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Abstract  

Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, 

captured passively and continuously from smartphones and wearable devices, to infer mood and diagnose 

major depressive disorder. However, most digital phenotype studies suffer from poor replicability, often 

fail to detect clinically relevant events, and use measures of depression that are not validated or suitable 

for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments 

of mood from computerized adaptive testing paired with continuous digital assessments of behavior from 

smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of 

depression. We apply a novel combination of cubic spline interpolation and idiographic models to 

generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high 

prediction accuracy of depression severity up to three weeks in advance (𝑅2 ≥ 80%). We show that the 

passive behavioral phenotypes enhance prediction of future mood over and above a baseline model which 

predicts future mood based on past depression severity alone for 52% of individuals in our cohort. In 

conclusion, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood 

from a clinical population and predicting symptom severity weeks in advance using passively collected 

digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific 

behavioral measures to enable future psychiatric research.  

Introduction  

Major depressive disorder (MDD) affects almost one in five people1 and is now the world’s leading cause 

of disability2. However, it is often undiagnosed: only about half of those with MDD are identified and 

offered treatment3,4. In addition, for many people, MDD is a chronic condition characterized by periods of 

relapse and recovery that requires ongoing monitoring of symptoms. MDD diagnosis and symptom 
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monitoring is typically dependent on clinical interview, a method that rarely exceeds an inter-rater 

reliability of 0.75; in one large field study reliability was estimated to be as low as 0.256. Furthermore, 

sufferers are unlikely to volunteer that they are depressed because of the reduced social contact associated 

with low mood and because of the stigma attached to admitting to being depressed. Developing new ways 

to quickly and accurately diagnose MDD or monitor depressive symptoms in real time, without personal 

interviews, and hence provide therapy, would substantially alleviate the burden of this common and 

debilitating condition.  

The advent of electronic methods of collecting information, e.g., smartphone sensors or wearable 

devices, means that behavioral measures can now be obtained in real time as individuals go about their 

daily lives. Over the last ten years there has been considerable progress in using these digital behavioral 

phenotypes to infer mood and depression7–22. Yet, most digital mental health studies suffer from one or 

more of the following limitations23–25. First, many studies use less than a hundred10 and some even a 

handful of participants12,26,27. Studies with small samples have poor replicability18. We found only two 

studies with sample sizes in the hundreds20,28. Second, most studies do not have access to sufficient  

longitudinal data to detect changes within an individual10,11,26,29, even though such changes are highly 

informative for clinical care. The few studies with longitudinal assessments use ecological momentary 

assessments20,26,27 to measure state mood, rather than a psychometrically validated symptom scale for 

depression. Furthermore, they examine associations between behavior and mood at a population level20. 

This nomothetic approach is limited by the fact that both mood and its relationship to behavior can vary 

substantially between individuals. Last, many of the existing studies focus on healthy subjects, thus 

prohibiting evaluation of how well digital phenotypes perform in predicting depression30.  

Here, we overcome these limitations by using a validated measure of depression from 

computerized adaptive testing31 to obtain high-quality longitudinal measures of mood and smartphone 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22281007doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22281007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

4 

 

sensing32 to passively and continuously collect behavioral phenotypes for up to 40 weeks on 183 

individuals experiencing mild to severe symptoms of depression (3,005 days with mood assessment and 

29,254 days with behavioral assessment). In addition, we use an idiographic (or, personalized) modelling 

approach to predict future mood weeks in advance and provide individual-specific predictors of 

depression trajectories. As a benchmark for the performance of our approach, we compare the predictive 

performance with that of a baseline model, which predicts based on past depression severity alone, a 

conventional nomothetic approach, which uses a population-based prediction model, and a modification of 

the nomothetic approach which accounts for the individual specificity of mood. Ultimately, we expect that 

this approach can provide patient-specific predictors of depressive symptom severity that can be used to 

guide personalized intervention, as well as enable future psychiatric research, e.g., genome and phenome-

wide association studies.  

Results 

Study participants and treatment protocol 

Participants (N = 437; 76.5% female, 26.5% white) are University of California Los Angeles (UCLA) 

students experiencing mild to severe symptoms of depression or anxiety enrolled as part of the Screening 

and Treatment for Anxiety and Depression33–35 (STAND) study (Sup Figure 1). Participants are initially 

assessed using the Computerized Adaptive Testing Depression Inventory31 (CAT-DI), an online adaptive 

tool that offers validated assessments of depression severity (measured on a 0-100 scale). After the initial 

assessment, participants are routed to appropriate treatment resources depending on depression severity: 

those with mild ( 35  CAT-DI < 65) to moderate (65  CAT-DI < 75) depression at baseline received 

online support with or without peer coaching36 while those with severe depression (CAT-DI  75) 

received in-person care from a clinician (Online Methods).  
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STAND enrolled participants in two waves, each with different inclusion criteria and CAT-DI 

assessment and treatment protocol (Sup Figure 2A). Wave 1 was limited to individuals with mild to 

moderate symptoms at baseline (N=182) and treatment lasted for up to 20 weeks. Wave 2 included 

individuals with mild to moderate (N=142) and severe (N=124) symptoms and treatment lasted for up to 

40 weeks. Eleven individuals participated in both waves. Depression symptom severity was assessed up to 

every other week for the participants that received online support (both waves), i.e., those with mild to 

moderate symptoms, and every week for the participants that received in-person clinical care, i.e., those 

with severe symptoms. 

 

Adherence to CAT-DI assessment protocol 

In total, participants provided a total of 4,507 CAT-DI assessments (out of 11,218 expected by the 

study protocols). Participant adherence to CAT-DI assessments varied across the treatment groups 

(Likelihood ratio test [LRT] P-value < 2.2x10-16), enrollment waves (LRT P-value = 2.86x10-6), and 

during the follow-up period (LRT P-value = 1.29x10-6). Specifically, participants that received clinical 

care were more adherent than those which only received online support (Sup Figure 2A). Attrition for 

participants which received clinical care was linear over the follow-up period, with 1.7% of participants 

dropping out CAT-DI assessments within two weeks into the study. Attrition for participants that received 

online support was large two weeks into the study (33.5% of Wave 1 and 37.3% of Wave 2 participants) 

and linear for the remaining of the study.   

