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Summary 
Despite advances in cancer therapeutics, early detection is often the best prognostic indicator for 
survival (1). People with Li-Fraumeni syndrome harbor a germline pathogenic variant in the 
tumor suppressor gene TP53 (2) and face a near 100% lifetime risk of developing a wide 
spectrum of, often multiple, cancers (3). TP53 mutation carriers routinely undergo intensive 
surveillance protocols which, although associated with significantly improved survival, are 
burdensome to both the patient and the health care system (4). Liquid biopsy, the analysis of cell-
free DNA fragments in bodily fluids, has become an attractive tool for a range of clinical 
applications, including early cancer detection, because of its ability to provide real-time holistic 
insight into the cellular milieu (5). Here, we assess the efficacy of a multi-modal liquid biopsy 
assay that integrates a targeted gene panel, shallow whole genome, and cell-free methylated 
DNA immunoprecipitation sequencing for the early detection of cancer in a cohort of Li-
Fraumeni syndrome patients: 196 blood samples from 89 patients, of which 26 were pediatric 
and 63 were adults. Our integrated analysis was able to detect a cancer-associated signal in 
79.4% of samples from patients with active cancer, a 37.5% – 58.8% improvement over each 
individual analysis. Through analysis of patient plasma at cancer negative timepoints, we were 
able to detect cancer-associated signals up to 16 months prior to occurrence of cancer as detected 
by conventional clinical modalities in 17.6% of TP53 mutation carriers. This study provides a 
framework for the integration of liquid biopsy into current surveillance methods for patients with 
Li-Fraumeni syndrome.  
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Introduction 
Li-Fraumeni syndrome (LFS; OMIM 151623) is a highly penetrant hereditary cancer disorder 
caused by a pathogenic germline variant in the tumor suppressor gene TP53 (2)(6). LFS patients 
have an estimated life-time risk of ~75% in males and ~100% in females of developing at least 
one cancer (3, 7), the most common being soft tissue sarcoma, osteosarcoma, brain tumors, 
breast cancer, and adrenocortical carcinoma (8, 9). However, the spectrum of at-risk cancers for 
LFS patients is much wider (10). Approximately 50% of LFS patients will develop multiple 
cancers (3) with studies showing that a younger age of diagnosis for the first cancer (11) and 
previous treatment with radiation therapy (12) as factors contributing to the development of 
subsequent cancers.  
 
Due to their high risk of developing cancer, intensive surveillance with frequent diagnostic 
imaging, physical examination, and blood tests are recommended for all LFS patients; these have 
been shown to detect cancers earlier and improve patient outcomes (4, 13). Despite this, ~20% of 
individuals with LFS are non-compliant, citing several negatively contributing psychosocial 
factors such as inconvenience, cost, logistical barriers, anxiety, and physical and emotional 
exhaustion (14, 15). Cell-free DNA (cfDNA) analysis, or “liquid biopsy”, is an emerging 
technology that may help to alleviate logistical barriers and complement or even replace current 
screening modalities. Liquid biopsy relies on the identification of tumor-associated genetic 
alterations or signatures (circulating tumor DNA, [ctDNA]) using DNA fragments released into 
the blood plasma and is an attractive biomarker due to its non-invasive collection, sensitivity, 
and breadth of analysis types (5).  
 
