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Abstract  31 

Background: Studies aiming to objectively quantify upper limb movement disorders during 32 
functional tasks using wearable sensors have recently increased, but there is a wide variety in 33 
described measurement and analyzing methods, hampering standardization of methods in research 34 
and clinics. Therefore, the primary objective of this review was to provide an overview of sensor set-35 
up and type, included tasks, sensor features and methods used to quantify movement disorders during 36 
upper limb tasks in multiple pathological populations. The secondary objective was to select the most 37 
sensitive sensor features for symptom detection and quantification and discuss application of the 38 
proposed methods in clinical practice. 39 

Methods: A literature search using Scopus, Web of Science, and PubMed was performed. Articles 40 
needed to meet following criteria: (1) participants were adults/children with a neurological disease, 41 
(2) (at least) one sensor was placed on the upper limb for evaluation of movement disorders during 42 
functional tasks, (3) comparisons between: groups with/without movement disorders, sensor features 43 
before/after intervention, or sensor features with a clinical scale for assessment of the movement 44 
disorder. (4) Outcome measures included sensor features from acceleration/angular velocity signals.  45 

Results: A total of 101 articles were included, of which 56 researched Parkinson’s Disease. Wrist(s), 46 
hand and index finger were the most popular sensor locations. The most frequent tasks for 47 
assessment were: finger tapping, wrist pro/supination, keeping the arms extended in front of the body 48 
and finger-to-nose. The most frequently calculated sensor features were mean, standard deviation, 49 
root-mean-square, ranges, skewness, kurtosis and entropy of acceleration and/or angular velocity, in 50 
combination with dominant frequencies and power of acceleration signals. Examples of clinical 51 
applications were automatization of a clinical scale or discrimination between a patient/control group 52 
or different patient groups.  53 

Conclusion: Current overview can support clinicians and researchers to select the most sensitive 54 
pathology-dependent sensor features and measurement methodologies for detection and 55 
quantification of upper limb movement disorders and for the objective evaluations of treatment 56 
effects. The insights from Parkinson’s Disease studies can accelerate the development of wearable 57 
sensors protocols in the remaining pathologies, provided that there is sufficient attention for the 58 
standardisation of protocols, tasks, feasibility and data analysis methods. 59 
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1 Introduction 68 

The execution of functional tasks requires fine-tuned coordination of multiple upper limb joints, 69 
which is often disturbed in individuals with movement disorders [1-3]. Movement disorders can be 70 
defined as “a neurological syndrome in which there is either an excess of movement or a paucity of 71 
voluntary and automatic movements” and are the consequence of lesions in the basal ganglia, 72 
cerebellum or thalamus brain regions. They are present in a variety of neurological diseases and can 73 
occur in every phase of the life cycle [4]. Prevalence of movement disorders increases with age, up to 74 
28% in a general population over 50 years old and 50% for individuals over 80 years old [5]. In 75 
several neurologic diseases, movement disorders belong to the main symptom of the disease. In 76 
childhood, neurologic movement disorders are most often associated with a diagnosis of dyskinetic 77 
cerebral palsy (CP) or with primary dystonias (i.e., inherited or idiopathic dystonias) with a 78 
prevalence of 25-50/100 000 and 15-30/100 000, respectively [6-8]. In individuals over the age of 50 79 
years, the prevalence of primary dystonia increases to 732/100 000 [9]. In the elderly, the most 80 
prevalent condition causing movement disorders is Parkinson’s disease (PD), reporting a prevalence 81 
of 1-2 per 1000 adults [10].  82 

Movement disorders lead to slower movement execution, increased movement variability and a 83 
decrease in functionality [11-15]. Both in early-onset and late-onset movement disorders, accurate 84 
evaluation is indispensable for the follow-up of the disease course – especially in progressive 85 
movement disorders – and to evaluate and optimize the effect of treatment strategies. Currently, the 86 
effect of an intervention program on upper limb function or the presence and/or severity of 87 
movement disorders is mostly evaluated using clinical assessment scales such as functional scales 88 
and movement disorder severity scales [16-18]. The Unified Parkinson’s Disease Rating Scale 89 
(UPDRS), the Movement Disorders Society revised version of this scale (MDS-UPDRS) and the 90 
Hoehn and Yahr scales are currently the most often used assessment scales in PD, whereas the 91 
Essential Tremor Rating Assessment Scale is used to rate the severity of essential tremor during nine 92 
functional tasks [19-22]. To evaluate the severity of ataxia, the Scale for the Assessment and Rating 93 
of Ataxia (SARA) is most often applied [23]. In stroke, the Wolf Motor Function Test (WMFT) and 94 
Fugl-Meyer Assessment (FMA) are mainly used to evaluate motor function post-stroke [19, 21, 24-95 
26]. The Action Research Arm Test (ARAT), Box & Block test, Nine Hole Peg Test and Jebsen-96 
Taylor Test evaluate hand function in multiple pathologies, amongst other multiple sclerosis (MS) 97 
and stroke, whereas the Monkey Box test was recently developed to evaluate bilateral motor function 98 
in Huntington’s Disease (HD) [27-29]. For children with CP, the Melbourne Assessment is a 99 
validated measure for upper limb activity [30, 31]. Apart from upper limb activity evaluation scales, 100 
the severity of movement disorders such as dystonia can be evaluated with the Burke–Fahn–Marsden 101 
Dystonia Rating Scale (BFMDRS) or the Dyskinesia Impairment Scale (DIS) in children and 102 
adolescents with dyskinetic CP [32, 33].  103 

A common drawback of all abovementioned activity and movement disorder severity assessment 104 
scales is that they have to be evaluated by clinicians through the use of standardized guidelines or 105 
definitions with respect to task execution or presence/severity of the movement disorder. This clinical 106 
judgement induces subjectivity, as not all clinicians may interpret a definition or guideline in exactly 107 
the same manner. Moreover, the attribution of scores by a clinician based on video recordings is 108 
time-consuming, especially if frequent monitoring is required to evaluate disease progression or the 109 
effect of an intervention. 110 

In an effort to reduce the subjective aspect in the evaluation of movement disorders, motion analysis 111 
has been widely introduced as an alternative to objectify movement disorders, as well as to evaluate 112 
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the effect of treatment interventions in PD [34, 35], CP [36-38] and stroke [39-41]. While three-113 
dimensional motion analysis is the gold standard in movement analysis, it requires a specially 114 
equipped expensive laboratory whereby patients need to visit the hospital or study center for study 115 
participation or assessment of rehabilitation. 116 

With both the time-consuming aspect of clinical scoring and the location-restricted aspect of three-117 
dimensional motion analysis as main drivers, multiple studies have recently attempted to automate 118 
clinical scales with the use of wearable sensors or inertial measurement units (IMUs). These devices 119 
are attractive because of their ease-of-use and portability, omitting the necessity for a standardized 120 
laboratory which is in particular relevant for long-time follow-up or home-based measures for less 121 
mobile patients. IMUs measure linear acceleration and angular velocity of the segment they are 122 
placed on, whereas accelerometers measure only acceleration and gyroscopes measure only angular 123 
velocity. Specific features derived from acceleration and angular velocity measures can be used to 124 
characterize (pathological) movement patterns during multiple tasks or daily life activities. The use 125 
of wearable sensors for objective assessment has been previously discussed in PD [42], but this 126 
overview focused on all symptoms of PD, consequently providing very little information on specific 127 
upper limb tasks. Similarly, Tortelli and colleagues discussed the use of portable digital sensors in 128 
HD, whereby the focus was mostly on the assessment of activity and gait [43]. In dyskinetic CP, a 129 
recent review discussed instrumented measures for the assessment of dyskinetic CP symptoms, but 130 
this scope was not limited to IMUs and therefore less detailed on the topic [44]. While these previous 131 
reviews provide much needed insights in the domain of each pathology, an overarching view of 132 
sensor protocols and features for the assessment of movement disorders during upper limb tasks 133 
could enhance standardisation of data collection. Such standardisation facilitates multi-centre studies 134 
and international collaborations and comparison between characteristics of movement disorders 135 
between diseases. Therefore, the primary objective of this review was to provide an overview of 136 
sensor set-up and type, included tasks, sensor features and methods that are used to evaluate 137 
movement disorders during upper limb tasks in multiple pathological populations. The secondary 138 
objective was to select the most sensitive sensor features for symptom detection and quantification 139 
and describe the application of the proposed methods in clinical practice. 140 

2 Methods 141 

Search strategy 142 

The full literature search was conducted following the Preferred Reporting Items for Systematic 143 
Reviews and Meta-Analyses (PRISMA) guidelines [45]. A literature search using three different 144 
databases was performed: Scopus, Web of Science, and PubMed until July 2022. Following terms 145 
were used in “all fields”: 146 

#1: sensor OR inertial measurement unit; #2: arm OR upper limb; #3: movement disorder 147 