For building personalized mood prediction models, we focus on 183 individuals (49 from Wave 1 

and 134 from Wave 2) who had at least five mental health assessments during the study (Online Methods). 

For these individuals we obtained a total of 3,005 CAT-DI assessments with a median of 13 assessments, 

171 follow-up days, and 10 days between assessments per individual (Figure 1A-C).  
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Computerized adaptive testing captures treatment-related changes in depression severity 

We assessed what contributes to variation in the CAT-DI severity scores (Figure 1E). Subjects are 

assigned to different treatments (online with or without coaching and clinical care) depending on their 

CAT-DI severity scores, so not surprisingly we see a significant source of variation attributable to the 

treatment group (6.43% of variance explained, 95% CI: 5.20 - 9.40%, Online Methods). Once assigned to 

a treatment group, we expect to see changes over time as treatment is delivered. This is reflected in a 

significant source of variation attributable to the number of weeks spent in the study (10.87% of variance 

explained, 95% CI: 9.39 - 12.79%) and the improved scores for individuals with severe symptoms at 

baseline as they spend more time in the study (Sup Figure 3). We found no statistically significant effect 

of the COVID pandemic, sex, and other study parameters. The largest source of variation in depression 

severity scores is attributable to between-individual differences (42.26% of variance explained, 95% CI: 

38.47 - 42.55%), suggesting that accurate prediction of CAT-DI severity requires learning models tailored 

to each individual.  

 

Digital behavioral phenotypes capture changes in behavior  

We set out to examine how digital behavioral phenotypes change over time for each person and with 

CAT-DI severity scores. For example, we want to know how hours of sleep on a specific day for a specific 

individual differs from the average hours of sleep in the previous week, or month. To answer these 

questions, we extracted digital behavioral phenotypes (referred to hereinafter as features) captured from 

participants’ smartphone sensors and investigated which features predicted the CAT-DI scores. STAND 

participants had the AWARE framework32 installed on their smartphones, which queried phone sensors to 

obtain information about a participant’s location, screen on/off behavior, and number of incoming and 

outgoing text messages and phone calls. We processed these measurements (Online methods) to obtain 
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daily aggregate measures of activity (23 features), social interaction (18 features), sleep quality (13 

features), and device usage (two features). In addition, we processed these features to capture relative 

changes in each measure for each individual, e.g., changes in average amount of sleep in the last week 

compared to what is typical over the last month. In total, we obtained 1,325 features (Online methods). 

Missing daily feature values (Sup Figure 4) were imputed (Online Methods), resulting in 29,254 days of 

logging events across all individuals.  

Several of these features map onto the DSM-5 MDD criteria of anhedonia, sleep disturbance, and 

loss of energy (Supplemental Methods; Sup Figure 5). We found that these features in some cases do 

indeed correlate with changes in depression: Figure 2 illustrates an individual with severe depressive 

symptoms for whom we can identify a window of disrupted sleep that co-occurred with a clinically 

significant increase in symptom severity (from mild to severe CAT-DI scores). Subsequently, a return to 

baseline patterns of sleep coincided with symptom reduction. Quantifying this relationship poses a number 

of issues, which we turn to next.  

 

Predicting CAT-DI scores from digital phenotypes 

To predict future depression severity scores using digital behavioral phenotypes, we considered three 

analytical approaches. First, we applied an idiographic approach, whereby we build a separate prediction 

model for each of the participants. Specifically, for each individual, we train an elastic net linear 

regression model using the first 70% of their depression scores and predict the remaining 30% of scores. 

Second, we applied a nomothetic approach that used data from all participants to build a single model for 

depression severity prediction using the same analytical steps: we train an elastic net regression model 

using the first 70% of depression scores of each individual and predict the remaining 30% of scores 
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(Online Methods). The result of this nomothetic approach was a single elastic net regression model that 

makes predictions in all participants.  

The main difference between the nomothetic and idiographic approach is that the nomothetic 

model assumes that each feature has the same relationship with the CAT-DI scores across individuals, for 

example, that a phone interaction is always associated with an increase in depression score. However, it is 

possible, and we see this in our data, that an increase in phone interaction can be associated with an 

increase in symptom severity for one person, but a decrease in another (Sup Figure 6). The idiographic 

model allows for this possibility by using a different slope for each feature and individual. In addition, we 

know that large differences exist in average depression scores between individuals (Figure 1E). To 

understand the impact of accounting for these differences in a nomothetic approach, we also applied a 

third approach (referred to as nomothetic*) which includes individual indicator variables in the elastic net 

regression model in order to allow for potentially different intercepts for each individual. 

To assess whether digital behavioral phenotypes predict mood, we have to deal with the problem 

that digital phenotypes are acquired daily, while CAT-DI are usually administered every week (and often 

much less frequently, on average every 10 days). We assume that the CAT-DI indexes a continuously 

variable trait, but what can we use as the target for our digital predictions when we have such sparsely 

distributed measures? We can treat this as a problem of imputation, in which case the difficulty reduces to 

knowing the likely distribution of missing values. However, we also assume that both CAT-DI and digital 

features only imperfectly reflect a fluctuating latent trait of depression. Thus, our imputation is used not 

only to fill in missing data points but also to be a closer reflection of the underlying trait that we are trying 

to predict, namely, depressive severity.  