With the development of cfDNA sequencing and analysis techniques, a combination of ultra-
deep targeted panel sequencing (TS, ~20,000X) and error suppression methods have detected 
variant allele fractions as low as 0.1% across a variety of cancer types (16, 17). Tumor-
associated chromosomal aberrations can also be reliably detected at a lower limit of 3% of the 
circulating DNA using shallow whole genome sequencing (sWGS; ~0.1-1X) (18). However, 
both approaches rely on the presence of readily detectable genetic aberrations. More recent 
studies have shown that ctDNA fragmentation is often shorter compared to healthy cell cfDNA 
fragmentation (19) and can provide complementary information agnostic of genetic alterations 
(20). Another field of advancement in liquid biopsy is the detection of cancer-associated 
methylation signatures using cell-free methylated DNA immunoprecipitation sequencing 
(cfMeDIP-seq) which enriches for 5-methylcytosine (21). DNA methylation at CpG sites is an 
essential component of cell identity in both normal and cancer cells and is conserved when 
released into circulation. Thus, enrichment of methylation signatures can be used to profile 
cancer-associated signatures (22, 23). The wide scope of analyses, non-invasive collection, and 
lack of need for specialty medical instruments make liquid biopsy an attractive tool for the 
monitoring of patients with high-risk hereditary cancer syndromes (HCS) such as LFS. 
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In this study, we present a cohort of 196 blood samples collected from 89 LFS patients. Using 
TS, sWGS, and cfMeDIP-seq, we profiled the cfDNA landscape and developed a customized 
multi-modal approach using genome, fragmentome, and methylome analyses to detect cancer-
associated signal across a wide spectrum of cancers.  

Results 

Patient Cohort 

A total of 196 blood samples were collected from 89 patients (pediatric = 26, adult = 63) 
recruited from clinics at the Princess Margaret Cancer Centre (n = 57) and the Hospital for Sick 
Children (n = 32) of which 53 of these patients (102 samples) belonged to 21 LFS families 
(Supplemental Figure 1A). Patients were between the ages of 1 – 67 years at the time of blood 
collection (Figure 1A). Male patients (n = 25; samples = 50) were found to be disproportionately 
less represented within the adult population compared to females (n = 64; samples = 146). Blood 
samples were collected from LFS patients with no known cancer at the time of blood draw 
(cancer negative) that included patients who have never had cancer (“LFS Healthy”) and patients 
with a history of cancer (“LFS Past Cancer”), and from LFS patients with active cancer (cancer 
positive; Figure 1B).  All patients were confirmed to have been diagnosed with LFS through 
clinical germline testing of TP53 (Figure 1C). A median of three serial samples (range = 2 – 11) 
were collected from 44 LFS patients (14 pediatric, 30 adult) of which 18 transitioned from 
cancer negative to cancer positive (forward; n = 8) or cancer positive to cancer negative (reverse; 
n = 10), termed phenoconverters (Figure 1D). The remaining patients only had one sample 
timepoint (Supplemental Figure 1B). We collected 38 samples from 27 LFS patients with known 
active cancer at the time of blood collection which included breast  (n = 9), soft tissue sarcoma (n 
= 4), osteosarcoma (n = 3), glioma (n = 2), bladder (n = 2), prostate (n = 2), adenocarcinoma 
(appendiceal, n = 1), adrenocortical carcinoma (n = 1), chondrosarcoma (n = 1), endometrial (n = 
1), leukemia (n = 1), lung (n = 1), and lymphoma (n = 1; Figure 1E). Within cancer-negative 
patients (n = 62), 22 had a previous history of cancer (LFS Past Cancer), and 40 did not (LFS 
Healthy). In addition to LFS patients, plasma samples were also collected from 29 healthy non-
carrier control patients (“Healthy Controls”). 
 
DNA extraction yielded a median of 7.94 ng of DNA/mL of plasma (sd = 6.16) with no 
differences detected between pediatric (median = 8.47, sd = 5.68) and adult patients (median = 
6.67, sd = 6.49) or between male (median = 8.37, sd = 4.50) and female (median = 7.23, sd = 
6.68) sexes (Supplemental Figure 1C). However, due to the lower volume of blood collected 
from pediatric patients, total DNA yields were much lower in pediatric patients (median = 14.07 
ng, sd = 10.84) compared to adult patients (median = 67.60 ng, sd = 69.98; Supplemental Figure 
1D and 1E). In total, 23 samples (pediatric = 10, adult = 13) did not yield > 10ng of DNA and 
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did not proceed with sequencing. The remaining 173 samples were submitted for a combined TS, 
sWGS, and cfMeDIP sequencing protocol (Figure 1E and Supplemental Figure 1F). 