Subsequently, all three databases were searched for #1 AND #2 AND #3.  148 

Article screening 149 

Articles (n = 990) retrieved from the literature search were extracted. An overview of the articles 150 
retained at each stage of the screening process can be found in the PRISMA flow diagram presented 151 
in Figure 1 [45]. Any duplicated articles, retrieved by more than one database, were removed by de-152 
duplication based on congruity in authors, title, and year of publication. 153 
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Unique articles (n = 903) were screened by I.V. for inclusion according to the criteria below in two 154 
consecutive stages: (1) title-abstract; and (2) full-text screening.  155 

Articles were screened for inclusion along a set of pre-defined eligibility criteria for (1) the title-156 
abstract and (2) the full-text screening stages. These criteria were designed in line with the 157 
PICO/PECO framework [46], which clarifies the review objectives and inclusion criteria across four 158 
domains: (P) it was required that the participants were adults or children with a neurological disease 159 
subsequently leading to a movement disorder in (but not limited to) the upper limb. (I/E) a minimum 160 
of one wearable sensor was placed on the upper limb for the evaluation of movement disorders 161 
during the execution of an upper limb task. (C) multiple comparisons were possible: i) a group with 162 
movement disorders compared with a healthy group, ii) comparison of sensor features before and 163 
after an intervention or iii) comparison of sensor features with scores of a clinical scale. (O) Outcome 164 
measures needed to include sensor features derived from acceleration or angular velocity signals. 165 
Studies from the same authors who mentioned the exact same features in the same population as a 166 
study that was already included were excluded. Additionally, to meet the inclusion criteria, articles 167 
were required to be original research containing empirical data. Finally, only articles published after 168 
the year 2000 were included. 169 

Data extraction 170 

Relevant information from each included article was extracted in a custom-made Excel based 171 
(Microsoft Office, Microsoft, Redmond, WA, USA) data extraction form. Information regarding goal 172 
population, sensor type, number of sensors, location of sensor(s), included tasks, sensor features and 173 
statistical method was obtained to address objective 1. To address objective 2, the sensitivity and/or 174 
responsiveness of the sensor features were extracted for the articles that provided the contribution of 175 
individual sensor features. Finally, the clinical application of the proposed method was extracted. 176 

3 Results 177 

General information 178 

From the 166 full-text articles screened for eligibility, 62 were finally included. Additionally, 39 179 
articles were included from citations of screened articles. The full-text articles that were screened but 180 
excluded and the reasons for exclusion can be found in Supplementary Material S1. 181 

Of the included studies, 56 included adults with PD [11, 47-101], of which 46 assessed one or 182 
multiple symptoms of PD and 10 studies specifically focused on Parkinsonian tremor [91-100]. 183 
Twelve studies included patients with essential tremor [102-113] and 11 included adults post-stroke 184 
[15, 28, 114-122], whereas six included adults with MS [123-128]. One study included adults with 185 
HD and eight studies included children or adults with ataxia [29, 129-136]. Five studies included 186 
children with CP while two studies included children with dystonia and spasticity, respectively [12, 187 
13, 137-141] (Figure 2). 188 

Type, number and location of sensors  189 

Table 1 provides an overview of type and number of sensors used, and their respective location for 190 
all included studies. From the 101 identified studies, 24 studies used an accelerometer [29, 47-49, 51, 191 
53, 54, 56, 63, 89, 91, 94, 96, 104, 111, 115, 116, 119, 120, 127, 134, 138, 140, 142], 13 studies 192 
measured motion with a gyroscope or angular sensor [50, 52, 58-61, 64, 73, 79, 105, 108, 110], four 193 
studies collected motion data using an orientation sensor, motion sensor or magnetic motion tracker 194 



Assessment of upper limb movement disorders 

 
6 

[13, 55, 80, 114], 58 studies used IMUs including an accelerometer and gyroscope [11, 12, 15, 28, 195 
57, 62, 65, 67-72, 74-78, 81-88, 90, 93, 98-101, 106, 107, 109, 112, 113, 117, 118, 121-123, 125, 196 
126, 128, 129, 131-137, 139, 141, 143, 144] and three studies included IMUs but only used the 197 
acceleration signal for further analysis [102, 103, 107], while one study used IMUs but only 198 
processed angular velocity signals [97].  199 

The number of sensors ranged from one to 17. Thirty-seven studies used only one sensor, either on 200 
the finger, hand, wrist or forearm [15, 50-52, 59, 61, 63, 68, 69, 72, 75, 79, 84, 89, 91, 94, 96, 97, 99, 201 
100, 104, 106, 108, 109, 112-114, 117, 118, 122-124, 126, 127, 131, 134, 140], while seven studies 202 
used two sensors bilaterally placed on the hand or wrist [60, 66, 78, 81, 82, 133, 137]. Nine studies 203 
used two sensors of which the majority placed one on the thumb and one the index finger [54, 58, 64, 204 
70, 71, 73, 85, 88, 101], while Martinez-Manzara et al. used one sensor on the hand and one on the 205 
finger [67], Samotus et al. and Rahimi et al. put one on the wrist and one on the index finger [95, 206 
111] and Shawen et al. put one on the hand and one on the wrist [86]. In the studies where three 207 
sensors were used, the most frequent locations for PD and tremor were hand, forearm and upper arm 208 
[74, 92, 102, 116], index finger, hand, forearm [105, 110] or index finger, forearm and upper arm 209 
[132, 135]. In children with CP, Newman et al. attached one sensor on the sternum and two on both 210 
upper arms [12] and in HD, Bennasar et al. placed one sensor on the sternum and two on the wrists 211 
[29]. In stroke, Van Meulen et al. fixed one sensor on the wrist, sternum and sacrum [121]. When 212 
four sensor were used, sensor placements were: three fingers and the wrist in PD [83], thumb, index 213 
finger, wrist and upper arm in stroke [119], hand, forearm, upper arm and shoulder in spasticity 214 
[141], hands and forearms [90, 103] and wrists, trunk and head in PD [76]. Four more studies also 215 
included lower limb sensors, where three placed sensors on both wrists and ankles and Zwartjes et al. 216 
included wrist, foot, thigh and sternum [57, 77, 87, 139]. Four studies used five sensors on the upper 217 
limbs, with sensor placement on hand, wrist, upper arm, shoulder and sternum in MS [125, 128], 218 
thumb, index finger, hand, forearm, upper arm and sternum for Di Biase et al. and hand forearm, 219 
upper arm, head and back for Sanger et al. (note that both studies are based on magnetic or 220 
orientation sensors) [13, 80]. Seven studies used six sensors, where the sensor placement was thumb, 221 
index finger, hand, forearm, upper arm and sternum [115, 120]. Two studies placed the sensors on 222 
hands, forearms and upper arms [98, 107], while Krishna et al. used one sensor but subsequently 223 
fixed it on both hands, wrists and ankles, thus including six sensor signals in the analysis [129]. 224 
Cheralu et al. placed sensors on the hand, scapula, thorax, sacrum, head and shank, while Tsipouras 225 
et al. attached sensors bilaterally on ankles and wrists and one the waist and chest [55, 62]. Repnik et 226 
al. used seven sensors on the hands, wrists, upper arms and sternum and Hof et al. and Keijsers et al. 227 
placed the sensors on the wrists, upper arms, trunk and upper legs [28, 47, 48]. Five studies used 228 
eight sensors. Delrobaei et al. placed the sensors on the hands, wrists, upper arms, and shoulders and 229 
Bonato et al. on the forearms, upper arms, thighs, right shin and sternum [49, 65]. Patel et al. and 230 
Cole and colleagues attached the sensors on the forearms, upper arms, shins and upper legs [53, 56], 231 
whereas in ataxia, Kashyap and colleagues placed sensors on the index finger, hand, wrist, foot, 232 
sternum, back and ankles [136]. Finally, Van den Noort et al. used 11 sensors, all located on the hand 233 
and fingers [11] and Delrobaei and colleagues used 17 sensors placed on the hands, wrists, upper 234 
arms, clavicle’s, sternum, head, pelvis, upper and lower legs and feet [93]. In one study, the number 235 
of sensors was not specified [138]. 236 