We interpolate the unmeasured estimates of depression by modeling the latent trait as a cubic 

spline with different degrees of freedom (Figure 3A). For many individuals, CAT-DI values fluctuate 
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considerably during the study, while for others less so. To accommodate this variation, we alter the 

degrees of freedom of the cubic spline: the more degrees of freedom, the greater the allowed variation. For 

each individual, we used cubic splines with four degrees of freedom, denoted by CS(4df), degrees of 

freedom corresponding to the number of observed CAT-DI categories in the training set, denoted by 

CS(2-4df), and degrees of freedom identified by leave-one-out cross-validation in the training set, denoted 

by CS(cv). For comparison purposes, we also used a last-observation-carried- forward (LOCF) approach, 

a naive interpolation method which does not apply any smoothness to the observed trait. Because spline 

interpolation will cause data leakage across the training-testing split and upwardly bias prediction 

accuracy, we train our prediction models using cubic spline interpolation on only the training data (first 

70% of time series of each individual) and assess prediction accuracy performance in the testing set (last 

30%) using the time series generated by applying cubic splines to the entire time series (Figure 3B). 

We evaluated the prediction performance of each model and for each latent trait across and within 

participants. We refer to the former as group level prediction and the later as individual level prediction. 

Looking at group level prediction performance, compared to within each participant separately, allows us 

to compute prediction accuracy metrics, e.g., R2, and test for their statistical significance across all 

predicted observations. In addition, it allows us to study prediction accuracy as a function of how many 

days ahead we are predicting.   

We first evaluated group level prediction accuracy. Figure 4A and Sup Figure 7 show group level 

prediction performance for each latent trait using the nomothetic, nomothetic*, and idiographic models. 

We observed that across all latent traits the nomothetic model shows very poor prediction accuracy (𝑅2< 

5% for all latent traits), compared to the nomothetic* (𝑅2= 41-59%) or idiographic (𝑅2=41-67%) models. 

This is in line with the large proportion of depression scores variance explained by between-individual 

differences (Figure 1E) which get best captured by the nomothetic* and idiographic models. We also 
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compared the prediction performance for each of the different latent traits. We achieve a higher prediction 

accuracy for the cubic spline latent traits compared to the LOCF latent trait. For example, for the 

idiographic models, we obtained an 𝑅2= 67.95% for CS(2-4df) versus 41.34% for LOCF, implying that 

weekly patterns of depression severity, which are more likely to be captured by the LOCF latent trait, are 

harder to predict than depression severity patterns over a couple of weeks or months, which are more 

likely to be captured by the cubic spline latent traits with smallest degrees of freedom.  

To understand the effect of time on prediction accuracy, we assessed prediction performance as a 

function of the number of days ahead we are predicting from the last observation in the training set 

(Figure 4B). The idiographic models achieved high prediction accuracy for depression scores up to three 

weeks from the last observation in the training set, e.g., R2= 91.0% and 79.7% for the CS(2-4df) latent 

trait to predict observations one week and three weeks ahead, respectively. Prediction accuracy falls below 

80% after four weeks.  

We next evaluated individual level prediction accuracy. For this analysis, in order to be able to 

assess the statistical significance of our prediction accuracy within each individual, we only keep 

individuals with at least five mental health assessments in the test set (N=139). In accordance with the 

group level prediction performance, the idiographic model outperformed the other models at the 

individual level. Using an idiographic modelling approach, we significantly predicted the future mood for 

65.5% of individuals (91 out of 139 with 𝑅> 0 and FDR <= 5% across individuals) for at least one of the 

latent traits (Figure 5A and Sup Figure 9), compared to 46.0% and 46.8% of individuals for the 

nomothetic and nomothetic* model, respectively. The median 𝑅2 value across significantly predicted 

individuals for the idiographic models was 57.5% (Figure 5B and Sup Figure 10), compared to 31.7% and 

35.9% for the nomothetic and nomothetic* model, respectively. In addition, for thirty-eight of these 

individuals, the idiographic model had prediction accuracy greater than 70%, demonstrating high 
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predictive power in inferring mood from digital behavioral phenotypes for these individuals, compared to 

13 and 9 for the nomothetic and nomothetic* model, respectively (Figure 5B and Sup Figure 10).  

To identify the features that most robustly predict depression in each person we extracted top-

feature predictors for each individual’s best-fit idiographic model. We limit this analysis to the 91 

individuals which showed significant prediction accuracy for at least one of the latent traits. Although no 

feature uniformly stood out, the variation within the last 30 days in the proportion of unique contacts for 

outgoing texts and messages (a proxy for social interaction), the time of first interaction with phone in the 

morning (a proxy for wake up time and sleep quality), and the proportion of time spent at home during the 

day (a proxy for activity level) were among the top predictors of future mood (Figure 6). The heatmap 

display of predictor importance highlights the heterogeneity of passive features for predicting the future 

across individuals. For example, poor mental health, as indicated by high CAT-DI depression severity 

scores, was associated with decreased variation in the hours the phone was off between midnight and 8 

a.m. (a proxy for hours of sleep and sleep quality) in the past 30 days for one individual while for another 

individual it was associated with increased variation.  

 

Evaluation of feature contribution to prediction performance  

So far, our models are all of the form mood ~ alpha + beta * phone features. This model implies 

that if the phone feature has no predictive accuracy, we may still be able to predict something about the 

future mood of an individual in the test set by using that individual's stable (i.e., mean) mood in the 

training set, reflected by the value of ‘alpha’, the intercept. We assessed to what extent adding the phone 

features improves the prediction of the idiographic models above that achieved by a baseline model that 

includes just the intercept (i.e., mood ~ alpha).  In order to do that, we first identified the best fitting latent 

trait for each individual according to the idiographic model with features and compare that model to the 
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equivalent baseline idiographic model without features in terms of prediction mean absolute error (MAE). 

Within each individual, the baseline idiographic model always predicts the same value, i.e., alpha, so we 

cannot compute 𝑅2 metrics for the baseline model. As above, we limit this analysis to the individuals with 

at least five mental health assessments in the test set (N=139). 

The feature-based model performed significantly better than the baseline model (Figure 7A, one 

sided Wilcoxon signed-rank test, p-value = 3.33x10-2) with a median decrease in MAE of 4.43% across all 

139 individuals. The feature-based model reduced the MAE compared to a baseline model for 52% of 

individuals (70 out of 139) with 48 individuals having a decrease in the MAE of at least 20%. Figure 7B 

illustrates the prediction performance for one such individual in our study. These results suggest that the 

passive phone features enhance prediction, over and above past CAT-DI, for a subset of individuals.  