Detection of somatic TP53 mutations and copy number alterations in 
cell-free DNA 

To determine if somatic mutations could be detected in the cfDNA of LFS patients, we 
performed targeted panel sequencing (TS) on 105 plasma samples from 67 patients (19 patients 
with serial samples). Of these samples, 26 were cancer positive, and 77 were cancer negative. A 
total of 70 plasma samples did not yield > 40 ng of DNA and were excluded from TS (48 
pediatric, 22 adult) and 2 samples failed sequencing. Using germline variant identification, we 
identified 94 germline TP53 variants (SNV/indel). In samples where an SNV/indel germline 
variant was not detected (n = 9), we performed targeted panel copy number analysis using 
PanelCNmops (24) and VisCap (25) which identified germline TP53 copy number variants in 7 
patients (Supplemental Figure 2A). Comparison between the two panel-based copy number 
methods resulted in high concordance (R2 = 0.58; Supplemental Figure 2B). In one active cancer 
patient (LFS90) with a germline TP53 exon 2-9 duplication, we were not able to detect the 
duplication using our targeted panel copy number analysis; this may be due to contribution of a 
somatic TP53 deletion event given that a shallow deletion event was detected in exons 1 and 11. 
In total, we identified germline TP53 variants in 101/103 samples which were concordant with 
their clinical germline testing.  
 
Amongst the 26 cancer positive samples from 20 LFS patients with active cancer, 17 were from 
late-stage cancers (Stage III/IV), six from early-stage (Stage 0/I/II) cancers, and three from 
tumors with no staging or unknown stage. TS identified 15 somatic TP53 alterations in 11 
samples from 9 patients: 8 samples from late-stage and 2 samples from early-stage cancer 
patients, resulting in a detection rate of 47.1% and 33.3%, respectively. Additionally, one 
BRCA2, two PALB2, one MSH6, two PMS2, and three APC somatic pathogenic variants were 
identified. In cancer negative samples (n = 77) from 56 cancer-free LFS patients, we identified 
14 somatic TP53 variants in 10 samples from six patients and an additional three BRCA1, five 
BRCA2, two PALB2, three MLH1, three MSH2, four MSH6, one PMS2, and three APC somatic 
pathogenic variants (Figure 2A). To further validate somatic variants and to rule out other 
mutagenic processes such as clonal hematopoiesis or sequencing errors, we compared the size 
distribution of cfDNA fragments with variants to their wildtype counterparts (26). Fragments 
with germline TP53 variants were found to have similar size distributions compared to wildtype 
fragments (p = 0.187) while fragments with somatic TP53 variants were found to have shorter 
fragments (p = 0.005; Figure 2B). This observation is consistent with previously published 
findings in sporadic cancers and provides further confidence that the somatic variants identified 
in our analysis are likely cancer-associated (19). 
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Copy number analysis of sWGS using ichorCNA (18) in 134 samples (46 pediatric, 88 adult) 
from 85 patients (24 pediatric, 61 adult) identified 13 samples with positive tumor fractions (TF; 
TF > 0.03), 3/107 cancer negative samples and 10/27 cancer positive samples. Using short 
fragments only (90-150 bp), which has been shown to enrich for ctDNA (27), ichorCNA 
identified an additional four TF positive samples (2 cancer negative, 2 cancer positive). 
Comparing the two ichorCNA methodologies, we observed a high correlation between the 
predicted tumor fractions from full and short fragment ichorCNA analyses (R2 = 0.91; 
Supplemental Figure 2C). Unlike TS, sWGS ichorCNA analysis was not able to detect TP53 
copy number alterations (CNAs); likely due to the large (1Mb) bin size used for analysis 
(Supplemental Figure 2B). Robust detection of copy number alterations could be visualized 
using ichorCNA outputs, especially for samples from late-stage tumors with high TF (Figure 
2C). 
 
In total, 91 samples had both TS and sWGS data available - 68 cancer negative, 23 cancer 
positive. Within the cancer positive samples, combined TS and sWGS profiling was able to 
identify alterations in 14 samples (4 TS only, 5 sWGS only, and 5 both), a detection rate of 
51.9%. The lack of detection in the remaining samples may be due to the relatively high TF 
required for robust copy number analysis (3-5% TF), lack of adequate library diversity for TS, or 
low shedding of ctDNA.  

