Abstract
Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, captured passively and continuously from smartphones and wearable devices, to infer mood and diagnose major depressive disorder. However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically relevant events, and use measures of depression that are not validated or suitable for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments of mood from computerized adaptive testing paired with continuous digital assessments of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of depression. We apply a novel combination of cubic spline interpolation and idiographic models to generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high prediction accuracy of depression severity up to three weeks in advance (R2 ≥ 80%). We show that the passive behavioral phenotypes enhance prediction of future mood over and above a baseline model which predicts future mood based on past depression severity alone for 52% of individuals in our cohort. In conclusion, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood from a clinical population and predicting symptom severity weeks in advance using passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific behavioral measures to enable future psychiatric research.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
S.S was funded in part by NIH grant R35GM125055 and NSF grants III-1705121 and CAREER-1943497. DS was supported by NSF-NRT #1829071.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The IRB of the University of California at Los Angeles gave ethical approval for this work (IRB #16-001395 for those receiving online support and #17-001365 for those receiving clinical support).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors.