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Abstract 

In a previous genome wide association study (GWAS) of UK Biobank (UKB) data, we identified one 

susceptibility locus, Tubulointerstitial Nephritis Antigen (TINAG), with genome wide significance for 

dermatophytosis. We used genotype calls from file UKB22418. These data are derived directly from 

Affymetrix DNA microarrays but are missing many genotype calls. Using computationally efficient 

approaches, UKB has entered imputed genotypes into a second dataset, UKB22828, increasing the 

number of testable variants by over 100-fold to 96 million variants. In the current study, we used UKB 

imputed genotypes in UKB22828 to identify dermatophytosis susceptibility loci.  

Methods: To identify cases of dermatophytosis, we used ICD10 code B35, which covers Tinea barbae, 

Tinea capitis, Tinea unguium, Tinea manuum, Tinea pedis, Tinea corporis, Tinea imbricata, Tinea cruris, 

other dermatophytoses, and dermatophytosis, unspecified. We used PLINK, a whole-genome 

association analysis toolset, to analyze the UKB22828 chromosome files.  

Results: GWAS summary (Manhattan) plot of the meta-analysis association statistics highlighted two 

susceptibility loci, TINAG and Kallikrein Related Peptidase 3 (KLK3), with genome wide significance for 

dermatophytosis.  

Conclusion: KLK3 may be a dermatophytosis susceptibility gene. KLK3 could affect risk of 

dermatophytosis, since kallikreins are necessary for normal homeostasis of the skin. 
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Individual factors, including genetics, predispose to dermatophytosis, a common condition. 

Acute inflammatory forms of dermatophytosis can have no symptoms at all or can be life-threatening. 

Due to the high cost of therapy, dermatophytosis is a substantial financial burden  [1, 2]. 

In a previous genome wide association study (GWAS) of UK Biobank (UKB) data, we identified 

one susceptibility locus, Tubulointerstitial Nephritis Antigen (TINAG), with genome wide significance for 

dermatophytosis [3]. We used genotype calls from file UKB22418. These data are derived directly from 

Affymetrix DNA microarrays but are missing many genotype calls [4]. 

The estimation of missing genotype calls using statistical inference is known as genotype 

imputation. Imputation is increasingly enhancing the number of SNPs accessible in data, not just to fill in 

gaps left by genotyping errors but also to estimate the genotypes of variants that were not directly 

tested. Using computationally efficient approaches together with the Haplotype Reference Consortium 

and UK10K haplotype resources, UKB has entered imputed genotypes into a second dataset, UKB22828, 

increasing the number of testable variants by over 100-fold to 96 million variants [5].  

In the current study, we used UKB imputed genotypes in UKB22828 to identify dermatophytosis 

susceptibility loci. 

 

Methods 

To identify cases of dermatophytosis, we used ICD10 code B35, which covers Tinea barbae, 

Tinea capitis, Tinea unguium, Tinea manuum, Tinea pedis, Tinea corporis, Tinea imbricata, Tinea cruris, 

other dermatophytoses, and dermatophytosis, unspecified. 

Data processing was performed on Minerva, a Linux mainframe with Centos 7.6, at the Icahn 

School of Medicine at Mount Sinai. We used PLINK, a whole-genome association analysis toolset, to 

analyze the UKB22828 chromosome files [6] and the UK Biobank Data Parser (ukbb parser), a python-

based package that allows easy interfacing with the large UK Biobank dataset [7]. We used the R 

package qqman for the Manhattan and qq plots [8]. Other statistical analyses were done with R and 

SPSS 26. 

We followed quality control procedures [9] that consisted of the following: 

1) Missingness of SNPS 0.05: This command excluded SNPs that are missing in a large 

proportion of the subjects. In this step, SNPs with low genotype calls were removed.  

2) Missingness of individuals 0.05: This command excluded individuals who had high rates of 

genotype missingness. In this step, individuals with low genotype calls were removed.  

3) Hardy Weinberg equilibrium 1e-6: This command excluded markers which deviate from 

Hardy–Weinberg equilibrium.  

4) Minor allele frequency (MAF) threshold 0.01: This command included only SNPs above the 

set MAF threshold.  

