2 Adiponectin/leptin ratio - a marker of insulin sensitivity in pre-eclampsia and

3 fetal growth

- 4 Victoria Elizabeth de Knegt^{1,2}, Paula L. Hedley^{1,3}, Anna K. Eltvedt¹, Sophie
- 5 Placing¹, Karen Wøjdemann⁴, Anne-Cathrine Shalmi⁵, Line Rode⁶, Jørgen
- 6 Kanters⁷, Karin Sundberg⁸, Ann Tabor^{8,9}, Ulrik Lausten-Thomsen¹⁰, Michael

7 Christiansen^{1,7*}

8

- ⁹ ¹Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- 10 ²Department of Paediatrics, University Hospital Slagelse, Slagelse, Denmark
- ³Brazen Bio, Los Angeles, California, USA
- ⁴Department of Gynecology and Obstetrics, Bornholm Hospital, Rønne, Denmark
- ⁵Department of Obstetrics, Hillerød Hospital, Hillerød, Denmark
- ⁶Department of Clinical Biochemistry, Copenhagen University Hospital Rigshospitalet, Glostrup,
- 15 Denmark
- ⁷Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- ⁸Center of Fetal Medicine, Department of Obstetrics, Copenhagen University Hospital
- 18 Rigshospitalet, Copenhagen, Denmark
- ⁹Department of Clinical Medicine, Faculty of Medical and Health Sciences, University of
- 20 Copenhagen, Copenhagen, Denmark
- ¹⁰Department of Neonatology, University Hospital Rigshospitalet, Copenhagen, Denmark
- 22
- 23
- 24
- 25

26 **Corresponding author:**

- 27 Michael Christiansen*, M.D., FRCPath
- 28 Department for Congenital Disorders
- 29 Statens Serum Institut
- 30 5 Artillerivej DK2300S
- 31 Copenhagen, Denmark
- 32 Telephone: +45 32683657; Fax: +45 32683878; E-mail: mic@ssi.dk

34 Abstract

35	The serum adiponectin-leptin ratio (A/L ratio) is a surrogate marker of insulin sensitivity.
36	Pre-eclampsia (PE) is associated with maternal metabolic syndrome and occasionally impaired
37	fetal growth. We assessed whether the A/L ratio in first-trimester maternal serum was associated
38	with PE and/or birth weight. Adiponectin and leptin were quantitated in first-trimester blood
39	samples (gestational week 10^{+3} - 13^{+6}) from 126 women who later developed PE with proteinuria,
40	(98 mild PE; 21 severe PE; 7 HELLP syndrome), and 297 controls, recruited from the
41	Copenhagen First-Trimester Screening Study. The A/L ratio was reduced in PE pregnancies,
42	median 0.17 (IQR: 0.12-0.27) compared to controls, median 0.32 (IQR: 0.19-0.62), (p<0.001). A
43	multiple logistic regression showed that PE was negatively associated with A/L ratio independent
44	of maternal BMI (odds ratio = 0.08 , 95% CI = 0.0322 to 0.214). Adiponectin (AUC = 0.632) and
45	PAPP-A (AUC = 0.605) were negatively, and leptin (AUC = 0.712) was positively associated
46	with PE. However, the A/L ratio was a better predictor of PE (AUC = 0.737). No significant
47	association was found between A/L ratio and clinical severity of pre-eclampsia or preterm birth.
48	PE was associated with significantly lower relative birth weight, (p<0.001). A significant
49	negative correlation was found between relative birth weight and A/L ratio in controls but not in
50	PE pregnancies, (β = -0.144, 95% CI = -9.944 to -0.093), independent of maternal BMI. After
51	correction for maternal BMI, leptin was significantly associated with relative birth weight, (β =
52	0.197, 95 % CI = 2.361 to 14.353), while adiponectin was not significantly associated. Our
53	findings suggest that an impairment of the A/L ratio (as seen in metabolic syndrome) in first-
54	trimester is characteristic of PE, while aberrant fetal growth in PE is not dependent on insulin
55	sensitivity but rather on leptin associated pathways.

56 Word count: 291

57	
58	Key words: adipocytokine, adiponectin, birth weight, fetal growth restriction, leptin, metabolic
59	syndrome, placenta
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	
72	
73	
74	
75	
76	
77	
78	

80 Background

81 Pre-eclampsia (PE) is a serious pregnancy complication characterized by high blood pressure and 82 proteinuria and/or impaired liver and kidney function, pulmonary edema, hematological 83 complications, seizures, or uteroplacental dysfunction (1,2). The prevalence of PE is 3-5% in the 84 western world and it is a major contributor to maternal and fetal/neonatal morbidity (1). In places 85 with limited access to healthcare, e.g. in large parts of Asia, Africa and South America, between 86 one-tenth and one-quarter of maternal deaths are associated with hypertensive disorders of 87 pregnancy (3). PE predisposes both mothers and offspring to a plethora of deleterious health 88 outcomes. Mothers have increased risk of developing hypertension and other cardiovascular 89 diseases (4), metabolic syndrome, and overweight and obesity years after pregnancy (5). Infants 90 too are at risk of developing cardiovascular disease (6), metabolic syndrome and overweight and 91 obesity later in life (6–8). The pathophysiological background of PE is elusive, but most likely 92 heterogeneous, involving uterine-placental dysangiogenesis, endothelial dysfunction, 93 immunological abnormalities, genetic factors, or metabolic disturbances (9). 94 Pregnancy requires major metabolic adaptations to ensure adequate nutrient supply for 95 the fetus (10). An important aspect of this is changes in maternal insulin sensitivity (IS) and 96 insulin resistance (IR) that is mediated by a range of maternal, placental, and fetal hormones 97 (11). First trimester is characterized by a relative increase in insulin sensitivity, needed to ensure 98 uptake of nutrients in the mother; this changes as insulin resistance develops during second-99 trimester (12,13).

101 Pre-pregnancy IR is associated with the development of gestational diabetes mellitus 102 (GDM) (14), with ensuing risk of fetal over-nutrition and macrosomia (15–17) as well as PE 103 (18). Early-onset PE is frequently associated with fetal growth restriction (FGR) (19), while late-104 onset PE is more often associated with macrosomia (2). Both fetal under- and over nutrition may 105 lead to changes in body composition in the fetus that persist after birth (20,21). These, in turn, 106 may lead to permanent metabolic alterations, epigenetic changes, and fetal programming, that 107 ultimately result in the development of metabolic syndrome and its associated diseases later in 108 life (6–8,22).