Upper limb tasks 237 

The upper limb tasks occurring in more than one study are presented in Figure 3. Wrist 238 
pro/supination was included in 25 studies [11, 50, 52, 53, 58, 60, 65, 69, 72-74, 76, 78-83, 86, 88, 239 
101, 106, 129, 132, 144] whereas finger tapping was included in 24 studies [11, 49, 51, 54, 58, 59, 240 
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61, 64, 67, 69, 71-73, 79, 80, 83, 85, 88, 101, 131, 136, 144-146]. Keeping arms in front of the body 241 
was included in 23 studies [52, 66, 91, 93, 95, 97-100, 103-105, 107-113, 125-128], as well as finger-242 
to-nose [13, 53, 76, 86, 91, 97-99, 104, 108, 112, 113, 124-129, 132, 133, 135, 136, 144]. Drinking 243 
from a can/cup was included in 13 studies [47, 48, 52, 57, 62, 76, 86, 87, 107, 113, 117, 120, 141], 244 
and opening/closing of the hand in seven studies [11, 58, 69, 71, 83, 88, 101] as well as 245 
writing/drawing [52, 76, 77, 86, 102, 106, 113]. Eating was included in six studies [48, 52, 68, 77, 246 
84, 87] as well as pouring water [76, 86, 108, 113, 126, 127] whereas reaching/grasping objects was 247 
included in five studies [117, 121, 126, 127, 137]. Teeth brushing was included in four studies [52, 248 
68, 77, 84] as well as putting clothes on/off [47, 48, 77, 87]. In stroke, the Wolf Motor Function test 249 
or parts of this clinical scale were included four times [115, 118-120] and four studies measured 250 
activities in an unrestricted home environment [63, 89, 134, 139]. Combing hair was included in 251 
three studies [52, 77, 87] as well as typing and folding laundry [76, 77, 86] and forwards and 252 
sideways reaching [12, 114, 116]. Tasks from the ARAT were included in two studies [28, 123]. 253 
Finally, following tasks were included once: the monkey box test [29], the box and block test [90], 254 
holding a weight with the wrist [96], wrist extension [75], wrist ab/adduction, flexion/extension, 255 
elbow flexion/extension and pro/supination [92], and following a bent wire shape with a wand loop 256 
[104]. One study included wrist supination/flexion, hand behind back and wrist flexion/pronation 257 
[15]. In CP, one study included outwards reaching [13], one included the drinking test, the bean bag 258 
test and the nine hole peg test [141] while Strohrmann et al. included turn around cards, pick up small 259 
objects, stack dominos, open & close & bottle, use a key, and the nine-hole peg test [137]. Kim et al. 260 
included the Jebsen Taylor Hand Function Test, the Quality of Upper Extremity Skills Test and the 261 
Box and Blocks Test [138].  262 

Sensor features  263 

Table 2 provides an overview of the calculated sensor features in the time-and frequency domain, as 264 
well as a formula or feature description when given in the original study. As an easy and 265 
straightforward feature, execution time was often calculated for the upper limb tasks for stroke [15, 266 
28, 117], MS [123], PD [11, 49, 54, 71, 75, 80], tremor [102, 144], CP [137] and ataxia [132, 134]. 267 
The frequency of movements was popular in multiple studies in PD, mostly in repetitive tasks such 268 
as finger tapping and pro/supination [64, 83]. 269 

For the studies where both acceleration and angular velocity signals were collected, both mean and 270 
standard deviation (STD) were often calculated [62, 78, 86, 87, 90, 118, 129, 139], as well as root-271 
mean-square (RMS) values [11, 86, 89, 129, 139]. Additionally, mean and RMS or STD of 272 
acceleration and angular velocity separately were used in studies were one of the signals was 273 
available [29, 50, 52, 54, 57, 63, 64, 66, 71, 74, 82, 83, 85, 89, 96, 104, 105, 108, 110, 111, 115, 119, 274 
120, 132-134, 137], as well as median angular velocity in one study [82]. Maximal linear velocity 275 
was additionally often used as key feature, mostly by integration of the acceleration signal [51, 54, 276 
115]. The range of angular displacement or range of motion was only used in studies in PD [58-60, 277 
69, 79, 83], mainly to assess hypokinesia. The range of acceleration and angular velocity was 278 
included in PD [53, 54, 75, 80, 86, 89, 122], tremor [133] and CP [12, 137], as well as the inter-279 
quartile range for PD [82, 89]. The range of jerk and angular acceleration was used in one study in 280 
PD [72].  281 

Peak-to-peak and magnitude of angular velocity were additionally used in PD [73, 77, 80, 87], 282 
whereas Repnik and colleagues calculated a rotational jerk index for angular velocity values to 283 
evaluate hand rotation in stroke [28]. Finally, a study in PD used the square root of the sum of 284 
squares of jerk signals and named this feature ‘segment velocity’ [48]. 285 
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As basis statistical features, kurtosis and skewness were popular in PD [66, 76, 78, 86, 87, 118], but 286 
not in other populations apart from one ataxia study [134]. With respect to signal dynamics, multiple 287 
forms of entropy were used, most commonly sample entropy and approximate entropy in PD [53, 55, 288 
62, 66, 70, 76, 86], stroke [120] and ataxia [136] and Shannon entropy and permutation entropy in 289 
PD [87], dyskinetic CP [139] and HD [29]. Fuzzy entropy was additionally calculated in two ataxia 290 
studies [131, 144]. Apart from entropy, the Gini index and Lyapunov exponent were additionally 291 
used as a measure of signal complexity in PD [87], ataxia [131] and HD [29]. The same HD study 292 
additionally used recurrence rate, determinism and average diagonal line to evaluate signal dynamics 293 
[29]. 294 

For signal smoothness, RMS of jerk was often used as a straightforward measure in PD [118] and 295 
stroke [115, 116], as well as a jerk metric for which multiple definitions were given, mostly RMS 296 
jerk normalized over time/peak velocity or mean jerk [12, 15, 76, 89, 90, 115, 123, 139, 141]. 297 
Additionally, smoothness measures were also described as the difference between movement 298 
accelerometer readings and smoothed readings, number of movement units or number of speed peaks 299 
[114, 122, 141]. 300 

Coefficient of variation was often used as a measure of variability or rhythm for different signals 301 
such as excursion angle [58, 69, 79, 101], (angular) velocity [58, 64, 79], amplitude [64, 71] and 302 
movement frequency [64, 83, 144], while two studies in PD defined ‘rhythm’ via the STD of 303 
intervals of a finger tapping movement [51] and any sequence of regularly occurring events [67]. 304 
Finally, a stroke study defined variability as the RMS error between a reference trial and a warped 305 
trial [117]. Considering the geometrical structure of a non-linear time-series, Newman et al. included 306 
Higuchu’s fractional dimension in children with CP [12].  307 

With respect to orientation and rotational information, correlation between the different axes of the 308 
accelerometer or gyroscope was often included as a feature in PD [76, 86, 89, 99], HD [29] and 309 
stroke [115]. Additionally, the peak of the normalized cross-correlation from pairs of acceleration 310 
time series and the lag of first peak in autocorrelation acceleration were included in two PD studies 311 
[53, 56]. Concerning trajectories and travelled distances, multiple studies used different definitions 312 
for this feature. 3D hand trajectory and length of 3D trajectory [121] and path-length ratio were used 313 
in stroke [114], while the index of curvature (deviation from a straight line) was used in dyskinetic 314 
CP [13]. Elevation angle was included in a CP study, while in stroke, the similarity of hand 315 
trajectories was used [12, 28]. Two studies in patients with ataxia used mean and standard deviation 316 
of Euclidian distance from the mean trajectory and curved and straight-line similarity analysis [132, 317 
135]. In PD, Heldman et al. used a bradykinesia index, based on variability in time and amplitude of 318 
task execution whereas Tamas et al. and Garza-Rodriguez and colleagues quantified hypokinesia 319 
using velocity decrement, which is defined as a decrease in velocity between subsequent data parts 320 
[69, 82]. 321 

In the frequency-domain, the dominant frequency component of acceleration/angular velocity or both 322 
was most often used [47, 53, 84, 87, 91, 94, 97-99, 104, 112, 115, 126, 127, 129], while only three 323 
studies included the second dominant frequency or dominant frequency of jerk  [87, 115, 136]. 324 
Energy in the frequency spectrum was often included in multiple populations, both for the 325 
acceleration signal [49, 53, 56, 66, 115, 119, 120], angular velocity signal [100] or both [15, 62, 129]. 326 
One PD study additionally included amplitude and dominant frequency of modulations associated 327 
with the acceleration signal as well as fractal dimension [49], while one HD study included the 328 
average magnitude of the first five Short-Term-Fourier-Transfer components [29]. Apart from the 329 
frequency, power in specific frequency bands was a popular feature in multiple populations, 330 



Assessment of upper limb movement disorders 

 
9 

including spectral power [68, 77, 84, 87, 102, 113, 118, 140], peak power [59, 60, 73, 87, 94], total 331 
power [59, 60, 73, 80, 99, 102, 104, 105, 110, 125, 134], mean power [63] and band power [139]. 332 
Considering entropy in the frequency domain, spectral entropy was used in two PD studies [62, 87] 333 
and one ataxia study [131], as well as component entropy in HD [29]. Spectral Arc Length was used 334 
as a measure of smoothness in two PD studies and one CP study [12, 73, 80]. For tremor studies, 335 
tremor frequency and tremor amplitude [109] were included as well as multiple specific tremor 336 
indices: Carpinella et al. defined the tremor index as the ratio of tremor (defined by peaks in the 337 
frequency spectrum) and the norm of angular velocity [124]. Western et al. defined average tremor 338 
amplitude as the product of frequency bins, sampling period and the signal’s power spectral density 339 
[128], whereas Benito-Leon et al. and McGurrin et al. used the mean logarithmic tremor power and 340 
tremor rotational amplitude/amplitude respectively, based on identified peaks in the power spectrum 341 
[103, 106]. 342 