 

 

Results 
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We analyzed data from 462,737 subjects. The age at enrollment was 56 ± 8 (mean ± SD). The 

subjects were 56% women, 44% men, 95% white and British, 15 ± 5 years of education. 532 subjects had 

dermatophytosis. 

GWAS summary (Manhattan) plot of the meta-analysis association statistics, highlighting two 

susceptibility loci, Kallikrein Related Peptidase 3 (KLK3) and TINAG, with genome wide significance for 

dermatophytosis, is shown in figure 1. The upper horizontal line indicates the genome wide significance 

threshold of a P value less than 5×10
-8

. 

The qq plot is shown in figure 2. The x-axis represents expected -log10 (p), y-axis observed -

log10 (p) of each SNP. The genomic inflation factor (lambda gc) =1.1. Values up to 1.10 are generally 

considered acceptable for GWAS and suggest no systematic biases. 

Principal Component Analysis is in figure 3. The x and y axes of variation reduce the data to a 

small number of dimensions, describing as much variability as possible; they are defined as the top 

eigenvectors of a covariance matrix between samples [10]. The UKB subjects appear to cluster as a 

single group, indicating race is not a confounding variable in the GWAS, corroborating the lambda value 

above. Even though the UK Biobank cohort includes many participants from a variety of ethnic 

backgrounds, GWAS is possible without sacrificing adequate sample size because most UK Biobank 

cohort participants report their ethnic background as British, within the broader-level group white, 88% 

[11]. 

In the GWAS rs61729813 was the SNP most significantly associated with dermatophytosis. 

rs61729813 is a missense variant within an exon of KLK3, alleles C>G, minor allele frequency (MAF) 

0.012. Table 1 contains genotype of rs61729813 versus phenotype, unaffected or mycosis 

(dermatophytosis) in 462,737 subjects. 0.1% of subjects with genotype CC had dermatophytosis, 0.3% of 

subjects with genotype CG had dermatophytosis, no subjects were homozygous GG (Fisher exact test 

two tailed p < 0.001). 

Results of logistic regression are in Table 2. The dermatophytosis odds ratio (O.R.) for males was 

2.19, indicating dermatophytosis is more common in men. The O.R. for age of dermatophytosis was 

1.034, in other words dermatophytosis incidence increases with every year of age. Diabetes type 2 

increased risk of dermatophytosis, O.R. 2.532. Subjects that were carriers of the G allele of rs61729813 

were at increased risk of dermatophytosis (O.R. 2.321). 

 

 

 

Discussion 

KLK3, also known as prostate specific antigen (PSA), belongs to a subclass of serine proteases 

with a variety of physiological functions. A growing body of research indicates that numerous kallikreins 

have a role in carcinogenesis and that some of them may serve as innovative cancer and other disease 

biomarkers. The KLK3 gene is one of 15 members of the kallikrein subfamily that are grouped together 

on chromosome 19. KLK3 encodes a protease, a single-chain glycoprotein, which is produced in the 

prostate gland's epithelial cells and found in seminal plasma. KLK3 protein is believed to hydrolyze high 
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molecular mass seminal vesicle protein during the liquefaction of seminal coagulum. Serum PSA level 

aids in the detection and follow-up of prostatic cancer. KLK3 gene alternative splicing results in many 

transcript variants that each encode a different isoform [12]. 

KLK3 could affect risk of dermatophytosis, since kallikreins are necessary for normal 

homeostasis of the skin. Keratinocytes of the upper stratum granulosum secrete kallikreins into the 

stratum corneum. In addition to their function in skin renewal, kallikreins control skin inflammation, the 

epidermal lipid-rich permeability barrier, and innate immune responses in the epidermis. Kallikreins 

degrade lipid-processing enzymes and activate the inflammatory response mediator PAR2 on the cell 

surface of keratinocytes. Antimicrobial cathelicidins, smaller antimicrobial peptides, and pro-

inflammatory cytokines all interact with kallikreins. In various skin conditions, including psoriasis, atopic 

dermatitis, acne rosacea, and Netherton syndrome (NS), kallikrein regulatory function is disrupted [13].  

Dermatophytosis is more common in men and diabetics [14, 15]. Our analysis confirms this 

association and indicates that it is independent of the significant influence of KLK3 (table 2). 