109

110 The risk of developing PE increases with increasing body mass index (BMI) (23). 111 Furthermore, adiponectin and leptin play a major role in the metabolic adaptations to pregnancy. 112 There is a small placental contribution to maternal leptin levels (24,25), but not to the extent that 113 it obviates the relation between maternal BMI and leptin. A number of hormonal factors regulate 114 the insulin signaling pathway and control the balance between IS and IR in order to 115 accommodate pregnancy (11) as well as compensate for the metabolic consequences of 116 overweight and obesity (26). Several hormones have been suggested to be involved in first-117 trimester fetal growth, and placental growth hormone appears to be of particular significance 118 (27). In pregnant women with BMI values on the extreme ends of the scale, insufficient 119 homeostatic compensatory mechanisms may result in presentation of disease symptoms. This 120 process may be reflected in adipocytokine levels, already in first-trimester (26).

121

Adiponectin and leptin are involved in a wide range of physiological processes and seem perturbed in GDM and PE (14,28–35). Serum adiponectin-leptin ratio (A/L ratio) is a surrogate

124	marker of IS that correlates well with signs of metabolic syndrome in childhood and adolescence
125	(36,37). It has been shown to correlate with insulin resistance in pregnancy (38). However, it has
126	not been associated with adverse pregnancy outcomes.
127	In this study, we use A/L ratio as a marker of IS and hypothesize that A/L ratio is
128	perturbed in the first-trimester of pregnancies that later develop PE. Furthermore, we assess the
129	significance of the A/L ratio for fetal growth, as maternal, placental, and fetal leptin have been
130	reported to contribute to intrauterine growth (24). Accordingly, this study examines the
131	relationship between first-trimester A/L ratio and PE as well as the relationship between
132	adiponectin, leptin, and A/L ratio and birth weight.
133	
134	
135	
136	
137	
138	
139	
140	
141	
142	
143	
144	
145	
146	

147 Materials and methods

148

149 Study design and participants

150

151 This study is a case-control sub-study of the 1997 to 2001 Copenhagen First-Trimester Screening 152 Study focusing on screening for chromosomal disorders (39). Several sub-studies on fetal growth 153 (27), PE (25,40–42), and sources of Down syndrome serum marker variability (43,44) have been 154 performed. The adipocytokine data used were collected from 2003 to 2010 and stored in an 155 anonymized database. Only singleton pregnancies with first-trimester blood samples (gestational age (GA) 10⁺³-13⁺⁶) were included. GA was determined by crown rump length (CRL). Selection 156 157 of cases and controls is described in Laigaard et al (40). Briefly, 126 pregnancies that developed 158 PE were selected for the study and 297 controls were matched with respect to maternal age, 159 parity, and GA at time of sampling (40). Of the 126 women with PE, 98 had mild PE, 21 had 160 severe PE, and seven had HELLP syndrome. Ten pregnancies ended in delivery before GA 34^{+0} . 161 Regarding ethnicity, 93% of the women were of North European descent. Demographic and 162 clinical parameters are given in table 1.

163

164 Data collection

165

Detailed clinical information, as well as pregnancy-associated plasma protein A (PAPP-A) and
beta-chorionic gonadotropin (hCGβ) concentrations, were collected as part of the Copenhagen
First-Trimester Screening Study, as previously described (39). PE pregnancies were categorized
into one of three severity groups: mild PE, severe PE, and HELLP syndrome as per criteria from

170	The International Society for the Study of Hypertension in Pregnancy (ISSHP) during the course
171	of the First-Trimester Screening Study (45). Briefly, PE was defined as persistent hypertension,
172	(either a systolic blood pressure ≥140 mm Hg or a diastolic blood pressure ≥90 mm Hg),
173	occurring after 20 weeks of gestation in a previously normotensive woman, in combination with
174	proteinuria, (≥ 0.3 g in a 24-hour urine collection or dipstick urine analysis of $\geq 1+$). Severe PE
175	was defined by a diastolic blood pressure >110 mm Hg in combination with subjective symptoms
176	and/or abnormal laboratory findings. HELLP syndrome was defined by the presence of
177	hemolysis, elevated liver enzymes, and low platelets. Early PE was defined as a PE pregnancy
178	that resulted in delivery prior to GA 34^{+0} .
179	
180	Biochemical measurements
181	
182	All blood samples were collected in dry containers and kept at 4° C for a maximum of 48 hours
183	until storage at -20° C. Adiponectin and leptin concentrations were measured in singlo following
184	appropriate sample dilution (25,26) using the Human Adiponectin Enzyme-Linked
185	Immunosorbent Assay (ELISA) development kit, Duo Set (DY1065), and the Human Leptin
186	ELISA development kit, Duo Set (DY398), R&D Systems, Minneapolis, USA. The functional
187	detection limits of the assays were 62.5 pg/ml (for adiponectin) and 31.25 pg/ml (for leptin).
188	
189	Evaluation of pre-analytic variables demonstrated that both adiponectin and leptin were
190	stable for at least 48 hours at 23° C and 10 freeze-thaw cycles. The intra-assay and inter-assay
191	coefficients of variation were <5% and <10%, respectively for adiponectin and leptin.
192	

193 Data analysis

195	Birth weights corrected for GA, relative birth weight, were calculated using intrauterine growth
196	curves developed by Marsal et al. (46). Weight classifications small-for-gestational-age (SGA),
197	appropriate-for-gestational-age (AGA), and large-for-gestational-age (LGA) were calculated
198	using \pm 24% as the upper and lower limits of relative birth weight (46). A/L ratio was calculated
199	as ([adiponectin]/[leptin])/1000. Data were analyzed using generalized linear models following
200	logarithmic transformation as appropriate. When necessary, non-parametric statistics were
201	employed. A PAPP-A value corrected for GA at time of sampling was calculated using multiples
202	of the median (MoM). MoM of logPAPP-A in both controls and PE pregnancies were calculated
203	by performing a regression analysis in the control pregnancies of log_{10} PAPP-A on GA at time of
204	sampling. All analyses were conducted using IBM SPSS Statistics, Version 28.0; Armonk, NY:
205	IBM Corp.
205 206	IBM Corp.
	IBM Corp. <i>Ethics</i>
206	
206 207	
206 207 208	Ethics
206 207 208 209	<i>Ethics</i> The Copenhagen First Trimester Study was approved by the Scientific Ethics Committee for
206 207 208 209 210	<i>Ethics</i> The Copenhagen First Trimester Study was approved by the Scientific Ethics Committee for Copenhagen and Frederiksberg Counties (No. (KF) 01-288/97) and the Data Protection Agency
206 207 208 209 210 211	<i>Ethics</i> The Copenhagen First Trimester Study was approved by the Scientific Ethics Committee for Copenhagen and Frederiksberg Counties (No. (KF) 01-288/97) and the Data Protection Agency
206 207 208 209 210 211 212	<i>Ethics</i> The Copenhagen First Trimester Study was approved by the Scientific Ethics Committee for Copenhagen and Frederiksberg Counties (No. (KF) 01-288/97) and the Data Protection Agency