Statistical method used 343 

Figure 4 gives a representation of the statistical methods used in the included studies. Forty-five 344 
studies included between- or within-group comparisons using statistical tests [12, 13, 28, 47, 51, 55, 345 
58-60, 62-65, 69, 70, 73, 75, 79, 80, 85, 89, 90, 92-94, 96-98, 102, 104, 105, 109, 111, 114, 117, 123, 346 
124, 131, 134, 137, 140-142, 144], mainly parametric and non-parametric ANOVA and parametric 347 
and non-parametric t-tests, whereas 43 studies used machine learning [15, 29, 48, 49, 53, 55-57, 62, 348 
63, 66, 67, 72, 74-78, 81-84, 86-89, 100, 102, 112, 113, 115, 118-120, 122, 126, 129, 132, 133, 135, 349 
136, 139, 144]. Twenty-five studies evaluated correlation of sensor features with clinical scales [12, 350 
28, 51, 52, 54, 59, 60, 65, 70, 71, 80, 93, 103, 106-108, 110, 127-129, 131, 133, 134, 138, 144], 351 
whereas nine studies used regression analysis for a similar purpose [13, 54, 101, 102, 109, 116, 121, 352 
133, 137]. Finally, five studies used only descriptive statistics or observation without hypothesis 353 
testing [11, 68, 91, 99, 125] and two studies evaluated ROC curves [61, 133]. The sum of these 354 
numbers does not add up to 101, because multiple studies used multiple of the abovementioned 355 
methods. Eleven studies used both statistical tests for comparison between groups and correlation 356 
with a clinical scale [12, 28, 59, 60, 65, 70, 71, 80, 93, 131, 134], whereas five studies used statistical 357 
tests and machine learning [55, 62, 63, 75, 89]. Yokoe et al. used both logistic regression and 358 
correlation with a clinical scale in PD [54]. In patients with ataxia, Tran et al. used statistical tests, 359 
correlation with a clinical scale and machine learning [144] and Oubre et al. used statistical tests, 360 
regression, correlation with a clinical scale and machine learning [133]. In participants with essential 361 
tremor, Ali et al. used statistical tests, regression analysis and machine learning [102] and Sprdlik et 362 
al. used statistical tests, ROC curves and regression analysis [109]. In CP, Sanger et al. used both 363 
regression analysis and ANOVA/t-tests [13], and Strohrmann et al. used a t-test, to subsequently 364 
continue with a linear regression for the features that were significantly different between groups 365 
[137].  366 

Sensitivity and/or responsiveness of most prevalent sensor features 367 

Table 3 provides an overview of the features included by more than five articles, the number of 368 
articles reporting sensitivity of the specific feature and the number of articles that identified a 369 
significant difference between groups, severity levels or pre/post intervention. 370 

RMS of angular velocity was reported in 18 studies, with sensitivity results for 11 studies. In PD, 371 
Van den Noort et al. found significantly higher RMS values for ON vs OFF dopaminergic 372 
medication, while Summa et al. did not find a significant difference between medication states [11, 373 
73]. Espay et al. found 25% improvement in RMS values after dopaminergic medication in PD 374 



Assessment of upper limb movement disorders 

 
10 

patients [58]. Kwon et al. and Luksys et al. found significant higher RMS angular velocity values for 375 
PD patients in comparison with controls, whereas two studies found a correlation of -0.78 between 376 
RMS angular velocity and clinical scores of the UPDRS [59, 60, 79, 98]. Additionally, Heldman et 377 
al. found a correlation of -0.78 between RMS angular velocity values and the modified bradykinesia 378 
rating scale [101] and Salarian et al. found good correlation between RMS angular velocity values 379 
and the UPDRS bradykinesia subscore, as well as good correlation between RMS angular velocity of 380 
the roll axis and the tremor subscore of the UPDRS [52]. In patients with tremor, spearman 381 
correlation between RMS angular velocity and tremor severity scores ranged from 0.19 (finger-to-382 
nose) to 0.73 (keeping arms extended in front of the body) for Lopez-Bianco et al. [108] and between 383 
0.41 and 0.70 for Kwon et al. [110], whereas Heo et al. found lower RMS angular velocity values 384 
after electrical stimulation [105]. 385 

Seventeen studies reported mean acceleration as a feature, but only two PD studies and one ataxia 386 
study discussed its sensitivity. Romano et al. found lower mean acceleration for PD patients in 387 
comparison with the control group, while Zwartjes et al. did not find significant differences between 388 
ON and OFF stimulation states of deep brain stimulation [57, 90]. In patients with Ataxia, Samotus et 389 
al. found lower mean acceleration after botulinum-toxin-A injections [111]. Execution time was 390 
included in 17 studies, with reported sensitivity for 11 studies. Execution time significantly differed 391 
between different severity levels [28] and between healthy controls and patients with stroke [28, 117] 392 
and MS [123, 124] and between the paretic and non-paretic arm in children with unilateral CP [12]. 393 
Execution time was significantly longer for PD patients in comparison with healthy controls [75, 80] 394 
and for patients with multiple system atrophy of parkinsonian type and progressive supranuclear 395 
palsy in comparison with healthy controls [71]. Third, execution time was significantly different 396 
between the ON and OFF medication state in PD patients [11]. In CP, execution time was one of the 397 
three features to best estimate upper limb performance in a regression analysis [137].  398 

The dominant frequency domain was included in 15 studies, but only Hoff et al. reported individual 399 
contributions of this feature, reporting that amplitude in 1-4Hz and 4-8Hz frequency bands correlated 400 
with the modified Abnormal Involuntary Movement Scale [47]. Peak power was included in 12  401 
studies, of which six discussed its individual sensitivity. Jun et al. reported a good correlation 402 
between peak power and clinical bradykinesia scores and Kim et al. reported decreasing peak powers 403 
with increasing UPDRS scales steps [59, 60], while Makabe et al. reported increasing peak powers 404 
with increasing severity stages of the Hoehn and Yahr scale [94]. Similarly, Summa et al. reported 405 
increases in peak power in ON vs OFF medication state [73]. In essential tremor, Heo et al. reported 406 
higher peak power after electrical stimulation [105] and Kwon et al. reported high correlation 407 
between peak power and tremor severity scores [110]. 408 

Sample entropy was included in 11 studies, but only two PD studies reported its sensitivity. Chelaru 409 
et al. found significantly higher entropy for dyskinetic PD patients in comparison with non-dyskinetic 410 
PD patients, as well as Liu et al. who found a significant difference between PD patients and healthy 411 
controls and good correlation with UPDRS scores [55, 70].  RMS of angular displacement was 412 
included in 11 studies, of which ten reported sensitivity. Tamas et al. found significant differences in 413 
RMS amplitude before and after subthalamic stimulation and Espay et al. found significant 414 
differences between ON and OFF medication state in PD [58, 69]. Kwon et al. found significantly 415 
lower RMS amplitudes for PD patients in comparison with controls and Jun et al. found decreasing 416 
angular displacement with increasing bradykinesia scores, but this was based on visual observation 417 
[60, 79]. Chan et al. found higher values for angular displacement for patients with PD with tremor in 418 
comparison with essential tremor [92]. Kim et al. additionally found a significant difference between 419 
PD patients and controls [59], whereas Heldman et al. found a correlation of -0.81 between RMS 420 
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excursion angle and clinical scores [101]. Delrobaei et al. found a higher tremor severity score 421 
(which was composed of the RMS values of angular velocity) for tremor-dominant PD patients in 422 
comparison with non-tremor dominant PD patients and good correlation between tremor severity 423 
score and UPDRS scores [93]. In essential tremor, Kwon et al. and Chan et al. found correlations 424 
ranging from 0.29-0.66 and 0.80-0.93 respectively, between RMS angular displacement and tremor 425 
severity scores [107, 110]. Energy and STD of acceleration were included in 10 studies, but none 426 
reported sensitivity. 427 

RMS of acceleration was included in 10 studies, but only van den Noort et al. discussed its specific 428 
contribution in PD patients, reporting increased RMS acceleration in ON vs OFF medication state 429 
during a finger tapping and opening/closing of the hand task [11]. Mean angular velocity was also 430 
included in 10 studies with six of them reporting sensitivity. In PD, three studies found lower mean 431 
angular velocity for PD patients in comparison with healthy controls [64, 71, 90], whereas one study 432 
additionally identified significant differences between ON/OFF DBS stimulation [52]. Garza-433 
Rodriguez et al. found lower angular velocity values for PD patients with higher clinical severity 434 
[81]. In patients with ataxia, Oubre et al. found significant differences between patients and healthy 435 
controls [133].  436 

Jerk metrics were calculated in nine studies with five reporting on its sensitivity. Romano et al. used 437 
the dimensionless jerk index as a jerk metric and found a significant difference between PD patients 438 
and healthy controls, while Habets et al. did not find a significant difference between ON and OFF 439 
medication state in PD patients [89, 90]. Carpinella et al. found a significantly higher jerk measure 440 
for patients with MS in comparison with healthy controls and a negative correlation between the jerk 441 
measure and ARAT score (r = -0.90) [123]. In children with unilateral CP, Newman and colleagues 442 
found a significantly higher normalised jerk index for the paretic arm in comparison with the non-443 
paretic arm, but no correlation with the Melbourne Assessment Scale [12]. In children with 444 
spasticity, the normalized jerk score improved significantly after botulinum-toxin A injections [141]. 445 

