. For the HCPEP 

datasets, we chose cross-validation over internal validation in a different run to avoid 

data leakage, as the same participants would have been present in both the test and 

validation sets [98].  

 

In all five datasets, we assessed the generalizability of the classifier using repeated 

k-fold cross-validation, k=10, repetitions = 20. For the out-of-sample analysis we 

trained the classifier in HCPEP and tested it in Cobre; and trained the classifier in 

Cobre and tested it in HCPEP. For all datasets we used down-sampling to balance 

the classes, and for the out-of-sample analysis we randomly down-sampled both 

datasets to 53 to allow cross-dataset testing. We report the area under the operating 

characteristics curve (AUC), balanced accuracy, sensitivity, and specificity. The 

statistical significance of balanced accuracy was assessed with a binomial 

cumulative distribution function [98]. 

 

Software tools 
Parcellation, LEiDA, ICC and metastability / VAR derivations were implemented in 

MATLAB [99]. Neurosynth functional associations were derived in Python 3.8.5. All 

other statistical analysis were performed in RStudio Team version 2022.02.3 Build 

492 [100]. 
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Supporting information 
S1 Fig Silhouette values for clustering solutions for 1 to 9 clusters with 2-10 
modes respectively. (A) HCPEP CON. (B) HCPEP NAP. (C) Cobre CON (D) Cobre 

SCHZ. 

S2 Fig Reliability of mode extraction for controls and non-affective psychosis 
S3 Fig Non-violation of Bedrosian Theorem - HCPEP 
S4 Fig Non-violation of Bedrosian Theorem – Cobre 
S5 Fig Effect of smoothing on the leading eigenvector time-series. A) 

Timeseries for the leading eigenvectors for one subject without smoothing. B) 

Timeseries for the leading eigenvector for the same subject with half-switch 

smoothing. The blue asterixis indicate that half-switching occurred. 

S1 Table Assumption test results for contribution of basal ganglia regions FC 
in the HCPEP dataset. We assessed the normality of the distribution of contribution 

with a Shapiro-Wilk test, equivalence of variance with a Levine test, and effect size 

with Cohen’s D test.  

S2 Table Assumption test results for global META in the HCPEP and Cobre 
datasets. We assessed the normality of the distribution of META with a Shapiro-Wilk 

test, equivalence of variance with a Levine test, and effect size with Cohen’s D test. 

S3 Table. Assumption test results for metastability in the modes in the HCPEP 
and Cobre datasets. We assessed the normality of the distribution of mode META 

with a Shapiro-Wilk test, equivalence of variance with a Levine test, and effect size 

with Cohen’s D test. 

S4 Table. Assumption test results for global VAR in the HCPEP and Cobre 
datasets. We assessed the normality of the distribution of META with a Shapiro-Wilk 

test, equivalence of variance with a Levine test, and effect size with Cohen’s D test.  

S5 Table 7. Assumption test results for mode VAR in the HCPEP and Cobre 
datasets. We assessed the normality of the distribution of VAR in each mode with a 

Shapiro-Wilk test, equivalence of variance with a Levine test, and effect size with 

Cohen’s D test.  

S6 Table. Neurosynth terms 
S1 Supplementary Information. Results from statistical tests for differences in 

basal ganglia connectivity between HC and NAP in the HCPEP dataset 

S2 Supplementary Information Results from statistical tests for differences in 

mode META between HC and NAP in the HCPEP dataset, and HC and SCHZ in the 

Cobre dataset 
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S3 Supplementary Information Results from statistical tests for differences in 

mode VAR between HC and NAP in the HCPEP dataset, and HC and SCHZ in the 

Cobre dataset 

S1 Supplementary Text Analysis of coherence based Metastability  
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