- **Results**
- 218 Comparison of PE and control pregnancies

220	A/L ratio was lower in PE pregnancies, 0.17 (IQR: $0.12 - 0.27$) than in controls, 0.32 (IQR: 0.19)			
221	-0.62) (p<0.001), (table 1). PAPP-A was significantly lower in PE pregnancies than controls,			
222	(p<0.001), (table 1). Furthermore, a significant association was found between A/L ratio and			
223	PAPP-A (log transformed and controlled for GA at time of testing) in PE (β = 1.432, 95% CI =			
224	0.057 to 2.807). hCG β concentrations were not significantly different between the two groups,			
225	(table 1). Offspring of women with PE had a lower GA at birth and lower relative birth weight			
226	compared to the control group, (p<0.001), (table 1). A larger proportion of PE pregnancies			
227	delivered SGA infants, 14.3% in PE vs. 2.0% in controls (p<0.001), (table 1). Compared to			
228	control pregnancies, women with PE had significantly higher BMI, (p<0.001), (table 1). CRL			
229	and nuchal translucency measurements did not differ significantly between PE pregnancies and			
230	controls, (table 1). 74 % of PE deliveries were induced compared to 16% in controls, (p<0.001).			
231				
232	A multiple logistic regression showed that PE was negatively associated with A/L ratio			
233	independent of maternal BMI (odds ratio = 0.082 , 95% CI = 0.032 to 0.214). Adiponectin (area			
234	under the curve (AUC) = 0.632) and PAPP-A (AUC = 0.605) were negatively, and leptin (AUC)			
235	= 0.712) was positively associated with PE. However, the A/L ratio was a better predictor of PE			
236	(AUC = 0.737), (figure 1).			

240	The demographic, clinical, and paraclinical characteristics of mild PE, severe PE, and HELLP
241	pregnancies are presented in table 2. There was no discernable difference between A/L ratios in
242	the different severity groups (figure 2). The proportion of early PE (<ga 34)="" increased<="" td="" week=""></ga>
243	with increasing severity of PE, (p<0.001). There was no significant difference in relative birth
244	weight between severity groups. However, the proportion of SGA infants was greater in severe
245	PE and HELLP, $(p = 0.006)$.
246	
247	Comparison of early and late PE
248	
249	Demographic, clinical, and paraclinical characteristics of early and late PE are presented in table
250	3. No significant difference in A/L ratio between early and late PE was found. More frequently
251	early PE pregnancies were classified as severe PE and HELLP syndrome compared with late PE
252	pregnancies, 80.0% and 17.2%, respectively, (p<0.001). Early PE infants had a significantly
253	lower relative birth weight than late PE infants, (p<0.001). There was a difference in size for GA
254	between early and late PE, where 80.0% were SGA in early PE and 8.6% were SGA in late PE,
255	(p<0.001).
256	
257	Relative birth weight and A/L ratio
258	
259	A significant negative correlation was found between relative birth weight and A/L ratio in
260	controls but not in PE pregnancies, ($\beta = -0.144$, CI = -9.944 to -0.093). This was independent of
261	maternal BMI. The relationship was valid also when only considering AGA controls (β = -0.189,

262	95% CI = -10.370 to -1.439), again independent of maternal BMI. After correction for maternal
263	BMI, leptin was significantly associated with relative birth weight, ($\beta = 0.197, 95\%$ CI = 2.361 to
264	14.353), while adiponectin was not significantly associated. No association was found between
265	A/L ratio and CRL in either PE or control pregnancies, independent of maternal BMI.
266	
267	
268	
269	
270	
271	
272	
273	
274	
275	
276	
277	
278	
279	
280	
281	
282	
283	
284	

Discussion

287	In this study we showed, for the first time, that A/L ratio in first-trimester was significantly lower			
288	in pregnancies that developed PE compared to controls. Previous studies have either not			
289	examined first-trimester pregnancies (38,47,48) or examined the effect of A/L ratio in first-			
290	trimester obese women who developed PE (26). In the latter study, a decrease in A/L ratio, albeit			
291	insignificant, was found (26). A/L ratio was, however, associated with development of GDM in			
292	the same cohort (49). This is compatible with the inverse correlation between A/L ratio and the			
293	homeostasis model assessment of IR in pregnancy (38). The A/L ratio decreased with maternal			
294	BMI, a known risk factor of PE (26), but the A/L ratio outperformed maternal BMI as a predictor			
295	of PE.			
296				
297	The leptin/adiponectin ratio (a marker of insulin resistance) is associated with			
297 298	The leptin/adiponectin ratio (a marker of insulin resistance) is associated with cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has			
298	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has			
298 299	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has been shown to be associated with IR in various metabolic disorders, including diabetes mellitus			
298 299 300	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has been shown to be associated with IR in various metabolic disorders, including diabetes mellitus (50,51), polycystic ovary syndrome (PCOS) (52–54), metabolic syndrome (55), atherosclerosis			
298 299 300 301	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has been shown to be associated with IR in various metabolic disorders, including diabetes mellitus (50,51), polycystic ovary syndrome (PCOS) (52–54), metabolic syndrome (55), atherosclerosis (56) and obesity (57). The reduction in A/L ratio, thus, likely reflects increasing IR. This could			
298 299 300 301 302	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has been shown to be associated with IR in various metabolic disorders, including diabetes mellitus (50,51), polycystic ovary syndrome (PCOS) (52–54), metabolic syndrome (55), atherosclerosis (56) and obesity (57). The reduction in A/L ratio, thus, likely reflects increasing IR. This could			
 298 299 300 301 302 303 	cardiometabolic risk factors in children (36,37). Furthermore, in adults, a decreased A/L ratio has been shown to be associated with IR in various metabolic disorders, including diabetes mellitus (50,51), polycystic ovary syndrome (PCOS) (52–54), metabolic syndrome (55), atherosclerosis (56) and obesity (57). The reduction in A/L ratio, thus, likely reflects increasing IR. This could also explain the association between PE and PCOS (58).			

307 explained by this relation. Adiponectin is not synthesized by the placenta, so the changes in

adiponectin concentrations are the result of physiological changes in the mother. Leptin is partly
synthesized by the placenta and largely by adipose tissue in the mother (33). However, the effect
of leptin is modulated by the presence of soluble leptin receptor as well as variable expression of
leptin receptors in different tissues (60). As pregnancy requires metabolic adaptations through
gestation, mediated by several endocrine axes, the present study precludes a more precise
analysis of the causation of the changes in adiponectin and leptin.