Coefficient of variation (CoV) was included in eight studies, where CoV of time and amplitude was 446 
mostly calculated to evaluate bradykinesia. Djuric-Jovicic and colleagues found significant 447 
differences between PD patients and healthy controls for both CoV of time and amplitude, whereas 448 
Lee et al. found significant differences for CoV of speed, amplitude and frequency between PD 449 
patients and controls [64, 71]. Kwon et al. additionally found significant differences between PD 450 
patients and controls for the CoV of angles and velocity [79]. Tamas et al. found that the coefficient 451 
of variation – also called ‘rhythm’ – improved significantly after bilateral and contralateral 452 
subthalamic stimulation, whereas Espay et al. found significant differences between ON and OFF 453 
medication state for CoV in PD patients [58, 69]. 454 

Spectral power was used in seven studies of which four reported sensitivity. Bravo et al. compared 455 
power spectral density (PSD) plots between PD patients and healthy controls and found both higher 456 
and lower PSD amplitude for PD patients in comparison with healthy controls, depending on the 457 
individual [68]. In patients with dystonia, Legros et al. found a decrease of the area under the 458 
spectrum curve after deep brain stimulation surgery [140]. Ali et al. found higher PSD ratios for 459 
patients with essential tremor in comparison with healthy controls [102], whereas Heldman et al. 460 
found correlations from 0.77-0.83 between the logarithm of peak power and the UPDRS scores 461 
[113]. The range of acceleration was additionally calculated in seven articles, but only two articles 462 
reported its sensitivity. Rabelo et al. found a significantly higher acceleration range for healthy 463 
controls in comparison with PD patients, while Habets et al. did not find a significant difference 464 
between ON and OFF medication state in PD patients [75, 89]. Approximate entropy was also 465 
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included in seven studies, but only two PD studies included its sensitivity, where Liu et al. and 466 
Luksys et al. found significant differences between PD patients and a control group [70, 98]. 467 

Range of angular displacement was calculated in six studies, but only four discussed its sensitivity. 468 
Djuric et al. reported a higher range for healthy controls in comparison with PD patients, whereas van 469 
den Noort et al. reported lower displacement in the ON vs OFF medication state and improved 470 
amplitude in the ON compared to OFF state [11, 71]. Romano et al. found significant differences 471 
between PD patients and healthy controls for wrist flexion and shoulder movements and Salarian et 472 
al. found significantly lower angular displacements at the level of the wrist for PD patients compared 473 
to healthy controls [52, 90]. Energy of acceleration in the frequency domain and STD of acceleration 474 
were included in 11 articles, but all of them included these features as part of a feature set for 475 
machine learning, without discussing its individual contribution.  476 

Mean acceleration and angular velocity were included in six studies, but only Romano et al. found 477 
significantly lower mean acceleration and angular velocity in PD patients in comparison with healthy 478 
controls [90]. Correlation between axes was included in six studies, but only Zhu et al. reported no 479 
significant differences in correlations when comparing PD patients in ON and OFF medication state 480 
[99]. Kurtosis and skewness were additionally included in six studies, but none of them reported the 481 
contribution of the individual features.  482 

Clinical application 483 

Figure 5 presents an overview of the clinical application of the included studies. Fifty-two studies 484 
used sensor features for the automatization of a clinical scale [15, 29, 49, 51-54, 56, 57, 59, 60, 63, 485 
65, 67, 72, 76-78, 81-84, 86-88, 93, 100, 101, 103, 106-108, 110, 112, 113, 115, 116, 118-123, 126-486 
129, 131, 133, 137-139]. Sixteen studies used sensor features to evaluate the effect of an intervention 487 
[47, 48, 50, 55, 58, 68, 69, 74, 89, 99, 104, 105, 111, 140-142], whereas 35 studies used the obtained 488 
features to discriminate between patients and controls or between different patient groups [11-13, 28, 489 
61, 62, 64-66, 70-73, 75, 79, 80, 85, 90-94, 96-98, 102, 109, 117, 124, 125, 132, 134-136, 144]. Four 490 
studies subsequently discriminated between different severity levels [28, 65, 72, 114]. Again, there 491 
was some overlap in clinical applications: Delrobaei et al., Spasojevic et al. and Repnik et al. 492 
compared control and patient groups as well as severity levels within the patient group, while also 493 
correlating sensor features with a clinical scale [28, 65, 72]. Kamper et al. compared a patient and 494 
control group but also compared severity levels separately [114].  495 

4 Discussion 496 

The primary objective of this systematic review was to provide an overview of sensor set-up and 497 
type, included tasks, sensor features and statistical methods that are used to evaluate movement 498 
disorders during upper limb tasks in multiple pathological populations. We identified 101 studies in 499 
eight pathological conditions using wearable sensors placed on the upper limb during upper limb 500 
tasks and including at least one sensor feature based on linear acceleration or angular velocity. Of all 501 
included studies, 55% were studies in PD, 12% were studies with essential tremor patients, 11% were 502 
studies in stroke patients, 8% were studies in adults or children with ataxia, 6% were studies 503 
including participants with MS and 5% included children with CP. Adults with HD and spasticity and 504 
dystonia in children represented only 1% of the included studies. When comparing these numbers 505 
with the prevalence of the abovementioned conditions, an important imbalance emerges. Worldwide, 506 
approximately 101 million people are living post-stroke [147], 25 million people live with essential 507 
tremor [148], 17 million people live with CP [149], 10 million people are estimated to live with PD 508 



Assessment of upper limb movement disorders 

 
13 

[150-152], approximately 0.2 to 3 million people live with ataxia, depending on the type [153, 154] 509 
and 0.2 to 0.5 million people live with HD, depending on the geographical area [155, 156]. While 510 
stroke is much more prevalent than PD or essential tremor, this ratio is not reflected in the number of 511 
available studies per condition. More surprisingly, where CP is the most prevalent neurological 512 
childhood condition included apart from stroke and essential tremor, its high prevalence does not 513 
agree with the number of studies investigating the associated movement disorders using wearable 514 
sensors. Current findings thus identify a mayor gap between prevalence of a condition and insights in 515 
the related movement disorders. Especially for early-onset conditions such as CP, more insights in 516 
the disturbed movement patterns from an early age could benefit targeted therapy and long-term 517 
treatment management.    518 

The abundance of included PD studies reflects its more advanced state-of-the-art assessment in 519 
comparison with other pathological populations. These insights offer opportunities and learning 520 
experiences for clinicians and researchers aiming to bridge the gap between technology and clinical 521 
measures in the quantitative evaluation of movement disorders. Although wide-spread in research, 522 
the clinical implementation of IMU-based analysis of movement disorders is lacking in clinical 523 
practice in all populations, mainly due to the lack of validation of algorithms in real-world conditions 524 
[157].  525 

With respect to sensor type, IMUs containing both an accelerometer and gyroscope were most often 526 
used, where a time-related trend was clearly visible in the included PD studies: between 2000 and 527 
2010, all PD studies included either an accelerometer or a gyroscope, whereas after 2010, IMUs were 528 
almost exclusively used. This trend is presumably supported by technological advancements, 529 
allowing more sensors in a smaller device with longer battery life combined with more affordable 530 
prices for IMUs. 531 

Sensor location, number of included sensors and upper limb tasks were separately discussed to 532 
provide a comprehensive overview, but conclusions should be drawn on a combination of these 533 
settings as they are closely inter-related. E.g., five out of the ten studies that placed one sensor on the 534 
index finger included the finger tapping task [51, 59, 61, 69, 113] and of the nine studies who placed 535 
a sensor one the thumb and index finger, all included finger tapping [54, 58, 64, 70, 71, 73, 85, 88, 536 
101]. When more sensors were used both on the distal and proximal upper limb, tasks ranged from 537 
distal upper limb tasks (pro/supination) [65, 74] to a myriad of tasks such as the ARAT [28]. Finally, 538 
the four studies that measured activities in a home environment all placed sensors on the wrist, 539 
mostly likely due to the high comfort and ease of use of wrist-worn sensors [63, 89, 134, 139]. 540 