 

Factors associated with prediction performance  

Using digital behavioral features to predict future mood was useful for about half of our cohort and the 

contribution of the features to the prediction performance varies across these individuals. What might 

contribute to this variation? Identifying the factors involved might allow us to develop additional models 

with higher prediction accuracy. To identify factors that are associated with prediction performance, we 

computed the correlation between accuracy metrics (prediction 𝑅2 and MAE of feature-based model and 

difference in MAE between feature-based and baseline models) with different study parameters e.g., 

treatment group, sex, etc. (Figure 8). Larger differences in median depression scores between the training 

and test set for each individual were correlated with poorer prediction performance, as measured by MAE 

(Spearman’s ρ=0.65, p-value = 3.46 x 10-11). This suggests that, for many of the individuals in the study, 

the training depression scores are not as representative of the test depression scores, e.g., if individuals 

have high CAT-DI in the training but low CAT-DI in the test. Indeed, this is the case for most individuals 
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in our cohort who are in treatment that improves their symptoms during the course of the study (Sup 

Figure 3). The size of the training and test set as well as demographic variables were not strongly 

correlated to prediction performance. While we had poorer prediction performance for individuals whose 

mood changes between the training and test set, these are also the individuals for which using a feature-

based model improves prediction accuracy compared to a baseline model that predicts based on past 

depression severity alone. Larger differences in median depression scores between the training and test set 

for each individual were correlated with better prediction performance of a feature-based model, 

compared to a baseline model (Spearman’s ρ=0.54, p-value = 1.53 x 10-7).  

Discussion 

In this paper, we showed the feasibility of longitudinally measuring depressive symptoms over 183 

individuals for up to 10 months using computerized adaptive testing and passively and continuously 

measuring behavioral data captured from the sensors built into smartphones. Using a novel combination of 

cubic spline interpolation and idiographic prediction models, we were able to impute and predict a latent 

depression trait on a hold-out set of each individual several weeks in advance.  

Our ability to longitudinally assess depressive symptoms and behavior within many individuals 

and over a long period of time enabled us to assess how far out we can predict depressive symptoms, how 

variable prediction accuracy can be across different individuals, and what factors contribute to this 

variability. In addition, it enabled us to assess the contribution of behavioral features to prediction 

accuracy above and beyond that of prior symptom severity alone. We observed that prediction accuracy 

dropped below 70% after three weeks. In addition, prediction accuracy varied considerably across 

individuals as did the contribution of the features to this accuracy. Individuals with large changes in 

symptom severity during the course of the study (such as those in clinical care) were harder to predict but 

benefited the most from using behavioral features. We expect that pairing digital phenotypes from 
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smartphones with behavioral phenotypes from wearable devices, which are worn continuously and might 

measure behavior with less error, as well as addition of phenotypes, like those from electronic health 

records, could help address some of these challenges.  

Our results are consistent with other studies that predict daily mood as measured by ecological 

momentary assessments or a short screener (i.e., PHQ224) and confirm the superior prediction 

performance of idiographic models over nomothetic ones. Our study goes further, by exploring if the 

superior prediction accuracy of idiographic models is a result of better modeling the relationship between 

features and mood or simply of better modeling the baseline mood of each individual. We show that a 

large part of the increase in prediction performance of idiographic models is due to the latter, as indicated 

by the increase in prediction performance between the nomothetic and modified nomothetic models.  

High-burden studies over long time periods may result in drop-out, particularly for depressed 

individuals37. In our case, we observed that attrition for CAT-DI assessment was linear over the follow-up 

period, except for the first two weeks during which a large proportion of individuals which received online 

support dropped out (typical of online mental health studies38). In addition, participants which received 

clinical care were more adherent than those which received online support, despite endorsing more severe 

depressive symptoms. These participants had regular in-person treatment sessions during which they were 

instructed to complete any missing assessments emphasizing the importance of using reminders or 

incentives for online mental health studies.   

There are several limitations in the current study. First, the idiographic models that we use here 

might not thus maximize statistical power. In addition, they assume a linear relationship between 

behavioral features and depression severity and will fit poorly if this assumption is violated. One potential 

alternative is to employ mixed models that jointly model data from all individuals using individual-

specific slopes and low degree polynomials. However, due to the high dimensionality of our data such 
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models are hard to implement. Second, the adaptive nature of CAT-DI, which might assess different 

symptoms for different individuals, frustrates joint analyses. Finally, the age and gender distribution in our 

participants may limit the generalizability of our findings to the wider population.  

In conclusion, our study verified the feasibility of using passively collected digital behavioral 

phenotypes from smartphones to predict depressive symptoms weeks in advance. Its key novelty lies in 

the use of computerized adaptive testing, which enabled us to obtain high-quality longitudinal assessments 

of mood on 183 individuals over many months, and in the use of personalized prediction models, which 

offer a much higher predictive power compared to nomothetic models. Ultimately, we expect that the 

method will lead to a screening and detection system that will alert clinicians in real-time to initiate or 

adapt treatment as required. Moreover, as passive phenotyping becomes more scalable for hundreds of 

thousands of individuals, we expected that this method will enable large genome and phenome-wide 

association studies for psychiatric genetic research.  

 

Materials and methods 

Study participants and protocol 

Participants are University of California Los Angeles (UCLA) students experiencing mild to severe 

symptoms of depression or anxiety enrolled as part of the STAND program developed under the UCLA 

Depression Grand Challenge35 treatment arm. All participants provided written informed consent for the 

study protocol approved by the UCLA institutional review board (IRB #16-001395 for those receiving 

online support and #17-001365 for those receiving clinical support). All groups are offered behavioral 

health tracking through the AWARE32 framework and had to install the app in order to participate in the 

study. STAND enrolled participants in two waves. The first wave enrolled participants from April 2017 to 

June 2018. The second wave of enrollment began at the start of the academic year in 2018 and continued 
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for three years, during which time, from March 2020, a Safer-At-Home order was imposed in Los Angeles 

to control the spread of COVID-19.  

