Alpha Globin Gene Copy Number and Exhaled Nitric Oxide in Healthy Black Adults

A. Parker Ruhl¹,², Jarrett M. Jackson¹, Carlos J. Carhuas¹, Jessica G. Niño de Rivera¹, Michael P. Fay³, J. Brice Weinberg⁴, Loretta G. Que⁵, Hans C. Ackerman¹

¹ Physiology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
² Pulmonary Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
³ Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
⁴ Department of Medicine and Division of Hematology, Duke University School of Medicine and Durham VA Medical Centers, Durham, NC, United States,
⁵ Department of Medicine and Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University School of Medicine and Durham VA Medical Centers, Durham, NC, United States

Key words: Hemoglobin; Black American; fractional exhaled nitric oxide; alveolar epithelial cell; nitric oxide synthase

Word count: 1126 / 1000

Tables and Figures: 2 tables and 1 figure

Corresponding author:
Dr. A. Parker Ruhl, MD, MHS
Building 10-Clinical Research Center, Rm. B3-4207
10 Center Dr., Bethesda MD, 20892-1684
parker.ruhl@nih.gov
Tel: 240-669-5776
Fax: 301-480-0590

Author contributions: All listed authors meet ICJME recommendations for authorship criteria, including substantial contributions to the conception or design of the work (A.P.R., H.C.A., L.G.Q., J.B.W.); or the acquisition, analysis, or interpretation of data for the work (A.P.R., H.C.A., J.M.J., C.J.C., J.G.N., M. P. F., L.G.Q.); Drafting the work (A.P.R.) or revising it critically for important intellectual content and final approval of the version to be published (All).

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
ABSTRACT

BACKGROUND: Nitric oxide has a range of biological activity in the lung and the fractional exhalation of nitric oxide (FeNO) is useful in patients with asthma in whom treatment is being considered. Normal variation in FeNO may impact the interpretation of this physiologic measurement, yet little is known about genetic factors that influence FeNO, particularly among Black populations. Growing evidence that globins are co-expressed with NOS in airway epithelium, along with the structural similarity of iNOS and eNOS, imply that globins may regulate NO signaling not only in the vascular endothelium, but in the airway epithelium as well. Given that Black individuals have increased HBA allele count variation, we assessed the role of alpha globin in airway nitric oxide physiology, we examined the association of alpha globin gene deletions with FeNO in healthy Black individuals.

METHODS: We measured HBA copy number via droplet digital PCR in Black healthy volunteers age 18-40 years were enrolled in a multi-center, cross-sectional cohort from 4 sites near Durham, North Carolina. Subjects self-reported health status, age, sex, race, and ethnicity. Only non-Hispanic African American subjects were enrolled in the original study. Exclusion criteria for this analysis were: 1) not consenting to future research and 2) serum cotinine level >25 ng/mL to exclude active tobacco use. For continuous measures, medians and 25th and 75th percentiles were calculated by alpha globin genotype. Differences between groups were assessed by Kruskal-Wallis test. Categorical variables were assessed by Fisher’s exact test. IgE and FeNO were log transformed due to skewness. The association of HBA copy number with FeNO was evaluated using multivariable linear regression employing a linear effect of HBA allele count (2-5 HBA copies).
RESULTS: Among DNA specimens from 643 Black individuals, HBA genotype frequencies were: 30 (4.7%) -a/-a, 197 (30.6%) -a/aa, 405 (63%) aa/aa, and 8 (1.2%) aa/aaa, with the median (25th, 75th percentile) measured FeNO value of 20 (13, 31) ppb. Subjects were 35% male with median age 20 (19, 22) years and median IgE level of 58 (22, 160) kU/L. After adjustment for sex, age, and log transformed total IgE, the coefficient for HBA copy number with FeNO was -0.005 (95% CI: -0.042, 0.033, p=0.81).

CONCLUSIONS: No clear association between HBA copy number and FeNO was found among healthy Black adults in this cohort. Many questions regarding the roles of alpha and beta globin in epithelial NO signaling and pulmonary pathophysiology remain unanswered.
INTRODUCTION

Nitric oxide (NO) has numerous biological activities in the lung. NO serves as a bronchodilator, vasodilator, neurotransmitter, and inflammatory mediator.\(^1\) In asthmatic individuals, the fractional exhalation of nitric oxide (FeNO) is a validated measure of airway inflammation and is a useful tool in patients with asthma in whom treatment is being considered.\(^2,3\) Normal variation in FeNO may impact the interpretation of this physiologic measurement, yet little is known about genetic factors that influence FeNO, particularly among Black populations.\(^4\)

Inducible NO synthase (iNOS, NOS2) is the principal source of NO from the airway epithelium, and its activity is increased during inflammation.\(^5,6\) Genetic variation in the NOS2 gene has been associated with FeNO levels in healthy individuals, but much of the variation in FeNO remains unexplained.\(^7\)–\(^9\) Recently, a new paradigm has emerged from studies of the arterial endothelium whereby NO signaling is restricted by globins.\(^10\)–\(^15\) Globins are also expressed in human pseudostratified airway epithelial cells and alveolar epithelial cells (AEC) where beta globin colocalizes with endothelial nitic oxide synthase (eNOS) and regulates NO oxidation.\(^16,17\) Growing evidence that globins are co-expressed with NOS in airway epithelium, along with the structural similarity of iNOS and eNOS,\(^18\) imply that globins may regulate NO signaling not only in the vascular endothelium, but in the airway epithelium as well.