The collection of upper limb tasks included in the selected studies reflects the insight that the choice 541 
of upper limb task is heavily dependent on the movement disorder. The high prevalence of finger 542 
tapping and wrist pro/supination in the PD studies follows from their presence in the Motor 543 
Examination part of the (MDS-)UPDRS [20], whereas the finger-to-nose task and keeping arms 544 
extended in front of the body are part of both the (MDS-)UPDRS and the Essential Tremor Rating 545 
Assessment Scale [22]. Both tasks are well-suited to quantify decrease and slowness of movements. 546 
Since these scales are well implemented in clinical practice, patients are often requested to perform 547 
these tasks in the presence of a neurologist. In stroke, the Wolf Motor Function Task was most 548 
popular, presumably because this scale is used in daily practice for the evaluation of upper extremity 549 
rehabilitation progress. An important notion is that the aetiological differences between PD/tremor on 550 
the one hand and CP, stroke and dystonia on the other hand influence the potential of task execution. 551 
In CP and stroke, functional ability can be impaired to a level where execution of specific functional 552 
tasks is not possible, which requires a very different approach in comparison with PD or tremor, 553 
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where most tasks can be executed but performance may be impaired. When the level of physical 554 
impairment prohibits the execution of specific tasks, one should focus on monitoring of the 555 
movement disorders during home-based activities such as powered mobility (e.g. joy-stick steering) 556 
or in rest positions in the case of severe CP or stroke [139]. 557 

The secondary objective was to identify the most sensitive sensor features for symptom detection and 558 
quantification and describe the application of the proposed methods in clinical practice. Similar to the 559 
requested tasks, the derived sensor features were dependent of the movement disorder under 560 
investigation. Mean amplitude, movement/amplitude decrement and RMS, range and IQR of angular 561 
displacement were only used in PD studies and are hypothesized to correlate with the definition of 562 
hypokinesia (reduction in movement amplitude) in the (MDS-)UPDRS. Range and RMS of angular 563 
displacement can detect differences between PD and TD groups and quantify the severity of 564 
hypokinesia, implying that these features can be used in clinical practice as simply interpretable 565 
triggers of movement reduction. Velocity decrement and peak-to-peak, magnitude, IQR and mean of 566 
angular velocity were additionally only used in PD studies and are hypothesized to relate to the 567 
bradykinesia (slowing of movement) aspect in the (MDS-)UPDRS, emphasizing their clinical 568 
usefulness for early detection of bradykinesia symptoms [81]. Coefficient of variation of both 569 
amplitude and velocity as well as rhythm, were included to reflect the interruptions as described in 570 
the (MDS-)UPDRS. CoV values are easy to calculate and interpret and showed to be sufficiently 571 
sensitive to discriminate between medication and stimulation states in PD patients from both finger-572 
and wrist-worn sensors. This parameter could thus be implemented to evaluate objective intervention 573 
effects in large-scale medication or stimulation studies. In essential tremor and studies focusing on 574 
tremor in PD patients, occurrence and amplitude of peaks in specific frequency bands as well as 575 
power in these frequency bands were most often included, owing to the rhythmical aspect of tremor. 576 
However, the selected frequency bands were not always similar. The 4-12Hz frequency band was 577 
most often considered as tremor [102, 113], while Heo et al. and Kwon et al. used 3-12Hz [105, 110], 578 
Patel et al. used a 3-8Hz band and Schaefer et al. considered 7-12Hz as the tremor frequency [53, 579 
96]. Makabe et al. used a range of 8-12Hz and 20-25Hz and Sprdlik et al. used the frequency 580 
distribution for highest maxima between 1-15Hz [94, 109]. Lopez-Bianco et al. used a high-pass 581 
filter with cut-off 4Hz followed by low-pass filter with cut-off 8Hz [108]. These differences suggest 582 
that a solid definition of tremor frequency is required in order to standardize instrumented tremor 583 
quantification, to allow comparison of methodologies on a large-scale cross-sectional level and to 584 
facilitate data merging and sharing.  585 

In pathologies not related to PD or tremor, path length or similarity of hand trajectories were 586 
calculated. This was the case in stroke, dyskinetic CP and spasticity, reflecting the importance of the 587 
impact of the movement disorder on reaching movements. The frequent use of sensor features such 588 
as smoothness and jerk metrics might reflect the effect of the location of the brain lesions on the 589 
smooth execution of functional tasks and its impact on daily-life activities in these pathologies. 590 

The clinical application of the included studies varied from discrimination of groups to prediction of 591 
severity levels and was closely related to the method used to obtain this specific result. With respect 592 
to the discrimination of groups, the sensor features sufficiently sensitive to detect differences 593 
between a control group and pathological patients could be used for early detection of e.g. PD or MS 594 
symptoms, allowing for early intervention and possibly preventing rapid worsening of symptoms. For 595 
the prediction of severity levels, all PD studies correlated the sensor features to the (MDS-)UPDRS 596 
(or specific sub-items), the AIMS or the Hoehn & Yahr scale. In CP and stroke, sensor features were 597 
correlated with the Melbourne Assessment Scale and ARAT, whereas in another CP study, the 598 
Jebsen-Taylor Test, the Quality of Upper Extremity Skills Test (QUEST) and the Box and Blocks 599 
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Test were included. When the clinical application was the (side)effect of intervention, six out of 16 600 
studies used sensor features to assess dyskinesia in PD patients, as this is a well-known levodopa-601 
induced motor complication [158]. The (MDS-)UPDRS, Hoehn & Yahr and Essential Tremor Rating 602 
Assessment Scale are severity scales, while the Melbourne Assessment Scale, the ARAT, the Jebsen-603 
Taylor Test, the Quality of Upper Extremity Skills Test and the Box and Blocks Test evaluate upper 604 
extremity function. In stroke and CP however, the severity of the movement disorder is dependent on 605 
the location of the brain lesion, which was not studied in detail in the included studies and has not 606 
been fully elucidated to date in most movement disorders. To this end, wearable sensors provide 607 
opportunities for detailed exploration of the connection between the location of the brain lesion and 608 
the aetiology and severity of movement disorders.   609 

IMUs have mostly been used to assess upper limb use and for detection of activity periods in daily 610 
life in patients with PD and/or essential tremor [159-161], CP [162-164] or stroke [165], but their 611 
application to quantify movement disorders in the upper limb is less extensive. Activity measures 612 
mostly focus on the amount of time that acceleration measures exceed a pre-defined threshold (e.g., 613 
Activity Index), which yields information about the quantity of movement, but not about the quality. 614 
To facilitate follow-up of intervention or long-term rehabilitation programs, a combined assessment 615 
of both movement quantity and quality can provide more insights in both the presence and severity of 616 
movement disorders. Ideally, long-term monitoring is executed in a home-environment (i.e., low 617 
patient-burden while collecting long-term data), while a contact moment to record pathology-related 618 
tasks in a standardized setting could be added to the study protocol since this allows more specific 619 
data analysis, e.g., through the presence of video recordings of the performed tasks. 620 

The lessons learned from the PD studies in the current review can accelerate the development of 621 
wearable sensors protocols in the remaining pathologies, provided that there is sufficient attention for 622 
the standardisation of protocols, tasks, feasibility and data analysis methods. These conditions could 623 
facilitate reproduction of studies, large-scale multi-centre studies and merging of study results in the 624 
near future. The insights provided in current review highlight the potential of wearable sensors for 625 
symptom detection and evaluation in CP, stroke, HD, MS and dystonia, but a larger international 626 
research focus is urgently required to meet those needs.  627 

Conclusions and future directions 628 

Wearable sensors offer a myriad of opportunities for the quantification of movement disorders in 629 
multiple pathologies, but the abundance of available information could threaten its usability. Our 630 
findings illustrate that there are a lot of similarities between pathology-related sensor protocols and 631 
tasks, but the agreement is yet not sufficient to allow data pooling or international multi-centre 632 
studies. For this purpose, higher-level standardisation with respect to task selection and sensor 633 
feature extraction per pathology is strongly recommended. Although multiple sensors can provide a 634 
lot of information, researchers should think carefully about the balance between information gain and 635 
accessibility. One sensor on the index finger for PD or on the wrist for other pathologies could be 636 
attached in a non-obstructive way, allowing for better adherence and less missing data due to e.g., 637 
battery loss. Current overview can support clinicians and researchers to select the most sensitive 638 
pathology-dependent sensor features and measurement methodologies for detection and 639 
quantification of upper limb movement disorders and for the objective evaluations of treatment 640 
effects. 641 
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# of sensor(s) Location of sensor(s) Type Goal population 
1 Index finger tip Accelerometer PD [51, 91, 94, 97] 
1 Index finger tip Gyroscope PD [59, 61]  
1 Index finger Motion sensor PD [69] 
1 Index finger Inertial measurement unit PD [99], tremor [113] 
1 Dorsal hand Angular sensor PD [50, 79]  
1 Dorsal hand Orientation sensor Stroke [114]  
1 Dorsal hand Accelerometer Tremor [104] 
1 Wrist Accelerometer PD [63, 89, 96], dystonia [140] , ataxia [134], MS [127] 
1 Forearm Inertial measurement unit PD  [72], stroke [117] 
1/2 [66]† Dorsal hand Inertial measurement unit PD [66, 68, 75, 84], ataxia [131], tremor [106, 109] 
1/2 [78, 81, 82, 133, 
137]† 

Wrist(s) Inertial measurement unit 
PD [78, 81, 82, 100], stroke [15, 118, 122], CP [137], MS [123, 
124, 126], ataxia [133], tremor [112] 