Depression symptom severity was assessed using the Computerized Adaptive Testing Depression 

Inventory31 (CAT-DI), a validated online mental health tracker. Computerized adaptive testing is a 

technology for interactive administration of tests that tailors the test to the patient39. Tests are 'adaptive' in 

the sense that the testing is driven by an algorithm that selects questions in real-time and in response to the 

ongoing responses of the patient. CAT-DI uses item response theory to select a small number of questions 

from a large bank, thus providing a powerful and efficient way to detect psychiatric illness without 

suffering response fatigue.  

Depression symptom severity was assessed up to every other week for the participants that 

received online support (both waves), i.e., those with mild to moderate symptoms, and every week for the 

participants that received in-person clinical care, i.e., those with severe symptoms (Sup Figure 2A). 

Participants that received in-person care had also four in-person assessment events, at weeks 8, 16, 28, and 

40, prior to the COVID-19 pandemic. Thus, Wave 1 participants can have a maximum of 13 CAT-DI 

assessments while Wave 2 participants can have a maximum of 21 (online support) or 44 assessments, 

depending on severity and excluding initial assessments prior to treatment assignment.  

CAT-DI was assessed at least one time for 437 individuals that installed the AWARE app. Here, 

we limit our prediction analyses to individuals that have at least five CAT-DI assessments (N=238; since 

we need at least four points to interpolate CAT-DI in the training set), have at least 60 days of sensor data 

in the same period for which CAT-DI data is also available (N=189), and show variation in their CAT-DI 

scores in the training set (N=183), which is necessary in order to build prediction models.  
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Overview of the treatment protocol 

STAND use computerized adaptive testing to initially assess depressive mood severity at entry, from 

which students are routed to appropriate treatment resources. Individuals who are not currently 

experiencing symptoms of depression or anxiety are offered the opportunity to participate in the study 

with an active treatment component by contributing CAT-DI assessment. These individuals are excluded 

from our analyses as they do not show any variation in CAT-DI. Individuals who are mildly depressed or 

anxious or at risk for depression or anxiety are provided internet-based cognitive behavior therapy, which 

includes adjunctive support provided by trained peers or clinical psychology graduate students via video 

chat or in person. Individuals who are severely depressed, suicidal, or bipolar/manic and who need more 

intensive treatment, are offered an evaluation within the STAND clinic, including individualized treatment 

by a team of psychiatrists and psychologists.  

 

Feature extraction from smartphone sensors  

We describe feature extraction in detail in the supplement. Broadly, we extracted 23 

features related to mobility, e.g., location entropy, 13 related to sleep and circadian rhythm, e.g., 

hours of uninterrupted sleep, 18 related to social interaction, e.g., duration of outgoing calls, and 

two related to mobile device usage, e.g., number of interactions with phone per day. Each of 

these features was calculated on a daily basis. Furthermore, each of these features was computed 

over three daily non-overlapping time windows of equal duration (night 00:00-08:00, day 08:00-

16:00, evening 16:00-00:00), under the hypothesis that participant behavior may be more or less 

variable based on external constraints such as a regular class schedule during daytime hours.  

In addition, considering a participant’s current mental state may be influenced by patterns 

of behavior from days prior, sliding window averages of each of the daily features were 
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calculated over multiple sliding windows ranging from three days to one month prior to the 

current day, i.e., windows of length three, seven, 14, and 30 days. The variance of each feature 

was also calculated over these same windows, to estimate whether behavior had been stable or 

variable during that time, e.g., were there large fluctuations in sleep time over the past week?  

Finally, under the hypothesis that recent changes in behavior may be more indicative of 

changes in mental state than absolute measures, a final set of transformations were applied to 

each feature. These transformations compared the sliding window means of two different 

durations against each other, to estimate the change in behavior during one window over that of a 

longer duration window (the longer window serving as a local baseline for the participant). This 

allowed estimates from the raw features of whether, e.g., the participant had slept less last night 

than typical over the past week or slept less on average in the last week than typical over the last 

month. All of these transformations were applied to the base features extracted from sensor data 

and included as separate features fed into subsequent regression approaches.  

In total, 1,325 raw and transformed features were extracted and included in the final 

analysis.  

 

Imputation of smartphone-based features 

To address the missing features problem (Sup Figure 4), we considered two different imputation 

methods: matrix completion via iterative soft-thresholder SVD as implemented in the R package 

softImpute40 and cubic spline interpolation with degrees of freedom equal to the number of days an 

individual participated in the study (to achieve the least amount of smoothing). Both approaches were 

applied separately to each individual. The former was applied across all features while the latter was 

applied separately to each feature. In the main text, we discuss results based on features imputed using 
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cubic interpolation, which achieved the best prediction accuracy. We show results based on matrix 

completion interpolation in Sup Figure 8. When fitting prediction models without imputation of missing 

feature data, we remove days with more than 90% of features missing (within each individual for 

individual-level models and across individuals for the population-level model) and features that are 

missing for more than 90% of the days for which the individual(s) participated in the study. Before 

prediction, we normalize all features to have zero mean and unit standard deviation.  

 

Variance partition of CAT-DI metrics 

We calculate the proportion of CAT-DI severity variance explained by different study parameters using a 

linear mixed model as implemented in the R package variancePartition41 with the subject id, study id, 

season, sex, and year modeled as random variables while the day of the study, the age of the subject, and a 

binary variable indicating the dates before or after the safer at home order was issued in California 

modeled as fixed, i.e., 

𝑦 =  ∑ 𝑋𝑗𝛽𝑗

𝑗

+  ∑ 𝑍𝑘𝑎𝑘

𝑘

+  𝜖  

where y is the vector of the CAT-DI values across all subjects and time points, 𝑋𝑗 is the matrix of jth fixed 

effect with coefficients 𝛽𝑗 , 𝑍𝑘 is the matrix corresponding to the kth random effect with coefficients 𝑎𝑘 

drawn from a normal distribution with variance 𝜎𝑎𝑘
2 . The noise term, 𝜖, is drawn from a normal 

distribution with variance 𝜎𝜖
2. All parameters are estimated with maximum likelihood42. Variance terms 

for the fixed effects are computed using the post hoc calculation 𝜎̂𝛽𝑗

2 = 𝑣𝑎𝑟(𝑋𝑗𝛽𝑗). The total variance is  

𝜎̂𝑇𝑜𝑡𝑎𝑙
2 = 𝜎̂𝛽𝑗

2 + 𝜎̂𝑎𝑘
2 +  𝜎̂𝜖

2   so that the fraction of variance explained by the jth fixed effect is 𝜎̂𝛽𝑗

2 /𝜎̂𝑇𝑜𝑡𝑎𝑙
2 , by 

the kth random effect is 𝜎̂𝑎𝑘
2 /𝜎̂𝑇𝑜𝑡𝑎𝑙

2 , and the residual variance is 𝜎̂𝜖
2/𝜎̂𝑇𝑜𝑡𝑎𝑙

2 . Confidence intervals for 
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variance explained were calculated using parametric bootstrap sampling as implemented in the R package 

variancePartition41.  

 

Imputation and of CAT-DI severity scores 

To get daily-level data, we interpolate the CAT-DI severity scores for each individual across the 

whole time series (ground truth) or only the time series corresponding to the training set (70% of the time 

series) by moving the last CAT-DI score forward, denoted by LOCF, or by smoothing the CAT-DI scores 

using cubic splines with different degrees of freedom (Figure 3A). Cubic smoothing spline fitting was 

done using the smooth.spline function from the stats package in R. We consider cubic splines with four 

degrees of freedom (denoted by CS(4df) and corresponding to the number of possible CAT-DI severity 

categories, i.e. normal, mild, moderate, and severe), cubic splines with degrees of freedom equal to the 

number of observed CAT-DI categories for each individual in the training set (ranging from two to four 

and denoted by CS(2-4df)), and degrees of freedom identified by ordinary leave-one-out cross-validation 

in the training set (denoted by CS(cv)).  

 

Nomothetic and idiographic prediction of mood 

We split the data for each individual into a training (70% of trajectory) and a test set (remaining 

30% of trajectory). To predict the future mood of each individual in the test set from smartphone-based 

features in the test set, we train an elastic net linear regression model43 in the train set. We set 𝛼, i.e., the 

mixing parameter between ridge regression and lasso, to 0.5 and use 10-fold cross-validation to find the 

value for parameter 𝜆, i.e., the shrinkage parameter. For the idiographic models, we train separate elastic 

net models for each individual while for the nomothetic and modified nomothetic models we train one 

model across all individuals. To account for individual differences in the average CAT-DI severity scores 
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in the training set, the modified nomothetic model fits individual-specific intercepts by including 

individual indicator variables in the regression model. This is similar in nature to a random intercept 

mixed model where each individual has their own intercept. Note that the test data are the same for all of 

these models, i.e., the remaining 30% of each individual’s trajectories. Predictions outside the CAT-DI 

severity range, i.e., [0,100], are set to NA and not considered for model evaluation. We compute 

prediction accuracy metrics by computing the Pearson's product-moment correlation coefficient (R) 

between observed and predicted depression scores in the test set across and within individuals as well as 

the squared Pearson coefficient (R2). To assess the significance of the prediction accuracy we use a one-

sided paired test for Pearson's product-moment correlation coefficient, as implemented in the cor.test 

function of the stats44 R package, and a likelihood ratio test for the significance of R2. We use the 

Benjamini-Hochberg procedure45 to control the false discovery rate across individuals at 5%.  
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Figure 1: Overview of CAT-DI assessment frequency and source of variation in CAT-DI. (A-C) Boxplot of the observed 

number of CAT-DI assessments (B), follow-up time in days (C), and median number of days between assessments (D) for each 

wave and treatment group. The numbers in the parentheses indicate the expected values according to study design (Sup Figure 

2). (D) Proportion of CAT-DI severity variance explained (VE) by inter-individual differences and other study parameters with 

95% confidence intervals. The proportion of variance attributable to each source was computed using a linear mixed model with 

the individual id, treatment group, season, year, and sex modeled as random variables and all other variables modeled as fixed 

(see Online Methods). 
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Figure 2: Example of identifying window of potential sleep disruption using sensor data related to phone usage and screen 

on/off status. The top panel shows estimated hours of sleep for an individual during the study while the bottom panel shows the 

depression severity scores during the same period. The dotted lines indicate the dates at which a change point is estimated to 

have occurred in the estimated hours of sleep as estimated using a change point model framework for sequential change 

detection (Online Methods).  
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Figure 3: Interpolation of depression severity scores and latent trait inference. (A) Illustration of different interpolation 

methods considered for imputing the depression severity scores and inferring the latent depression traits. The dashed horizontal 

lines indicate the depression severity score thresholds for the mild and severe depression severity categories. (B) Illustration of 

the prediction method. We first infer the latent trait on the full CAT-DI trajectory of an individual (continuous yellow line). We 

then split the trajectory into a training set (days 1 until t) and a test set (days t+1 until T), infer the latent trait on the training set 

(dashed yellow line), and predict the trajectory in the test set (yellow triangles). Finally, we compute prediction accuracy metrics 

by comparing the observed (yellow circles) and predicted (yellow triangles) depression scores in the test set. The vertical line 

indicates the first date of the test set trajectory, i.e., the last 30% of the trajectory. LOCF: last observation carried forward. 