314

315 The receiver operating characteristic (ROC) curve analysis showed that A/L ratio was a 316 better predictor of PE than leptin and adiponectin individually. However, the AUC of A/L ratio is 317 so small that it precludes a use of A/L ratio as a first-trimester single marker of later PE. 318 Likewise, PAPP-A is a marker for PE, but only used as a single marker in high risk pregnancies. 319 However, it is possible that A/L ratio might contribute to improving the efficiency and clinical 320 utility of either PE screening algorithms based on clinical information (61) or algorithms 321 including ultrasound and biochemical markers (62). An advantage of a biochemical marker that 322 may be measured on dried filter paper blood spots is that it may be used in populations with 323 challenged access to prenatal care. This might be of particular importance in low- and middle-324 income countries.

325

There was no discernable difference between A/L ratios in the different severity groups of PE or between early and late PE. Thus, the A/L ratio in first trimester cannot be used to discern severity or early delivery in PE pregnancies. This suggests that IR predisposes to PE but other factors determine clinical presentation. A significantly larger cohort of PE cases will be needed

to further investigate the performance of A/L ratio in early- and late-onset PE, severe PE and
HELLP. Samples that were few in number in the present study.

333	A significant positive association between PAPP-A - a known marker for PE, placental
334	dysfunction, and FGR - and A/L ratio was found in PE pregnancies. This is interesting as the
335	growth hormone – insulin-like growth factor (IGF) axis, where PAPP-A is a placenta-derived
336	insulin-like growth factor binding protein (IGFBP) -2, -4, and -5 protease (63), plays a major role
337	for both fetal and placental growth (possibly due to its importance for bioavailability of IGF)
338	(64). This specific finding needs to be confirmed through replication in other data sets.
339	
340	A negative relationship between A/L ratio and relative birth weight was only found in
341	controls, suggesting that the homeostatic mechanisms involving adiponectin and leptin are
342	perturbed in PE. This finding was independent of maternal BMI. One explanation could,
343	however, be that 74% of PE pregnancies were induced, in contrast to 16% of controls. Thus, the
344	timing of parturition is for the majority of PE cases determined by the obstetrician, and not by
345	endocrine effector systems. The relationship between A/L ratio and relative birth weight was also
346	apparent when examining just AGA controls, indicating that it is not the extreme relative birth
347	weights driving the overall association. Interestingly, the association between A/L ratio and
348	relative birth weight in controls was driven by a positive association between leptin and relative
349	birth weight. Adiponectin did not contribute to this association. Thus, relative birth weight does
350	not seem to be dependent on IS but rather on leptin associated pathways (24).
251	

Leptin contributed independently to the negative association between A/L ratio and relative birth weight in controls. Leptin has a permissive role in several reproductive functions (65), and in the current context, one might hypothesize that leptin reflects whether maternal energy stores are sufficient sustain normal fetal growth. We know that the relationship between leptin and maternal BMI is perturbed at high BMI levels (26), and increased IR originating from adipose tissue can be a contributing factor (66).

358

359 PE is – in some cases - associated with reduced fetal size and as expected, we found that 360 women with PE had infants with significantly lower relative birth weight compared with 361 controls. Yet, interestingly, there was a lack of association between birth weight and A/L ratio in 362 PE pregnancies. These findings suggest that disturbances in metabolic homeostasis are already 363 apparent long before the development of PE symptoms, by definition in week 20, and have 364 negative consequences for fetal growth. Alternatively, the above mentioned large difference in 365 induction rates between PE pregnancies and controls may override the normal homeostatic 366 mechanisms controlling time of parturition. However, the period of relative IS and optimal 367 nutrient access in first-trimester may be reduced in women who develop PE as they instead risk 368 experiencing premature and/or increased IR. This possible shift between IS and IR already in 369 first-trimester may herald the PE associated impaired fetal growth.

370

Even though the study included a broad range of clinical parameters, some important variables, such as gender of offspring and gestational weight gain during pregnancy were not included. Another limitation of this study was that only total adiponectin levels were measured.

374	Three forms of adiponectin, low-, medium-, and high- molecular-weight (HMW) adiponectin
375	have been identified, where only HMW adiponectin has been shown to be associated to PE (67).
376	
377	Conclusions
378	
379	A reduced A/L ratio is a first-trimester characteristic of pregnancies that later develop PE.
380	However, neither severity nor time of onset was associated with A/L ratio. The A/L ratio,
381	reflecting IS, is a better discriminator between PE and controls than either leptin or adiponectin.
382	Relative birth weight was associated with A/L ratio, however, this was driven by leptin alone.
383	Changes in birth weight do not seem to be dependent on insulin sensitivity, as is the case for PE,
384	but rather on leptin associated pathways.
385	
386	Word count, manuscript: 3002
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	

397	List o	f abbreviations:
398		
399	-	AGA: appropriate-for-gestational-age
400	-	A/L ratio: serum adiponectin-leptin ratio
401	-	AUC: area under the curve
402	-	BMI: body mass index
403	-	CRL: crown rump length
404	-	ELISA: enzyme-linked immunosorbent assay
405	-	FGR: fetal growth restriction
406	-	GA: gestational age
407	-	GDM: gestational diabetes mellitus
408	-	HCGβ: beta-chorionic gonadotropin
409	-	HMW: high molecular weight
410	-	IGF: insulin-like growth factor
411	-	IGFBP: insulin-like growth factor binding protein
412	-	IR: insulin resistance
413	-	IS: insulin sensitivity
414	-	ISSHP: The International Society for the Study of Hypertension
415	-	LGA: large-for-gestational-age
416	-	MoM: multiple of the median
417	-	PAPP-A: pregnancy-associated plasma protein A
418	-	PCOS: polycystic ovary syndrome
419	-	PE: pre-eclampsia

420	- ROC: receiver operating characteristic
421	- SGA: small-for-gestational-age
422	
423	Declarations
424	
425	Ethics approval and consent to participate: The study was a sub-study of the Copenhagen First-
426	Trimester Screening Study, which was approved by the Scientific Ethics Committee for
427	Copenhagen and Frederiksberg Counties (No. (KF) 01-288/97). All participants gave written
428	informed consent.
429	
430	Consent for publication: Not applicable.
431	
432	Availability of data and materials: The datasets generated and/or analyzed during the current
433	study are not publicly available due to restrictions in handling personal data, and particularly
434	because participants were recruited at a time when it was not standard practice to make
435	samples/data publicly available but are available from the corresponding author on reasonable
436	request.
437	
438	Competing interests: The authors declare that they have no competing interests.
439	
440	Funding: The study received no external funding.
441	

Authors' contributions: VK, MC, PH, and UL conceived and designed the sub-study; SP, KW,
ACS, LR, KS, and AT collected the data and performed clinical assessments; VK, MC, and PH
did the data analysis; VK, MC, PH, UL, AKE, LR, AT, and JK interpreted the results of the data;
VK, MC, PH, and UL drafted the work; all authors revised the work critically for intellectual
content; all authors approved the final version of the work to be published; all authors are
accountable for all aspects of the work in ensuring that questions related to the accuracy or
integrity of any part of the work are appropriately investigated and resolved.