To assess the role of alpha globin in airway nitric oxide physiology, we examined the association of alpha globin gene deletions with FeNO in healthy Black individuals. Alpha globin is expressed by the tandem duplicated genes HBA1 and HBA2.\(^19,20\) A 3.7 kb alpha globin gene deletion, common in Black Americans, is associated with protection from kidney disease possibly through increased NO signaling in small arteries.\(^14,21\) However, the impact of the alpha globin gene deletion on FeNO has not been studied. We hypothesized that individuals carrying the 3.7 kb alpha globin gene deletion would have increased epithelial NO signaling and higher FeNO levels.\(^14,17,22,23\)
METHODS

Black healthy volunteers age 18-40 years were enrolled in a multi-center, cross-sectional cohort from 4 university sites near Durham, North Carolina (#Pro00004947). The protocol and consent were approved by the Duke University Institutional Review Board. Subjects were asked to confirm they were healthy (i.e., no chronic illnesses or chronic use of any medication except oral contraceptives); no history of asthma, allergic rhinitis, hay fever, or atopic dermatitis; nonsmokers; and of African ancestry. Age, sex, race, and ethnicity were self-reported. Only non-Hispanic African American subjects were enrolled in the original study. Blood samples were obtained. HBA copy number was measured by droplet digital PCR (ddPCR) with indeterminate values excluded. FeNO levels were measured with a Sievers 280i Nitric Oxide Analyzer (NOA; GE Analytical Instruments, Boulder, Colo), which was calibrated daily. FeNO values were measured according to American Thoracic Society recommendations. A flow rate of 50 mL/s was established against enough resistance to maintain an oropharyngeal pressure of a minimum 5 cm of H2O. The mean of three FeNO measurements was reported. Ambient air NO was excluded by inclusion of an activated charcoal and potassium hydroxide filter unit attached to the air intake of the NOA flowmeter. Total serum immunoglobulin-E (IgE) was measured. Exclusion criteria for this analysis were: 1) not consenting to future research and 2) serum cotinine level >25 ng/mL to exclude active tobacco use.

For continuous measures, medians and 25th and 75th percentiles were calculated by alpha globin genotype. Differences between groups were assessed by Kruskal-Wallis test. Categorical variables were calculated as percentages within each category and differences were assessed by Fisher’s exact test. IgE and FeNO were log transformed due to skewness. The association of HBA copy number with FeNO was evaluated using multivariable linear regression employing a linear effect of HBA allele count (2-5 HBA copies) with adjustment for age, sex, and total serum IgE levels. A post-hoc sensitivity analysis was performed which treated HBA copy number as a categorical variable using aa/aa as the reference group.
RESULTS

Of the original 895 study participants, 720 had consented for future research and had DNA available for genotyping. Sixty-four participants were excluded due to high cotinine levels and 13 were excluded due to indeterminate HBA genotype. The remaining 643 subjects were 35% male and had a median (25th,75th) age of 20 (19, 22) years, serum IgE level of 58.3 (22, 160) kU/L, and FeNO value of 20 (13, 31) ppb (Table 1 and Figure 1). HBA genotype frequencies were: 30 (4.7%) -a/-a, 197 (30.6%) -a/aa, 405 (63%) aa/aa, and 8 (1.2%) aa/aaa.

Median (25th, 75th) FeNO was 25 (18, 39) ppm in the -a/-a group, 20 (12, 27) ppm in the -a/aa group, 20 (13, 32) ppm in the aa/aa group, and 37 (9, 52) ppm in the aa/aaa group (p = 0.11 by Kruskal-Wallis test; Table 1). After adjustment for sex, age, and log transformed total IgE, the coefficient for HBA copy number with FeNO was -0.005 (95% CI: -0.042, 0.033, p=0.81; Table 2). In a post-hoc sensitivity analysis evaluating HBA genotype as a categorical variable with aa/aa as reference, there was no overall association with FeNO (p = 0.41) though FeNO tended to be higher in those with the -a/-a genotype (p = 0.066; Table 2).

DISCUSSION

The alpha and beta subunits of hemoglobin have recently emerged as regulators of NO signaling in both endothelial and epithelial cell contexts; however, it is unclear to what extent human genetic variation in the alpha and beta globin genes contributes to inter-individual differences in exhaled NO levels. We found no association between a common alpha globin gene deletion and FeNO in Black healthy individuals, suggesting that variation in alpha globin expression does not alter the release of NO into airways. Strengths of this study included a large cohort of healthy Black volunteers, the high frequency of the HBA gene deletion, a robust ddPCR-determined measure of HBA copy number, a well-defined outcome measure of FeNO, and inclusion of serum IgE, known to be correlated with airway inflammation, as a
covariate. Limitations of this study included determination of FeNO at a single flow rate (50 mL/s) which does not distinguish alveolar from bronchial NO sources,28 and absence of data on other potential confounders such as recent upper respiratory tract infection or levels of eosinophilic cationic protein, both of which have been previously correlated with FeNO in Black individuals.24 While increased BMI was found to be associated with increased FENO in some cohorts,29 other studies, including from this cohort,24 did not shown an association and we did not include BMI in our model.

In conclusion, we found no clear association between \textit{HBA} copy number and FeNO among healthy Black adults in this cohort. Many questions regarding the roles of alpha and beta globin in epithelial NO signaling and pulmonary pathophysiology remain unanswered.
SOURCES OF FUNDING

The original study was supported by the Sandler Program for Asthma Research; ES011185 from the National Institute of Environmental Health Sciences; and MO1-RR-30 from the National Center for Research Resources, Clinical Research Centers Program, National Institutes of Health. The current analysis was supported in part by the Divisions of Intramural Research, National Institute of Allergy and Infectious Diseases project AI001150 (A.P.R., J.M.J, C.M.C, J.G.N., M.P. F., H.C.A), National Heart, Lung, and Blood Institute (NHLBI) project HL006196 (A.P.R., H.C.A.). This work was also funded in part by NHLBI grants NIH R01-HL107590 and R01HL153641 (L.G.Q.) and the Durham VA Medical Center Research Service (J.B.W.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIAID or NHLBI. The content of this publication does not necessarily reflect the view or policy of the Department of Health and Human Services, nor does mention of trade names, commercial products or organizations imply endorsement by the government. The interpretation and reporting of these data are the responsibility of the author(s) and in no way should be seen as an official policy or interpretation of the U.S. government.

DISCLOSURES

The authors have no conflicts of interest to declare. All co-authors have seen and agree with the contents of the manuscript and there is no financial interest to report. This article was previously published in abstract form.30 We certify that the submission is original work and is not under review at any other publication.

ACKNOWLEDGEMENTS

Several co-authors have new current affiliations, Jarrett Jackson is at the Vanderbilt University Medical Center, Nashville, TN, United States; Carlos Carhuas is at the Comprehensive Sickle Cell Disease Program, Children’s National Medicine Center,
Washington, DC, United States; and Jessica Nino De Rivera is at the Columbia University Vagelos College of Physicians and Surgeons, New York, NY, United States
Table 1. Subject characteristics by alpha globin genotype

<table>
<thead>
<tr>
<th>HBA genotype</th>
<th>All subjects</th>
<th>-a/-a</th>
<th>-a/aa</th>
<th>aa/aa</th>
<th>aa/aaa</th>
<th>P value†</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. subjects*</td>
<td>643</td>
<td>30 (4.7%)</td>
<td>197 (30.6%)</td>
<td>408 (63%)</td>
<td>8 (1.2%)</td>
<td></td>
</tr>
<tr>
<td>Male Sex, No. (%)</td>
<td>222 (35)</td>
<td>12 (40)</td>
<td>66 (34)</td>
<td>142 (35)</td>
<td>4 (50)</td>
<td>0.68</td>
</tr>
<tr>
<td>Age, years</td>
<td>20 (19,22)</td>
<td>20 (19,22)</td>
<td>20 (19,22)</td>
<td>19 (19,24)</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>Mean FeNO‡, ppb</td>
<td>20 (13,31)</td>
<td>25 (18,39)</td>
<td>20 (12,27)</td>
<td>20 (13,32)</td>
<td>37 (9,52)</td>
<td>0.11</td>
</tr>
<tr>
<td>Total IgE, IU/mL</td>
<td>58 (22,160)</td>
<td>28 (16,96)</td>
<td>66 (25,176)</td>
<td>57 (21,158)</td>
<td>36 (24,46)</td>
<td>0.13</td>
</tr>
<tr>
<td>Body mass index, kg/m2</td>
<td>27 (24,32)</td>
<td>28 (26,33)</td>
<td>27 (23,33)</td>
<td>26 (23,32)</td>
<td>27 (25,34)</td>
<td>0.78</td>
</tr>
<tr>
<td>Height, inches</td>
<td>168 (162,175)</td>
<td>170 (161,177)</td>
<td>168 (163,173)</td>
<td>168 (162,175)</td>
<td>168 (163,176)</td>
<td>0.97</td>
</tr>
<tr>
<td>Weight, kilograms</td>
<td>77 (65,92)</td>
<td>81 (69,93)</td>
<td>77 (67,93)</td>
<td>76 (65,91)</td>
<td>85 (74,101)</td>
<td>0.72</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg</td>
<td>117 (109,124)</td>
<td>117 (108,130)</td>
<td>117 (110,123)</td>
<td>117 (109,125)</td>
<td>127 (126,133)</td>
<td>0.24</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg</td>
<td>68 (63,74)</td>
<td>68 (63,73)</td>
<td>67 (62,74)</td>
<td>68 (63,75)</td>
<td>79 (70,85)</td>
<td>0.70</td>
</tr>
<tr>
<td>Mean arterial pressure, mmHg</td>
<td>84 (79,90)</td>
<td>85 (80,88)</td>
<td>82 (79,89)</td>
<td>84 (80,91)</td>
<td>99 (91,100)</td>
<td>0.35</td>
</tr>
</tbody>
</table>