LFS patients exhibit shorter cell-free DNA fragments 

To further explore cancer-associated signals in the cfDNA of our cohort, we investigated the 
cell-free fragmentation using sWGS. Previous studies have shown an enrichment of shorter DNA 
fragments in patients with cancer suggesting it may be useful for detecting cancer agnostic of 
genomic alterations (20, 27, 28). We calculated the proportion of short DNA fragments (< 150 
bp) in each sample and found that LFS patients, regardless of cancer status, had an increased 
proportion of short fragments compared to healthy controls (median = 0.176, sd = 0.027; Figure 
3A) which was consistent in samples from LFS Healthy patients (n = 50, median = 0.190, sd = 
0.030, p-value = 0.017; Figure 3B). Cancer positive LFS samples (n = 27, median = 0.200, sd = 
0.046) additionally, had increased proportions of short fragments compared to cancer-negative 
LFS samples (n = 107, median = 0.190, sd = 0.035, p-value = 0.036) suggesting that the 
mechanism of altered fragmentation is conserved between LFS-associated cancers and sporadic 
cancers. This increase in short fragments observed in LFS patients was not attributable to a prior 
history of cancer (p-value = 0.931; Figure 3C), or age (R2 = 0.000; Figure 3D). We also did not 
observe strong correlation between the proportion of short fragments and ichorCNA tumor 
fraction (R2 = 0.098) supporting the notion that fragment size provides complimentary 
information agnostic of genomic alterations (Supplemental Figure 1A). 
 
To investigate differences in the distribution of fragment lengths in our cohort, we compared the 
median distribution of samples from healthy controls (n = 27), LFS Healthy (n = 50), and LFS 
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Active Cancer (n = 28) patients across four fragment length compartments (10-89bp, 90-150bp, 
151-220bp, and 221-320bp; Figure 3E and Supplemental Figure 3B). Compared to healthy 
controls, samples from LFS Healthy patients had an increased proportion of short fragments 
within the 10-89bp, 90-150bp and 221-320bp compartments and decreased proportions in the 
151-220bp compartments (Figure 3E). In contrast, samples from LFS Active Cancer patients 
exhibited an increased proportion of fragments in the 90-150bp and front half of the 221-320bp 
compartments, and a decreased proportion of fragments in the 151-220bp compartments and 
later half of the 221-330bp compartments compared to samples from healthy LFS patients. This 
pattern of differential fragmentation suggests that the fragment length distribution of LFS 
patients with active cancer shifts towards shorter mono- and di-nucleosome associated 
fragments, consistent with sporadic cancers. Using z-scores calculated from the proportion of 
fragments in each compartment, only the 90-150bp compartment showed an enrichment between 
cancer negative and cancer positive samples (p-value = 0.025; Figure 3F). These differences in 
fragmentation suggest a conserved mechanism of DNA fragmentation in cancer cells versus 
healthy cells in LFS patients and provides support for its use as a cancer-detection method 
despite the differences in fragmentation observed between LFS patients and healthy controls. 
 
To investigate whether an integrated approach would perform better than each individual 
compartment, we performed an integrated analysis using a logistic regression model which did 
not result in improved separation between cancer negative and cancer positive samples (p-value 
= 0.100; Figure 3G). Scores from the 90-150bp compartment were found to contribute the most 
to the model (estimate = 0.755, p-value = 0.013) compared to all other compartments (Figure 
3H). Out of 28 cancer positive samples, we identified 7 using our integrated method compared to 
6 (10-89bp), 7 (90-150bp), 8 (151-220bp), and 6 (221-320bp; Supplemental Figure 3C). The 95th 
percentile of samples from LFS Healthy patients was used as the cut-off for detection in each 
compartment. In contrast, out of 106 cancer negative samples, we detected 6 (integrated), 8 (10-
89bp), 5 (90-150bp), 13 (151-220bp), and 14 (221-320bp) patients. The lack of improvement 
from integration may be due to the high correlation between the compartments (R2 = 0.31 – 0.69; 
Supplemental Figure 3D) and suggests that the 90-150bp compartment performs best for cancer 
detection, consistent with previous studies (19, 27). 