Acknowledgements: We gratefully acknowledge the expert technical assistance of Pia Lind and Pernilla Rasmussen. We also gratefully acknowledge the financial support to the Copenhagen First Trimester Study from the Danish Medical Research Council, Copenhagen University, The John and Birthe Meyer Foundation, The Ivan Nielsen Foundation, The Else and Mogens Wedell-Wedellsborg Foundation, The Dagmar Marshall Foundation, The Egmont Foundation, The Fetal Medicine Foundation, The Augustinus Foundation, The Gangsted Foundation, The A.P. Møller Foundation, The Mads Clausens Foundation, The Copenhagen Hospital Corporation, and SAFE Network of Excellence. This research has been conducted using the Danish National Biobank resource, funded by the Novo Nordisk Foundation.

465 **References**

4	6	6
	~	_

- 467
- 468
 1. Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre 469 eclampsia. Lancet. 2016 Mar 5;387(10022):999–1011.
- 470
 470
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
 471
- WHO Recommendations for Prevention and Treatment of Pre-Eclampsia and Eclampsia
 [Internet]. Geneva: World Health Organization; 2011 [cited 2020 Jun 3]. (WHO Guidelines
 Approved by the Guidelines Review Committee). Available from:
 http://www.ncbi.nlm.nih.gov/books/NBK140561/
- 476 4. Hauspurg A, Countouris ME, Catov JM. Hypertensive Disorders of Pregnancy and Future
 477 Maternal Health: How Can the Evidence Guide Postpartum Management? Curr Hypertens
 478 Rep. 2019 Nov 27;21(12):96.
- 479 5. Alonso-Ventura V, Li Y, Pasupuleti V, Roman YM, Hernandez AV, Pérez-López FR.
 480 Effects of preeclampsia and eclampsia on maternal metabolic and biochemical outcomes in 481 later life: a systematic review and meta-analysis. Metab Clin Exp. 2020 Jan;102:154012.
- 482 6. Karatza AA, Dimitriou G. Preeclampsia emerging as a novel risk factor for cardiovascular
 483 disease in the offspring. Curr Pediatr Rev. 2019 Dec 23;
- 484
 485
 485
 486
 487
 486
 487
 488
 488
 489
 489
 489
 480
 480
 480
 480
 480
 481
 481
 481
 482
 483
 484
 484
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
 485
- 486
 487
 487
 487
 488
 488
 488
 480
 480
 480
 480
 480
 481
 481
 481
 482
 483
 484
 484
 484
 485
 485
 486
 486
 486
 487
 487
 488
 488
 488
 488
 488
 488
 488
 488
 480
 480
 480
 480
 480
 480
 480
 481
 481
 481
 482
 483
 484
 484
 484
 485
 486
 486
 486
 487
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
 488
- 489
 9. Burton GJ, Redman CW, Roberts JM, Moffett A. Pre-eclampsia: pathophysiology and clinical implications. BMJ. 2019 15;366:12381.
- 491 10. Mouzon SH de, Lassance L. Endocrine and metabolic adaptations to pregnancy; impact of
 492 obesity. Horm Mol Biol Clin Investig. 2015 Oct;24(1):65–72.
- 493 11. Sonagra AD, Biradar SM, K D, Murthy D S J. Normal pregnancy- a state of insulin
 494 resistance. J Clin Diagn Res. 2014 Nov;8(11):CC01-03.
- L. Catalano PM, Roman-Drago NM, Amini SB, Sims EA. Longitudinal changes in body
 composition and energy balance in lean women with normal and abnormal glucose tolerance
 during pregnancy. Am J Obstet Gynecol. 1998 Jul;179(1):156–65.

- 498 13. García-Patterson A, Gich I, Amini SB, Catalano PM, de Leiva A, Corcoy R. Insulin
 499 requirements throughout pregnancy in women with type 1 diabetes mellitus: three changes of
 500 direction. Diabetologia. 2010 Mar;53(3):446–51.
- 14. Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of
 Gestational Diabetes Mellitus. Int J Mol Sci. 2018 Oct 26;19(11).
- 503 15. Brunner S, Schmid D, Hüttinger K, Much D, Heimberg E, Sedlmeier EM, et al. Maternal
 504 insulin resistance, triglycerides and cord blood insulin in relation to post-natal weight
 505 trajectories and body composition in the offspring up to 2 years. Diabet Med. 2013
 506 Dec;30(12):1500–7.
- 507 16. Crume TL, Shapiro AL, Brinton JT, Glueck DH, Martinez M, Kohn M, et al. Maternal fuels
 508 and metabolic measures during pregnancy and neonatal body composition: the healthy start
 509 study. J Clin Endocrinol Metab. 2015 Apr;100(4):1672–80.
- 510 17. Shapiro ALB, Schmiege SJ, Brinton JT, Glueck D, Crume TL, Friedman JE, et al. Testing
 511 the fuel-mediated hypothesis: maternal insulin resistance and glucose mediate the association
 512 between maternal and neonatal adiposity, the Healthy Start study. Diabetologia. 2015
 513 May;58(5):937–41.
- 514 18. Cho GJ, Park JH, Shin SA, Oh MJ, Seo HS. Metabolic syndrome in the non-pregnant state is
 515 associated with the development of preeclampsia. Int J Cardiol. 2016 Jan 15;203:982–6.
- 516 19. Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency.
 517 Semin Fetal Neonatal Med. 2018;23(2):119–25.
- 518 20. Dessì A, Puddu M, Ottonello G, Fanos V. Metabolomics and fetal-neonatal nutrition:
 519 between "not enough" and "too much." Molecules. 2013 Sep 25;18(10):11724–32.
- 520 21. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.
- Maiorana A, Del Bianco C, Cianfarani S. Adipose Tissue: A Metabolic Regulator. Potential
 Implications for the Metabolic Outcome of Subjects Born Small for Gestational Age (SGA).
 Rev Diabet Stud. 2007;4(3):134–46.
- 524 23. Motedayen M, Rafiei M, Rezaei Tavirani M, Sayehmiri K, Dousti M. The relationship
 525 between body mass index and preeclampsia: A systematic review and meta-analysis. Int J
 526 Reprod Biomed (Yazd). 2019 Jul;17(7):463–72.
- 527 24. de Knegt VE, Hedley PL, Kanters JK, Thagaard IN, Krebs L, Christiansen M, et al. The Role
 528 of Leptin in Fetal Growth during Pre-Eclampsia. Int J Mol Sci. 2021 Apr 27;22(9).
- 529 25. Hedley PL, Placing S, Wøjdemann K, Carlsen AL, Shalmi AC, Sundberg K, et al. Free leptin
 530 index and PAPP-A: a first trimester maternal serum screening test for pre-eclampsia. Prenat
 531 Diagn. 2010 Feb;30(2):103–9.