No. = number; FeNO = fractional exhaled nitric oxide; ppb = parts per billion; IgE = Immunoglobulin E; IU = international unit; mL = milliliter; mmHg = millimeters of mercury; MAP = mean arterial pressure. Values are median (25th, 75th percentile) except where otherwise indicated.
Total number of subjects (n=643). Missing data are as follows: Sex (n=2, <1%); Age (n=13, 2%); Mean FeNO (n=4, <1%); Total IgE (n=25, 3.8%); Body mass index and weight (n=4, <1%); Systolic blood pressure, diastolic blood pressure, and mean arterial pressure (n=292, 45.4%).

† P values calculated for differences between groups by Kruskal-Wallis non-parametric analysis of variance and for categorical variables p values were calculated as percentages within each category and differences were assessed by Fischer's exact test.

‡ Mean FeNO levels measured according to ATS recommendations (reported here as median [25th, 75th percentile] of the mean recorded FeNO)
Figure 1. Scatterplot log base 10 mean fractional exhaled nitric oxide levels by HBA copy number, unadjusted.

$\log_{10} = \log$ base 10; FeNO = fractional exhaled nitric oxide; aa/aa = alpha globin genotypes; ddPCR = droplet digital polymerase chain reaction. Bold lines represent 50th percentile and upper and lower box lines represent 25th and 75th percentiles for each genotype.
Table 2. Multivariable regression analysis of *HBA* copy number on fractional exhaled nitric oxide

<table>
<thead>
<tr>
<th>Multivariable linear regression model employing HBA genotype as an integer gene copy number</th>
<th>Beta Coefficient</th>
<th>95% Confidence Interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBA copy number, per copy</td>
<td>-0.005</td>
<td>(-0.042, 0.033)</td>
<td>0.81</td>
</tr>
<tr>
<td>Age, per year</td>
<td>-0.001</td>
<td>(-0.006, 0.003)</td>
<td>0.59</td>
</tr>
<tr>
<td>Male sex</td>
<td>0.122</td>
<td>(0.074, 0.170)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Log₁₀ IgE</td>
<td>0.137</td>
<td>(0.098, 0.176)</td>
<td>< 0.001</td>
</tr>
</tbody>
</table>

Post hoc multivariable linear regression model employing *HBA* genotype as a categorical variable with aa/aa as reference

<table>
<thead>
<tr>
<th></th>
<th>Beta Coefficient</th>
<th>95% Confidence Interval</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a/-a HBA genotype</td>
<td>0.099</td>
<td>(-0.007, 0.206)</td>
<td>0.066</td>
</tr>
<tr>
<td>-a/aa HBA genotype</td>
<td>-0.028</td>
<td>(-0.078, 0.022)</td>
<td>0.266</td>
</tr>
<tr>
<td>aa/aa HBA genotype</td>
<td>[ref]</td>
<td>[ref]</td>
<td>[ref]</td>
</tr>
<tr>
<td>aa/aaa HBA genotype</td>
<td>0.049</td>
<td>(-0.147, 0.246)</td>
<td>0.623</td>
</tr>
<tr>
<td>Age, per year</td>
<td>-0.001</td>
<td>(-0.006, 0.003)</td>
<td>0.584</td>
</tr>
<tr>
<td>Male sex</td>
<td>0.119</td>
<td>(0.071, 0.166)</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Log₁₀ IgE</td>
<td>0.142</td>
<td>(0.102, 0.181)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

HBA = alpha globin gene; No. = number; Log₁₀ = log base 10; IgE = immunoglobulin E; ref = reference
REFERENCES