Detection of cancer using cell-free methylation analysis 

To investigate if methylation analysis can be used to detect cancer-associated methylation 
patterns in LFS patients, we performed cfMeDIP-seq on 142 LFS samples (32 cancer positive 
and 110 cancer negative) from 83 patients (60 adult, 23 pediatric). Fourteen healthy controls 
were also included as comparators. Evaluating QC metrics, 136 samples showed a high 
enrichment of methylated Arabidopsis spike-in controls (95.6% - 99.5%) and CpG enrichment 
efficiency (relH = 2.71 – 3.9, GoGE = 1.75 – 2.14; Supplemental Figure 4A). Fourteen samples 
were removed from downstream analysis due to low quality, and two were removed due to failed 
sequencing. Similar to our sWGS fragment analysis, LFS patients, independent of cancer status, 
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showed a similar increased proportion of short fragments in our cfMeDIP-seq libraries 
(Supplemental Figure 4B) which was correlated to the proportion of short fragments in sWGS 
libraries (R2 = 0.82 – 0.84; Supplemental Figure 4C).  
 
As LFS patients have previously shown differential methylation (29), we performed differential 
methylation analysis comparing healthy LFS patients and healthy controls and identified 92 
differentially methylated regions (DMRs; hypermethylated; Supplemental Figure 4D). Using 
these DMRs, we were able to robustly classify LFS patients from healthy controls (mean AUC = 
0.967, 95% CI 0.961 – 0.974; Supplemental Figure 4E).  
 
LFS patients are at a high risk to develop a wide spectrum of different tumor types. However, 
due to the challenges associated with curating sufficiently large training datasets, the rarity of 
some LFS-associated tumor types, and the multiple n of 1 tumor types in our cohort, we first 
explored a pan-cancer approach. Using a universal cancer marker set from Vrba et al, we built a 
pan-cancer signature by mapping the hypermethylated CpGs to their corresponding chromosome 
coordinates which resulted in 1,245 DMRs (30). Applying the pan-cancer signature, we were 
able to detect cancer-associated methylation in 34 LFS samples, 11 cancer positive and 23 cancer 
negative (Figure 4A). Cancer positive samples included samples from patients with active breast 
cancer (n = 6), prostate cancer (n = 1), adrenocortical carcinoma (n = 1), osteosarcoma (n = 1), 
bladder cancer (n = 1), and sarcoma (n = 1). Out of a total of 16, 7, and 4 samples from late-stage 
(Stage III/IV), early-stage (Stage 0/I/II), and unknown or no stage cancers, respectively, we were 
able to detect 9 late-stage (52.9%) and 2 early-stage (28.6%) cancers using our pan-cancer 
approach. Within cancer negative samples that tested positive using our pan-cancer approach (n 
= 23), 14 (60.9%) were from patients with a history of cancer.  
 
Next, as breast cancer is the most prevalent cancer type in LFS patients and in our cohort (n = 9, 
44.4%), we built a breast-cancer specific methylation classifier by identifying the 
hypermethylated DMRs in samples from LFS patients with active breast cancer (n = 12) against 
samples from LFS Healthy patients (n = 48), patients with active non-breast cancer (n = 15), and 
healthy controls (n = 14) which resulted in a signature of 38 DMRs. A random forest classifier 
trained on these DMRs achieved an AUC score of 0.82 – 0.93 in predicting breast cancer 
samples in 10-fold cross-validation (Supplemental Figure 4F). Using this breast cancer signature, 
30 LFS samples scored positive, 17 cancer negative and 13 cancer positive. Of the 13 cancer 
positive samples, 11 were breast cancers (8 high grade, 1 low grade, 2 unknown grade; Figure 
4B). Five of the 11 breast cancer samples were not detected by the pan-cancer classifier and the 
one breast cancer that was not detected by either was a stage 0 ductal carcinoma in-situ that was 
detected on imaging due to calcification. One prostate cancer and one osteosarcoma sample also 
scored highly on this signature suggesting that there may be some cancer-type crossover, such as 
in cancers with CpG island methylator phenotype (CIMP) (31). Within cancer negative samples 
with a positive methylation score (n = 17), 12 (70.6%) samples were from survivors of a 
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previous cancer, 7 (58.3%) of these being breast cancer. The high performance of our breast 
signature suggests that given robust enough training data, future studies may be able to 
incorporate a wide-array of cancer-type specific signatures. 