- 532 26. Thagaard IN, Hedley PL, Holm JC, Lange T, Larsen T, Krebs L, et al. Leptin and
 533 Adiponectin as markers for preeclampsia in obese pregnant women, a cohort study.
 534 Pregnancy Hypertens. 2019 Jan;15:78–83.
- 27. Pedersen NG, Juul A, Christiansen M, Wøjdemann KR, Tabor A. Maternal serum placental
 growth hormone, but not human placental lactogen or insulin growth factor-1, is positively
 associated with fetal growth in the first half of pregnancy. Ultrasound Obstet Gynecol. 2010
 Nov;36(5):534–41.
- 28. Retnakaran A, Retnakaran R. Adiponectin in pregnancy: implications for health and disease.
 Curr Med Chem. 2012;19(32):5444–50.
- 541 29. Herrid M, Palanisamy SKA, Ciller UA, Fan R, Moens P, Smart NA, et al. An updated view
 542 of leptin on implantation and pregnancy: a review. Physiol Res. 2014;63(5):543–57.
- 30. Miehle K, Stepan H, Fasshauer M. Leptin, adiponectin and other adipokines in gestational
 diabetes mellitus and pre-eclampsia. Clin Endocrinol (Oxf). 2012 Jan;76(1):2–11.
- 545 31. Dos Santos E, Duval F, Vialard F, Dieudonné MN. The roles of leptin and adiponectin at the
 546 fetal-maternal interface in humans. Horm Mol Biol Clin Investig. 2015 Oct;24(1):47–63.
- 547 32. Hauguel-de Mouzon S, Lepercq J, Catalano P. The known and unknown of leptin in
 548 pregnancy. Am J Obstet Gynecol. 2006 Jun;194(6):1537–45.
- 549 33. D'Ippolito S, Tersigni C, Scambia G, Di Simone N. Adipokines, an adipose tissue and
 550 placental product with biological functions during pregnancy. Biofactors. 2012
 551 Feb;38(1):14–23.
- 34. Pérez-Pérez A, Toro A, Vilariño-García T, Maymó J, Guadix P, Dueñas JL, et al. Leptin
 action in normal and pathological pregnancies. J Cell Mol Med. 2018;22(2):716–27.
- 35. Dalamaga M, Srinivas SK, Elovitz MA, Chamberland J, Mantzoros CS. Serum adiponectin
 and leptin in relation to risk for preeclampsia: results from a large case-control study. Metab
 Clin Exp. 2011 Nov;60(11):1539–44.
- 557 36. Frithioff-Bøjsøe C, Lund MAV, Lausten-Thomsen U, Hedley PL, Pedersen O, Christiansen
 558 M, et al. Leptin, adiponectin, and their ratio as markers of insulin resistance and
 559 cardiometabolic risk in childhood obesity. Pediatr Diabetes. 2020 Mar;21(2):194–202.
- 37. Lausten-Thomsen U, Lund MAV, Frithioff-Bøjsøe C, Hedley PL, Pedersen O, Hansen T, et
 al. Reference values for leptin/adiponectin ratio in healthy children and adolescents. Clin
 Chim Acta. 2019 Jun;493:123–8.
- 38. Skvarca A, Tomazic M, Blagus R, Krhin B, Janez A. Adiponectin/leptin ratio and insulin
 resistance in pregnancy. J Int Med Res. 2013 Feb;41(1):123–8.
- 39. Wøjdemann KR, Shalmi AC, Christiansen M, Larsen SO, Sundberg K, Brocks V, et al.
 Improved first-trimester Down syndrome screening performance by lowering the false-

- positive rate: a prospective study of 9941 low-risk women. Ultrasound Obstet Gynecol. 2005
 Mar;25(3):227–33.
- 40. Laigaard J, Sørensen T, Placing S, Holck P, Fröhlich C, Wøjdemann KR, et al. Reduction of
 the disintegrin and metalloprotease ADAM12 in preeclampsia. Obstet Gynecol. 2005
 Jul;106(1):144–9.
- 572 41. De Villiers CP, Hedley PL, Placing S, Wøjdemann KR, Shalmi AC, Carlsen AL, et al.
 573 Placental protein-13 (PP13) in combination with PAPP-A and free leptin index (fLI) in first
 574 trimester maternal serum screening for severe and early preeclampsia. Clin Chem Lab Med.
 575 2017 Nov 27;56(1):65–74.
- 42. Christiansen M, Hedley PL, Placing S, Wøjdemann KR, Carlsen AL, Jørgensen JM, et al.
 Maternal Serum Resistin Is Reduced in First Trimester Preeclampsia Pregnancies and Is a
 Marker of Clinical Severity. Hypertens Pregnancy. 2015 Nov;34(4):422–33.
- 43. Laigaard J, Larsen SO, Pedersen NG, Hedley PL, Gjerris AC, Wøjdemann KR, et al. ADAM
 12-S in first trimester: fetal gender, smoking and maternal age influence the maternal serum
 concentration. Prenat Diagn. 2009 May;29(5):525–7.
- 44. Laigaard J, Pedersen NG, Larsen SO, Hedley PL, Wøjdemann K, Gjerris AC, et al.
 ADAM12 in first trimester maternal serum from pregnancies conceived by assisted
 reproduction techniques (ART). Prenat Diagn. 2009 Jun;29(6):628–9.
- 45. Brown MA, Lindheimer MD, de Swiet M, Van Assche A, Moutquin JM. The classification
 and diagnosis of the hypertensive disorders of pregnancy: statement from the International
 Society for the Study of Hypertension in Pregnancy (ISSHP). Hypertens Pregnancy.
 2001;20(1):IX–XIV.
- 46. Marsál K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves
 based on ultrasonically estimated foetal weights. Acta Paediatr. 1996 Jul;85(7):843–8.
- 47. Nakatsukasa H, Masuyama H, Takamoto N, Hiramatsu Y. Circulating leptin and angiogenic
 factors in preeclampsia patients. Endocr J. 2008 Jul;55(3):565–73.
- 48. Ouyang Y, Chen H, Chen H. Reduced plasma adiponectin and elevated leptin in preeclampsia. Int J Gynaecol Obstet. 2007 Aug;98(2):110–4.
- 49. Thagaard IN, Krebs L, Holm JC, Lange T, Larsen T, Christiansen M. Adiponectin and leptin
 as first trimester markers for gestational diabetes mellitus: a cohort study. Clin Chem Lab
 Med. 2017 Oct 26;55(11):1805–12.
- 598 50. Zaletel J, Barlovic DP, Prezelj J. Adiponectin-leptin ratio: a useful estimate of insulin
 599 resistance in patients with Type 2 diabetes. J Endocrinol Invest. 2010 Sep;33(8):514–8.
- 51. Inoue M, Maehata E, Yano M, Taniyama M, Suzuki S. Correlation between the adiponectinleptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metab Clin
 Exp. 2005 Mar;54(3):281–6.

- 52. Obirikorang C, Owiredu WKBA, Adu-Afram S, Acheampong E, Asamoah EA, AntwiBoasiakoh EK, et al. Assessing the variability and predictability of adipokines (adiponectin,
 leptin, resistin and their ratios) in non-obese and obese women with anovulatory polycystic
 ovary syndrome. BMC Res Notes. 2019 Aug 15;12(1):513.
- 53. Sarray S, Madan S, Saleh LR, Mahmoud N, Almawi WY. Validity of adiponectin-to-leptin
 and adiponectin-to-resistin ratios as predictors of polycystic ovary syndrome. Fertil Steril.
 2015 Aug;104(2):460–6.
- 54. Svendsen PF, Christiansen M, Hedley PL, Nilas L, Pedersen SB, Madsbad S. Adipose
 expression of adipocytokines in women with polycystic ovary syndrome. Fertil Steril. 2012
 Jul;98(1):235–41.
- 55. Mirza S, Qu HQ, Li Q, Martinez PJ, Rentfro AR, McCormick JB, et al. Adiponectin/leptin
 ratio and metabolic syndrome in a Mexican American population. Clin Invest Med. 2011 Oct
 1;34(5):E290.
- 56. Frühbeck G, Catalán V, Rodríguez A, Gómez-Ambrosi J. Adiponectin-leptin ratio: A
 promising index to estimate adipose tissue dysfunction. Relation with obesity-associated
 cardiometabolic risk. Adipocyte. 2018 02;7(1):57–62.
- 57. Frühbeck G, Catalán V, Rodríguez A, Ramírez B, Becerril S, Salvador J, et al. Adiponectinleptin Ratio is a Functional Biomarker of Adipose Tissue Inflammation. Nutrients. 2019 Feb
 22;11(2).
- 58. Naver KV, Grinsted J, Larsen SO, Hedley PL, Jørgensen FS, Christiansen M, et al. Increased
 risk of preterm delivery and pre-eclampsia in women with polycystic ovary syndrome and
 hyperandrogenaemia. BJOG. 2014 Apr;121(5):575–81.
- 59. Younus S, Rodgers G. Biomarkers associated with cardiometabolic risk in obesity. Am Heart
 Hosp J. 2011;9(1):E28-32.
- 60. Fasshauer M, Blüher M. Adipokines in health and disease. Trends Pharmacol Sci. 2015
 Jul;36(7):461–70.
- 629 61. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet
 630 Gynecol. 2020 Jun;135(6):e237–60.
- 631 62. Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and
 632 prediction. Am J Obstet Gynecol. 2022 Feb;226(2S):S1071-S1097.e2.
- 633 63. Steffensen LB, Conover CA, Oxvig C. PAPP-A and the IGF system in atherosclerosis:
 634 what's up, what's down? Am J Physiol Heart Circ Physiol. 2019 Nov 1;317(5):H1039–49.
- 635 64. Kaur H, Muhlhausler BS, Roberts CT, Gatford KL. The growth hormone-insulin like growth
 636 factor axis in pregnancy. J Endocrinol. 2021 Sep 1;JOE-21-0087.R1.

637 638	65. Childs GV, Odle AK, MacNicol MC, MacNicol AM. The Importance of Leptin to Reproduction. Endocrinology. 2021 Feb 1;162(2).
639 640	66. Spradley FT. Metabolic abnormalities and obesity's impact on the risk for developing preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2017 Jan 1;312(1):R5–12.
641 642 643	67. Takemura Y, Osuga Y, Koga K, Tajima T, Hirota Y, Hirata T, et al. Selective increase in high molecular weight adiponectin concentration in serum of women with preeclampsia. J Reprod Immunol. 2007 Feb;73(1):60–5.
644 645	
646	
647	
648	
649	
650	
651	
652	
653	
654	
655	
656	
657	
658	
659	
660	
661	
662	

663 Tables and figures

Table 1. Demographic and clinical characteristics of PE and control pregnancies

Parameter	PE (n=126)	Controls (n=297)	p-value
Maternal BMI (kg/m ²), median (IQR)	24.0 (21.7-26.4)	21.7 (20.1-24.0)	<0.001
GA at birth (days), median (IQR)	275.5 (263.8-283.0)	284.0 (278.0-290.0)	<0.001
GA below 34+0 weeks , n (%)	10 (7.9)	0 (0.0)	<0.001
Crown rump length (mm), median (IQR)	67.00 (61.0-72.0)	67.0 (61.0-74.0)	0.54
Relative birth weight (%), mean (±SD)	91.39 (±14.98)	98.42 (±11.89)	<0.001
Weight classification, n (%)			<0.001
- SGA	18 (14.3)	6 (2.0)	
- AGA	104 (82.5)	284 (95.6)	
- LGA	4 (3.2)	7 (2.4)	
Nuchal translucency (mm), median (IQR)	1.6 (1.3-1.9)	1.5 (1.3-1.9)	0.51
GA at time of sampling (days), median	90.5 (87.0-93.0)	90.0 (87.5-94.0)	0.63
(IQR)			
A/L ratio, median (IQR)	0.17 (0.12-0.27)	0.32 (0.19-0.62)	<0.001
PAPP-A (mIU/L), median (IQR)	3064.0 (1941.3- 4579.8)	3874.0 (2582.5- 5979.5)	<0.001
HCGβ (IU/L), median (IQR)	42.4 (28.1-59.2)	41.8 (26.9-63.1)	0.94