A weakness in our study is that single genetic variants and genetic scores composed of multiple 

variants are associated with birth location within UK Biobank. Major health outcomes appear 

geographically structured. Haworth et al report that geographic structure in genotype data cannot be 

accounted for using routine adjustment for study center and principal components derived from 

genotype data. As a result, coincident structure in health outcomes and genotype data can yield biased 

associations [16].  

We are uncertain why dermatophytosis incidence in the UK Biobank is so low (532/462737). 

Other sources rank its prevalence in the U.K. as high as 20% [17, 18]. Perhaps most people with 

dermatophytosis don’t bother to report it to a healthcare professional; or UK Biobank is only capturing 

patients who are already receiving care for a more serious condition.  Indeed, dermatophytosis is 

associated with diabetes, mentioned above, and end-stage kidney disease [17, 18]. 

KLK3 may be a dermatophytosis susceptibility gene. More research into genetic and other 

predisposing factors for dermatophytosis is critical because of the implications for prophylaxis and 

therapy. It might be possible to prevent infection and recurrence by identifying people who are 

vulnerable to chronic dermatophytosis. Identifying high-risk families would enable their members to be 

educated about the dangers of fungal diseases. 
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Figure 1. Manhattan plot showing significantly associated dermatophytosis risk loci for TINAG, 

chromosome 6p12.1, and KLK3, chromosome 19q13.3 
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Figure 2. qq plot of p values from GWAS data. Note that most of the p-values observed follow a uniform 

distribution (left segment of line) but the few that are in linkage disequilibrium with causal 

polymorphisms produce significant p-values (upper right segment of line). The genomic inflation factor 

(lambda gc) is 1.1. Values up to 1.1 are generally considered acceptable for GWAS and suggest no 

systematic biases. 
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Figure 3. Principal Component (PC) Analysis. POP = population, 1 white, 2 mixed, 3 Asian or Asian British, 

4 Black or Black British, 5 Chinese, 6 Other ethnic group. 95% of 487,920 subjects were white British. A) 

PC1 versus PC2; B) PC3 versus PC4; C) PC5 versus PC6; D) PC7 versus PC8. Principal components 

represent the directions of the data that explain a maximal amount of variance. Principal Component 

Analysis tries to put maximum possible information in the first component, then maximum remaining 

information in the second and so on. The UKB subjects appear to cluster as a single group, especially in 

B, C, and D, indicating race is not a confounding variable in the GWAS. Even though the UK Biobank 

cohort includes many participants from a variety of ethnic backgrounds, GWAS is possible without 

sacrificing adequate sample size because most UK Biobank cohort participants report their ethnic 

background as British, within the broader-level group white. 
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genotype  neg mycosis Total 

CC N 451111 503 451614 

 % 99.90% 0.10% 100.00% 

CG N 11094 29 11123 

 %  99.70% 0.30% 100.00% 

all  N 462205 532 462737 

 %  99.90% 0.10% 100.00% 

 

Table 1. Genotype of rs61729813 versus phenotype, unaffected or mycosis (dermatophytosis) in 

462,737 subjects. 0.1% of subjects with genotype CC had dermatophytosis, 0.3% of subjects with 

genotype CG had dermatophytosis, no subjects were homozygous GG. Fisher exact test two tailed p < 

0.001. 
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 95% L.B. O.R. 95% U.B. p value 

Sex 1.831 2.192 2.626 <0.001 

Age 1.021 1.034 1.046 <0.001 

diabetes type 2 2.001 2.532 3.203 <0.001 

genotype 1.596 2.321 3.375 <0.001 

 

Table 2.  Logistic regression with 95% confidence intervals, lower bound (L.B.), upper bound (U.B.). 

Independent variables sex, age, diabetes type 2, genotype CC versus CG; dermatophytosis present or 

absent, dependent variable. The dermatophytosis odds ratio (O.R.) for males was 2.19, indicating 

dermatophytosis is more common in men. The O.R. for age of dermatophytosis is 1.034, in other words 

dermatophytosis incidence increases with every year of age. Diabetes type 2 increased risk of 

dermatophytosis, O.R. 2.532. Subjects that were carriers of the G allele of rs61729813 were at increased 

risk of dermatophytosis (O.R. 2.321). 
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