1/2 [60]† Wrist(s) Gyroscope PD [52, 60], tremor [108] 
2 Hand and wrist Inertial measurement unit  & accelerometer PD [86], ataxia [144] 
2 Dorsal hand and index finger Inertial measurement unit PD [135] 
2 Wrist and index finger Accelerometer PD [67, 142], tremor [111] 
2 Thumb and index finger Accelerometer PD [54] 
2 Thumb and index finger Gyroscope PD [64, 73] 
2 Thumb and index finger Inertial measurement unit PD [58, 70, 71, 85, 88, 101] 
3 Index finger, forearm, upper arm Inertial measurement unit Ataxia [132, 135] 
3 Index finger, hand, forearm Gyroscope Tremor [105, 110] 
3 Hand, forearm, upper arm Inertial measurement unit PD [74, 92], stroke [116], tremor [102] 
3 Wrists and sternum Accelerometer HD [29]  
3 Wrist, sternum and sacrum Inertial measurement unit Stroke [121]  
3 Upper arms and trunk Inertial measurement unit CP [12]  
4 Thumb, index finger, wrist, upper arm Inertial measurement unit Stroke [119]  
4 Fingers and wrist Inertial measurement unit PD  [83] 
4 Hands and forearms Inertial measurement unit PD [76], tremor [103] 
4 Wrists, trunk, head Inertial measurement unit PD [90] 
4 Wrists and ankles Inertial measurement unit PD [77, 87], dyskinetic CP [139] 
4 Wrist, sternum, thigh, foot Inertial measurement unit PD [57]  
4 Hand, forearm, upper arm, shoulder Inertial measurement unit Spasticity [141] 
5 Thumb, index finger, hand, wrist, upper arm Magneto-inertial sensors PD [80]  
5 Hand, wrist, upper arm, shoulder, sternum Inertial measurement unit MS [125, 128] 
5 Hand, forearm, upper arm, head, back Orientation sensors Dyskinetic CP [13]  
6 Thumb, index finger, hand, forearm, upper arm, sternum Accelerometer Stroke [115, 120]  
6 Hands, forearms, upper arms Inertial measurement unit PD [98], tremor [107] 
6* Dorsal hands, wrists, ankles Inertial measurement unit Ataxia [129] 
6 Hand, scapula, thorax, sacrum, posterior of the head, lateral shank Magnetic motion tracker PD [55]  
6 Wrists, waist, chest, ankles Inertial measurement unit PD [62] 
7 Hands, wrists, upper arms, sternum Inertial measurement unit Stroke [28]  
7 Wrists, upper arms, trunk, upper legs Accelerometer PD [47, 48]  
8 Hands, wrists, upper arms, shoulder Inertial measurement unit Stroke [65] 
8 Forearms, upper arms, sternum, thighs, right shin Accelerometer PD [49] 
8 Forearms, upper arms, shins, upper legs Accelerometer PD [53, 56] 
8 index finger, dorsal hand, wrist, dorsum foot, sternum, upper-back, ankles Inertial measurement unit Ataxia [136] 
11 Dorsal hand and fingers Inertial measurement unit PD [11] 
17 Hands, wrists, upper arms, clavicle’s, sternum, head, pelvis, upper & lower legs, feet Inertial measurement unit PD [93] 
Unknown Upper limb (no specification) Accelerometer CP [138]  

Table 1: Number, type and location of included sensors per reference. † Either 1 sensor was placed on the dorsal hand, or 1 on each hand. * Krishna et al. used one sensor but placed it subsequently on the 
L/R wrist, L/R dorsal hand and L/R ankle. 



  

Time-domain Formula/Feature description Goal population 

Execution time 
���

� ��� � ���  [28]; Inter-tap-interval (ITI) [144]; mean, standard deviation, minimum, maximum, range, interquartile 
range, median, and tenth and ninetieth percentiles of time [133]; duration of sub movements [134] 

Stroke [15, 28, 117], PD [11, 49, 54, 71, 75, 80], CP [12, 137], tremor 
[102, 144], MS [123, 124], ataxia [132, 134] 

Movement Frequency Number of rotations/movements [64] PD [64, 83] 

Mean acceleration & angular velocity ����� �  �

���	�
∑ 
����
��
	��

��
��
���   [62];  Mean absolute value ; Absolute & harmonic mean [139] PD [62, 78, 86, 90], stroke [118], dyskinetic CP [139], ataxia [129] 

STD acceleration & angular velocity ����� �  
 �

���	�
∑ �
�

���� � 
����²
��
	��
��
��
���   [62];  ���� �  
 �

�
∑ �
� � �����²�

��� , ���� � ����   [87] PD [62, 78, 87] 

MAX acceleration & angular velocity Absolute max [75] PD [75, 89], dyskinetic CP [139]  

Timing of  MAX acceleration & angular velocity Absolute max [75] PD [75] 

RMS acceleration &  angular velocity  PD [11, 86], dyskinetic CP [139], ataxia [129] 

VAR acceleration &  angular velocity  Stroke [118];  PD [86, 89], ataxia [129] 

Mean acceleration Mean acceleration in 2min epoch [63] 
Stroke [115, 119, 120], PD [57, 63, 66, 96], HD [29], CP [137], tremor 

[111], ataxia [134] 
STD acceleration  PD [54, 66, 89] HD [29], CP [137], tremor [104], ataxia [134] 
MAX acceleration Max acceleration in 2min epoch [63];  Moments of jerk magnitude [89] PD [63, 89], CP [138], ataxia [133] 

Mean angular velocity Hand mobility [52] PD [52, 64, 71, 74, 81, 83, 85], ataxia [132, 133] 
STD angular velocity  PD [74], ataxia [133] 

Median angular velocity  PD [82] 
Median acceleration  PD [89] 
MAX linear velocity Average of maximum velocities [51] PD [51, 54], stroke [115] 

RMS acceleration  PD [53, 66, 89]; stroke [115, 116] 
RMS angular velocity Speed [69]; Mean Intensity (MI) = RMS angular velocity [108] PD [50, 58-60, 69, 79, 88, 98, 99, 101], tremor [105, 108, 110] 

Mean angular displacement  MS [128] 
RMS angular displacement/movement amplitude Amplitude [69] PD [58-60, 69, 79, 83, 92, 93, 101], tremor [107, 110] 

Range angular displacement Hand activity [52] PD [11, 52, 71, 82, 83, 90] 
IQR angular displacement  PD [82] 

Range acceleration  PD [53, 54, 89], stroke [122] 
Range acceleration and angular velocity  PD [75, 76, 86] 

Mean amplitude Average amplitude [51] PD [51, 64] 

Range angular velocity RAV = 
�

�
∑ ���������������,��������,�������   PD [75, 80], CP [12, 137], ataxia [133] 

IQR acceleration & angular velocity Angular velocity [82]; angular acceleration [89] PD [82, 89] 

Range of jerk & angular acceleration ����/������� � max!
" �#�$ � min �
" �#��   [72] PD [72] 

Peak-to-peak angular velocity Difference between the mean of the highest and lowest 10 samples in � [87] PD [73, 80, 87] 
Magnitude angular velocity  PD [77] 

Max, STD, RMS & min/max peak height   HD  

Rotational jerk index  ���� � '(�)���������
⁵

��� * +�² ��


��²
+����

���
,# [28] Stroke [28] 

Segment velocity Square root of sum of squares of jerk signals in three directions [48] PD [48] 

Kurtosis -��� �  �
�! ∑ �#��$�%

��

�	


&�%
�
 [87] PD [66, 76, 86, 87, 118], ataxia [134] 

Skewness -��� �  �
�! ∑ �#��$�%

³�

�	


&�%
³
   [87] PD [66, 76, 78, 86, 87, 118] 

Sample entropy .���� �  � �

���	�
∑ / 0
�

����1 '(���
��
	��
��
��
��� / 0
�

����1  [62] PD [53, 55, 62, 66, 70, 76, 86], HD [29], stroke [120], ataxia [136] 

Approximate entropy .(�) = −∑/(23 ) ∗ log /(23 )  [115];  Window length (m) = 2 and % STD (r) = 20% [78] PD [49, 70, 78, 98, 118], stroke [115, 116] 
Shannon entropy Randomness in time domain: .��� �  � ∑ /�2�� 4 log /�2�����

���  [87] PD [87], dyskinetic CP [139] 
Permutation entropy Assesses the complexity of the time series signal [29] HD [29] 

Fuzzy entropy  Ataxia [131, 144] 

Gini index Movement complexity in the time domain: ���� � 1 � ∑ /�2��²���
���  [87] PD [87], ataxia [131] 

Lyapunov exponent Measures the level of chaos in a signal [29] HD [29] 
Recurrence rate (RR); Determinism RR: Probability that any state will recur again; Determinism: Ratio of recurrence points HD [29] 

Average Diagonal line Average time that signal segments remain the same [29] HD [29] 
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RMS of jerk  PD [118], stroke [115, 116] 