Abbreviations: AGA: appropriate-for gestational-age; A/L ratio: serum adiponectin-leptin ratio; BMI: body mass
 index; GA: gestational age; HCGβ: beta-chorionic gonadotropin; LGA: large-for-gestational-age; MoM: multiple of

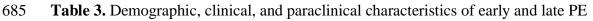
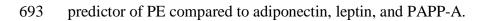
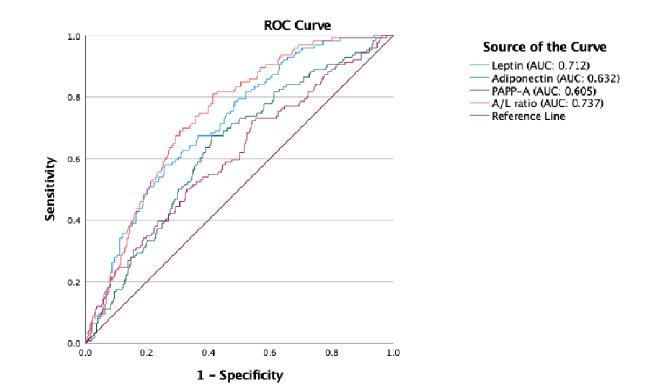

- the median; PAPP-A: pregnancy-associated plasma protein A; SGA: small-for-gestational-age

Table 2. Demographic, clinical, and paraclinical characteristics of mild PE, severe PE and

673 HELLP pregnancies

Parameter	Mild (n=98)	Severe (n=21)	HELLP (n=7)	p-value
Maternal BMI (kg/m ²), median (IQR)	24.0 (21.6-27.2)	24.5 (22.4-26.1)	23.1 (21.9-26-7)	0.76
GA at birth (days), median (IQR)	278.0 (269.0- 284.0)	264.0 (238.5- 275.5)	254.0 (216.0- 276.0)	<0.001
GA <34+0, n (%)	2 (2.0)	5 (23.8)	3 (42.9)	<0.001
Crown rump length (mm), mean (±SD)	66.0 (±8.96)	68.9 (±8.67)	67.9 (±4.60)	0.37
Actual birth weight (g), median (IQR)	3295.0 (2899.0- 3700.0)	2682.0 (1850.0- 3255.0)	1629.0 (1475.0- 3400.0)	0.002
Relative birth weight (%), mean (±SD)	92.8 (±13.91)	88.3 (±17.19)	80.5 (±18.82)	0.06
Weight classification, n (%)				0.02
- SGA	9 (9.2)	6 (28.6)	3 (42.9)	
- AGA	86 (87.8)	14 (66.7)	4 (57.1)	
- LGA	3 (3.1)	1 (4.8)	0 (0.0)	
Nuchal translucency (mm), mean (±SD)	1.6 (±0.49)	1.7 (±0.52)	1.3 (±0.36)	0.22
GA at time of sampling (days), median (IQR)	90.0 (86.0-93.0)	91.0 (88.5-94.0)	91.0 (90.0-92.0)	0.33
A/L ratio, median (IQR)	0.16 (0.11-0.26)	0.17 (0.13-0.24)	0.25 (0.07-0.37)	0.63
PAPP-A (mIU/L), median (IQR)	3260.5 (2341.0- 5077.8)	2350.0 (1650.0- 4427.5)	2283.0 (1753.0- 2607.0)	0.08
HCGβ (IU/L), median (IQR)	43.1 (30.4-63.3)	31.2 (17.1-50.6)	43.2 (26.4-84.4)	0.17

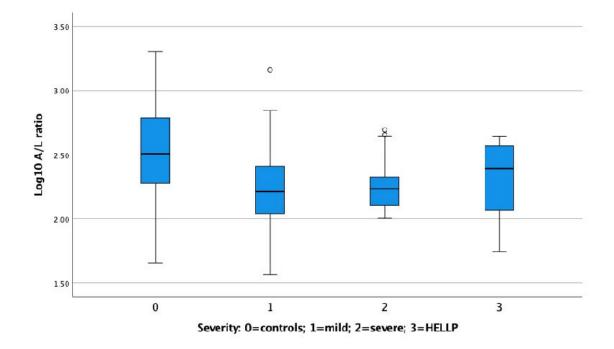

Abbreviations: AGA: appropriate-for-gestational-age; A/L ratio: serum adiponectin-leptin ratio; BMI: body mass
 index; GA: gestational age; HCGβ: beta-chorionic gonadotropin; LGA: large-for-gestational-age; MoM: multiple of
 the median; PAPP-A: pregnancy-associated plasma protein A; SGA: small-for-gestational-age;



Parameter	Early PE (n=10)	Late PE (n=116)	p-valu
Maternal BMI (kg/m ²), median (IQR)	25.6 (23.0-28.8)	24.0 (21.6-26.3)	0.20
GA at birth (days), median (IQR)	210.5 (201.0-229.8)	276.0 (268.0-283.8)	<0.00
PE severity, n (%)			<0.00
- Mild	2 (20.0)	96 (82.8)	
- Severe	5 (50.0)	16 (13.8)	
- HELLP	3 (30.0)	4 (3.4)	
Crown rump length (mm), median	69.5 (62.3-72.3)	67.0 (60.3-72.0)	0.41
(IQR)			
Relative birth weight (%), mean (±SD)	70.2 (±6.79)	93.2 (±14.07)	<0.00
Weight classification, n (%)			<0.00
- SGA	8 (80.0)	10 (8.6)	
- AGA	2 (20.0)	102 (87.9)	
- LGA	0 (0.0)	4 (3.4)	
Nuchal translucency (mm), median	1.7 (1.4-1.8)	1.5 (1.3-1.9)	0.98
(IQR)			
GA at time of sampling (days), median	90.5 (87.5-93.0)	90.5 (87.0-93.0)	0.85
(IQR)			
A/L ratio, median (IQR)	0.13 (0.11-0.25)	0.17 (0.12-0.27)	0.45
PAPP-A (mlU/L), median (IQR)	1761.0 (1470.0- 2194.3)	3239.5 (2291.5- 5019.8)	0.003
HCGβ (IU/L), median (IQR)	42.4 (28.1-59.2)	42.4 (29.6-61.9)	0.21

index; GA: gestational age; $HCG\beta$: beta-chorionic gonadotropin; LGA: large for gestational age; MoM: multiple of the median; PAPP-A: pregnancy-associated plasma protein A; PE: pre-eclampsia; SGA: small for gestational age

- 692 Figure 1. ROC curves of adiponectin, leptin, PAPP-A, and A/L ratio. A/L ratio was a better



- - - -

Figure 2. Box-plot of A/L ratio in controls, mild PE, severe PE, and HELLP. There was no

705 discernable difference between A/L ratios in the different severity groups.

706