CS(xdf): cubic spline with x degrees of freedom. CS(cv): best-fitting cubic spline according to leave-one-out cross-validation.  
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Figure 4: Idiographic models achieve higher group level prediction accuracy than nomothetic models. (A-B) CAT-DI 

prediction accuracy in the test set as measured by R2 (A) and mean absolute percent error (B) across all individuals from the 

idiographic and two nomothetic models for different latent depression traits. (B) Prediction accuracy versus the number of weeks 

ahead we are predicting from the last observation in the training set. Each dot indicates the prediction accuracy and bars 

indicate 95% confidence intervals. The color indicates the different interpolation methods considered for imputing CAT-DI 

scores. The size of the dots indicates the number of CAT-DI measurements we predict each week. The dotted line indicates 80% 

prediction accuracy. MAE: mean absolute error. LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees 

of freedom. CS(cv): best-fitting cubic spline according to leave-one-out cross-validation. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22281007doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22281007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

33 

 

 

 

 

 

 
Figure 5: Idiographic models achieve higher individual level prediction accuracy than nomothetic models. (A) Bar plots of the 

proportion of individuals with significantly predicted mood (FDR<5% and R>0) for each latent trait and prediction model. 

Computed across individuals with at least five assessments in the test set (N=139). Sup Figure 9 shows the overlap of 

significantly predicted individuals across different latent traits and prediction models. (B) Prediction accuracy (R2) with 95% CI 

for best predicted latent trait across all significantly predicted individuals (N= 118, FDR<5% and R>0). Sup Figure 10 contains 

results for each latent trait. LOCF: last observation carried forward. CS(xdf): cubic spline with x degrees of freedom. CS(cv): 

best-fitting cubic spline according to leave-one-out cross-validation. 
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Figure 6: Most predictive behaviors for CS(4df) latent trait according to idiographic models. Heatmap of idiographic elastic 

net regression coefficients for significantly predicted individuals (N=91 with FDR<5% and R>0). Columns indicate different 

individuals and rows indicate different features. To aid interpretation, we limit plot to features that are significant for at least two 

individuals and have an absolute coefficient value above one in at least one participant. The heatmap color indicates the elastic 

net coefficient for each feature and individual.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22281007doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22281007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

35 

 

 
Figure 7: Comparison of the feature-based prediction model to a baseline prediction model. (A) Histogram of difference for 

each individual in mean absolute prediction error (MAE) between a baseline model that predicts based on past depression 

severity alone and a feature-based model which predicts based on past severity and past feature values. Negative values 

correspond to a decrease in prediction error when a prediction model with features is used, compared to the baseline model. (B) 

Prediction performance for an individual in our study for which features reduce the mean absolute prediction error of a baseline 

model by more than 10%. The lines indicate the observed LOCF (dark blue line) and cubic-spline interpolated (yellow line) CAT-

DI scores for an individual in our study.  The yellow dots are the predictions in the test set (30% of the time series; last six 

depression scores, two months ahead). The red line is the prediction of the baseline model which corresponds to the mean 

depression in the training set.  
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Figure 8: Factors associated with prediction performance of CAT-DI severity scores. Correlation between prediction accuracy 

of an individual (metrics on the y-axis) and the number of CAT-DI assessment available in the training and test set, the difference 

in median CAT-DI severity between the training and test set, the number of the unique CAT-DI categories (normal to severe) 

observed (total and in training and test sets), age, sex, wave, and treatment group (a proxy for depression severity). MAE: mean 

absolute error of the feature-based model. MAEdiff: mean absolute error difference between the feature-based and baseline 

models of each individual, i.e.,   MAEfeatures – MAEno features. 
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Supplementary information  

 

Feature extraction from smartphone sensors 

 

Preprocessing features 

Each sensor collected through the AWARE framework is stored separately with a common set of 

data items (device identifier, timestamp, etc.) as well as a set of items unique to each sensor 

(sensor-specific items such as GPS coordinates, screen state, etc.). Data from each sensor was 

preprocessed to convert Unix UTC timestamps into local time, remove duplicate logging entries, 

and remove entries with missing sensor data. Additionally, some data labels that are numerically 

coded during data collection (e.g., screen state) were converted to human-readable labels for ease 

of interpretation. 

 

Mobility features 

Location data was divided into 24-hour windows starting and ending at midnight each 

day. To identify locations where participants spent time, GPS data were filtered to identify 

observations where the participants were stationary since the previous observation. Stationary 

observations were those defined as having an average speed of <0.7 meters per second 

(approximately half the average walking speed of the average adult). These stationary 

observations were then clustered using hierarchical clustering to identify unique locations in 

which participants spent time during each day. Hierarchical clustering was chosen over k-means 
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and density-based approaches such as DBSCAN due to its ability to deterministically assign 

clusters to locations with a precisely defined and consistent radius, independent of occasional 

data missingness.  

Locations were defined to have a maximum radius of 400 m, a sufficient radius to 

account for noise in GPS observations. Clusters were then filtered to exclude any location in 

which the participant spent less than 15 minutes over the day to exclude location artifacts, e.g., a 

participant being stuck in traffic during daily commute, or passing through the same area of 

campus multiple times in a day. To address data missingness in situations where GPS 

observations were not received at regular intervals, locations were linearly interpolated to 

provide an estimated location every 3 minutes. 

For each day, a home location was assigned based on the location each participant spent 

the most time in between the hours of midnight to eight am. This approach allowed for better 

interpretation of behavior for participants who split time between multiple living situations, for 

example, students who return home for the weekend or a vacation. Next, multiple features were 

extracted from this location data, including total time spent at home each day, total number of 

locations visited, overall location entropy, and normalized location entropy. Each of these 

features was additionally computed over three daily non-overlapping time windows of equal 

duration (night 00:00-08:00, day 08:00-16:00, evening 16:00-00:00), under the hypothesis that 

participant behavior may be more or less variable based on external constraints such as a regular 

class schedule during daytime hours. In total, 28 mobility features were extracted.  
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Sleep and circadian rhythm features 

Sleep and circadian rhythm features were extracted from logs of participant interactions 

with their phone, following prior work showing that last interaction with the phone at night can 

serve as a reasonable proxy for bedtime, and first interaction in the morning for waketime 46. The 

longest phone-off period (or assumed uninterrupted sleep duration) was tracked each night, as 

well as the beginning and end time of that window as estimates of bedtime and waketime. To 

account for participants who may have interrupted sleep, the time spent using the phone between 

the hours of midnight and 8 am was also tracked to account for participants who may use their 

phone briefly in the middle of the night but are otherwise asleep for the majority of that window. 