Jerk metric 

RM jerk normalized by peak velocity [115]; Moments of jerk magnitude [76, 89];  Logarithm of mean  jerk amplitude, 

normalized to mean absolute acceleration  movement duration [123];  Normalised Jerk Index: NJI = 
�

����
��
���

* 9�²�

��²
9��

�

,# 

[12, 141]; Dimensionless Jerk Index (DLJ) [90]; Mean jerk [15] 

Stroke [15, 115], PD [76, 89, 90], Multiple Sclerosis [123], CP [12], 
dyskinetic CP [13], spasticity [141] 

Smoothness 
Difference between movement accelerometer readings & smoothed readings [122]; Number of movement units [BAI]; 
number of speed peaks (NSP) [114] 

Stroke [122], spasticity [141] 

Coefficient of variation 

Coefficient of variation of amplitude, speed & frequency [64, 71]; STD of a 1-second sliding window of the RMS excursion 
angle divided by the mean &  Coefficient of variation of acceleration & angular velocity  [58];  Coefficient of variation of 
excursion angle [58, 69, 79, 101];  Coefficient of variation of angular velocity [79]; Coefficient of variation of inter-tap -
interval [144] 

PD [58, 64, 69, 71, 79, 83, 101], tremor [144] 

Rhytm STD of intervals a single finger tap movement in 60 sec [51];  Any sequence of regularly recurring events [67];   PD [51, 67] 

Variability RMS error between the reference trial and the warped trial [117] Stroke [117] 

Higuchu’s fractal dimension (HFD) Geometrical structure of non-linear time series [12] CP [12] 
Correlation between axes Mean, STD, skewness and kurtosis of signal derivative [86];  Correlation between each two axes of accelerometer [29] PD [76, 86, 89, 99], HD [29], stroke [115] 

Peak of normalized cross-correlation from pairs of acceleration 
time series 

 PD [53] 

Lag of first peak in autocorrelation acceleration  PD [56] 

Path length 
Path-length-ratio (PLR) = distance travelled by hand/straight-line distance [114];  Length of 3D trajectories [121]; Index of 
curvature [13]; Mean & Standard deviation of Euclidian distance from the mean trajectory [132]; curved line similarity 
analysis, straight line similarity analysis [135] 

 Stroke [114, 121], dyskinetic CP [13], spasticity [141], ataxia [132] 

Similarity of hand trajectories :� � 
 �

�(����(��
* ;/���� � /�����;�(��

�(��
²,��,  <=� � �

) 
 �

�(����(��
* <���̂�,�̂�(��

�(��
,    ?� � @:� A B<=� [28] Stroke [28] 

Elevation angle θ� max ��(��� 0���������
*

1� [12] CP [12] 

Bradykinesia Index (BKI) 2CD �  
 +�,-./0

�������-1�2���
, var = STD of distances between signal peaks for time and amp [65] PD [65] 

Movement decrement 
Slope of change in amplitude [71]; 

3456789:; 7= �=: >?6@ 874; 7=8;AB?6

3456789:; 7= �C8 >?6@ 874; 7=8;AB?6
 [69];  Fatigability index: slope of linear equation fitted 

with peak-to-peak angular velocities [80] 
PD [69, 71, 80] 

Velocity decrement Compare velocities between 1st, 2nd,3th and 4th part of the data  [82];  
D5;;: 7= �=: >?6@ 874; 7=8;AB?6

D5;;: 7= �C8 >?6@ 874; 7=8;AB?6
  [69] PD [69, 82] 

Amplitude of modulation acceleration  PD [49] 
Normalized mean squared error between a target signal and its 

forward linear prediction 
 PD [61] 

   
Frequency-domain   

Dominant frequency component Frequency associated with maximum power [87, 115]; Frequency in 1-4Hz and 4-8Hz bands [47]   
PD [47, 53, 84, 87, 91, 94, 97-99, 104, 112, 126, 127, 129], stroke 

[115] 
Second dominant frequency Frequency associated with the second highest peak [87] PD [87] 
Dominant frequency of jerk  Stroke [115], ataxia [136] 
Resonant Frequency (FR) Peaks of FFT waveforms of angles and angular velocity [129] Ataxia [129, 144] 

Energy acceleration Energy in 0.2Hz bin around dominant frequency [15, 115, 119, 120] Stroke [115, 119, 120], PD [49, 53, 56, 66], HD [29] 
Energy angular velocity  PD [100] 

Energy acceleration & angular velocity 2-5Hz: /�
���� �  ∑ �
�

�����²
��
	��
��
��
��� ;   5-10Hz: /�

E��� �  ∑ �
�
E����
��
	��

��
��
��� ; [62] Stroke [15], PD [62], ataxia [129] 

Amplitude and dominant frequency of modulation associated 
with acceleration 

 PD [49] 

Average magnitude of 1st five STFT components  HD [29] 
Fractal dimension acceleration  PD [49] 

Spectral power 
Frequency band 1.5-3Hz & 5-8Hz [118]; Frequency band dyskinesia: 0.3-3Hz [77];  Frequency band 0.5-15Hz & 1-4Hz 
[87];  Frequency band 0.6-16Hz [140]; Welch PSD of displacement; Power Spectral Density plots [68, 84]; PSD ratio 0.5-
4Hz & 4-12Hz [102]; logarithm of the peak in the power spectrum in the tremor frequency band [113] 

Stroke [118], PD [68, 77, 84, 87], dystonia [140], tremor [102, 113] 

Peak power 
Gyroscope; 0-4Hz frequency band [73]; Power of dominant frequency [87]; Position and amplitude of dominant peaks in 
power spectra of acceleration signals [104] 

PD [59, 60, 73, 87, 99], tremor [102, 104, 105, 110], ataxia [134], MS 
[125] 

Second peak power Power of second dominant frequency [87] PD [87] 

Total power 
Power spectrum of angular velocity [59];  Gyroscope; 0-4Hz frequency band [73]; power ratio ACC =  (Power in 3-7Hz 
range)/(Power in 3-7Hz+Power in 7-12Hz) [96] 

PD [59, 60, 73, 80, 96] 
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 674 

 675 
 676 

Mean power 0.2-4Hz frequency band [63] PD [63] 
Band power  Dyskinetic CP [139] 

Spectral entropy  PD [62, 87], Ataxia [131] 
Component entropy  HD [29] 

Smoothness (Spectral Arc Length) SALE �  � * 
0 �

F�
1� A 0�.�F


�F
1�F�

�  ,�, where V(Ω)E .�F


.��

  [12] CP [12], PD [73, 80] 

Specific tremor index 

Tremor Index (TI) = 100*(rms[TR])/(rms[A]) with TR = tremor & A = norm of angular velocity [124]; Average Tremor 
amplitude (ATA) = 4 4 G�� ∑ H?�I���

���

 with L = # of frequency bins, �� = sampling period, X = signal’s PSD [128]; Mean 

logarithmic tremor power [103]; Tremor rotational amplitude & tremor amplitude based on identified peaks in power 
spectrum [106] 

MS [124, 128], tremor [103, 106] 

Tremor Frequency (TF) & Tremor Amplitude (TA) 
TF= frequency distribution for highest maxima between 1-15Hz; TA = square root of integral of PSD +/- 1Hz of detected 
frequency [109] 

Tremor [109] 

Table 2: Calculated sensor features in time and frequency-domain. STD = standard deviation; max = maximal; RMS = root-mean-square; VAR = variance; IQR = inter-quartile range. PSD = power spectral density 

Feature  articles (n) articles reporting 
sensitivity (n) 

articles reporting 
significant results (n) 

RMS angular velocity 18 12 11 
Mean acceleration 17 3 2 

Execution time 17 10 10 
Dominant frequency domain 15 1 1 

Peak power 12 6 6 
Sample entropy 11 2 2 

RMS angular displacement/movement amplitude 11 10 9 
Energy acceleration in frequency domain 11 0 0 

STD acceleration 11 0 0 
RMS acceleration 10 1 1 

Mean angular velocity 10 6 6 
Jerk metric 9 5 4 

Coefficient of variation 8 5 5 
Spectral power 7 4 3 

Range acceleration 7 2 1 
Approximate entropy 7 2 2 

Range angular displacement 6 4 4 
Mean acceleration & angular velocity 6 1 1 

Correlation between axes 6 1 0 
Skewness 6 0 0 
Kurtosis 6 0 0 

Table 3: Most prevalent features, the number of articles they appear in, the number of articles reporting sensitivity and the number of articles reporting 
significant results.  
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Figure 1: Flowchart of article selection 678 

 679 
Figure 2: Number of studies included per goal population 680 

 681 

Figure 3: Overview of upper limbs tasks included in more than one study. The sum does not add up to 102 because                               682 
multiple studies used more than one task. 683 
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 685 
 686 
 687 

 688 
Figure 5: Clinical application. The sum does not add up to 101 because multiple studies                                    689 
used more than one methodology. 690 
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 702 
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 704 

 705 

 706 

Figure 4: Statistical method used in the included studies. The sum does not 
add up to 101 because multiple studies used more than one methodology. 
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