Finally, time-varying kernel density estimates were derived using the total set of phone 

interactions, to estimate the daily time nadir of interactions, as an additional proxy for the time of 

overall circadian digital activity nadir. In total, 12 sleep and circadian rhythm features were 

extracted.  

 

Social interaction and other device usage features 

Additional social interaction features were extracted from anonymized logs of participant 

calls and text messages sent and received from their smartphone device. Features extracted from 

this data include, for example, the total number of phone calls made, total time spent on the 

phone, and percentage of calls connected that were outgoing (i.e., dialed by the participant) 

versus incoming. In total, 18 social interaction and device usage features were extracted. Due to 

OS restrictions, sensors needed to extract text message features are not available on iOS devices 

and were only computed for the 15 participants with Android devices. 
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Mapping of behavioral features to DSM-5 Major Depressive Disorder criteria 

The set of features described above map onto only a subset of DSM criteria that are closely 

associated with externally observable behaviors (Sup Figure 5) - sleep, loss of energy, and anhedonia (to 

the extent it is severe enough to globally reduce self-initiated activity). Other DSM criteria such as weight 

change, appetite disturbance, and psychomotor agitation/retardation are in theory also directly observable, 

but less so with the set of sensors available on a standard smartphone. For these criteria, other device 

sensors - for instance, smartwatch sensors - may be more applicable in the detection of e.g., fidgeting 

associated with psychomotor agitation. A final set of DSM criteria include those primarily subjective 

findings - depressed mood, feelings of worthlessness, suicidal ideation - which inherently require self-

report to directly assess. Given that only 5 of 9 criteria are required for the diagnosis of MDD, an 

individual patient’s set of symptoms may overlap minimally with those symptoms we expect to measure 

with the features described above. However, for others, the above features may cover a more significant 

portion of their symptom presentation and do a better job directly quantifying fluctuations in DSM-5 

criteria for that individual. 

 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 13, 2022. ; https://doi.org/10.1101/2022.10.12.22281007doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.12.22281007
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

41 

 

 
Sup Figure 1: Demographic information for participants in each wave. First row: histogram of age and BMI and bar plot of sex 

Second row: bar plot of gender, race, and ethnicity. AI or AN: American Indian or Alaska Native.  AA: African American. 
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Sup Figure 2: CAT-DI administration protocol and compliance with CAT-DI assessment protocol for each wave and 

treatment group. (A) CAT-DI administration schedule. Each box indicates a week during which participants in each group were 

expected to complete the CAT-DI. Asterisks indicate weeks with additional in-person administrations of CAT-DI for Wave 2 

participants which received clinical care. (B) Participant CAT-DI retention rate for each enrollment wave and treatment group. 

The x-axis shows weeks from the beginning of the study for each participant while the y axis shows the proportion of individuals 

that were still completing the CAT-DI at that week. The continuous lines show the linear regression fit with 95% confidence 

intervals (gray shading). 
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Sup Figure 3: Effect of therapy per wave and treatment group. The x-axis shows the study day with zero indicating the first day 

of CAT-DI assessment for each individual. The y-axis indicates the CAT-DI severity score for each individual / day in the study. 

The blue line indicates the fit of a generalized additive model with y ~ s(day + wave: treatment group, bs = "cs") and gaussian 

family.   
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Sup Figure 4: Missing feature data summary. Heat map showing missing data percentage in each of the four types of features 

extracted from smartphone data for all individuals. Each tick on the x-axis (y-axis) represents an individual (feature). For ease of 

plotting, we have excluded transformation-based features. For participants with iOS devices (majority of individuals), we did not 

have any information on social interaction features related to text message information due to permission. These features are 

excluded from analyses when considering individuals with iOS devices. 
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Sup Figure 5: Mapping of sensor-derived behavioral features to DSM5 Major Depressive Disorder criteria. The individual 

behavioral features derived from phone sensors map primarily to the DSM criteria of disrupted sleep, loss of energy, and 

anhedonia. Each of these base features is further transformed to look for deviations from individual baseline over varying time 

scales (e.g., last day’s deviation from the weekly average) to arrive at the final set of behavioral features. 
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Sup Figure 6: Correlation between depression severity scores and features within each individual and across individuals. 
Heatmap for Pearson’s correlation coefficient (color of cell) between CAT-DI scores and behavioral features (y-axis) across 
individuals (first column) and within each individual (x-axis). Correlation coefficients with nominal p-values > 0.05 are indicated 
by x. For plotting ease, we limit to untransformed features (N=50, see Online Methods). Rows and columns are annotated by 
feature type and by each individual’s wave and treatment group.  
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Sup Figure 7: Idiographic models achieve higher prediction accuracy than nomothetic models across individuals. Observed 

versus predicted CAT-DI scores in the test set from the idiographic and two nomothetic models for different latent depression 

traits. MAPE: mean absolute percent error. LOCF: last observation carried forward. CS(cv): best-fitting cubic spline according 

to leave-one-out cross-validation. CS(xdf): cubic spline with x degrees of freedom. 
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Sup Figure 8: Prediction performance when features are imputed using matrix completion (softImpute). Observed versus 

predicted CAT-DI scores in the test set from the idiographic model for different latent depression traits. MAPE: mean absolute 

percent error. LOCF: last observation carried forward. CS(cv): best-fitting cubic spline according to leave-one-out cross-

validation. CS(xdf): cubic spline with x degrees of freedom.  
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Sup Figure 9: Idiographic models achieve higher prediction accuracy than nomothetic models within individuals. Upset plots 

of the number of individuals significantly predicted (FDR<=.05 and R>0) using the idiographic and two nomothetic models for 

different latent depression traits. 
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Sup Figure 10: Idiographic models achieve higher prediction accuracy than nomothetic models within individuals. Prediction 

accuracy (R2) for all significantly predicted individuals (FDR<=.05 and R>0) using the idiographic and two nomothetic models 

for different latent depression traits. 
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