Integration of ctDNA metrics provides a holistic view of the ctDNA 
landscape  

Individually, we demonstrated that each of our investigations were able to detect cancer 
associated signals, but often lacked sensitivity. To determine if an integrated approach improved 
our sensitivity, we compared the findings from genome, fragmentome, and methylome analyses. 
Out of 34 cancer positive samples, 27, 29, and 31 had corresponding TS, sWGS, and cfMeDIP-
seq data, respectively, with 22 samples having all 3 analyses. Variant calling identified somatic 
TP53 variants in 11 (40.7%), ichorCNA identified positive tumor fractions in 13 (38.2%), 
fragment size analysis identified enriched short fragments in 7 (20.6%), breast methylation 
identified breast-cancer associated methylation in 13 (41.9%) and pan-cancer methylation 
identified 11 (35.5%) cancer positive samples (Figure 5A). Combined, we were able to detect 
cancer-associated signal in 27 (79.4%) of all samples from patients with active cancer (Figure 5B 
and Supplemental figure 5A). In late-stage (III/IV) cancers, our detection rate increased to 20/21 
(95.2%) while in early-stage (0/I/II) cancers, our detection rate was 4/9 (44.4%; Supplemental 
Figure 5B and C). Within samples from patients with active breast cancer (n = 14), methylation 
profiling identified 11 and was the only positive detection method in 6 samples (42.9%; 
Supplemental Figure 5D). 
 
In all of our analyses, several samples from cancer free patients exhibited a cancer-associated 
signal which may be indicative of false positives. Of 122 purported cancer-free samples, we 
identified 44 samples from 33 patients with any combination of somatic TP53 variants (n = 10), 
cancer associated copy number alterations (n = 4) or fragmentation (n = 5), or positive breast (n 
= 17) or pan-cancer (n = 23) methylation scores (Supplemental Figure 5E). Cancer-associated 
signal was detected in only one analysis in 32/44 (72.7%) cancer free samples compared to 7/34 
(20.6%) active cancer samples. Following an in-depth review of clinical data, we identified a 
later cancer diagnosis or suspicious finding by imaging in 14 purported cancer-free patients (23 
samples; Table 1). These findings suggest that our false positive rate is 21/122 (17.2%) within 
samples and 25.7% (19/74) within patients. In contrast, only one patient with negative ctDNA 
findings was diagnosed with cancer (glioma) within 1 year following the last ctDNA timepoint 
analyzed. Together, within cancer negative LFS patients, our positive predictive value was 
42.4% (14/33) and our negative predictive value was 97.6% (40/41; Figure 5C).  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 11, 2022. ; https://doi.org/10.1101/2022.10.07.22280848doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.07.22280848


Discussion 
Here, we present a comprehensive integrated analysis of 173 liquid biopsy samples from 84 LFS 
patients profiled using genomic, fragmentomic, and epigenomic methods. Our approach shows 
and supports the power of an integrated and multi-omic ctDNA assay for the early detection of 
cancer in cancer predisposition syndromes such as LFS. Each assay (TS, sWGS, cfMeDIP-seq) 
enables analyses that measure independent biological signals which when evaluated together, can 
improve the overall sensitivity, specificity, and robustness of predictions.  
 
Using TS, somatic TP53 variants were only detected in 40.7% (11/27) of samples from patients 
with active cancer, suggesting that a TS-only approach may not be comprehensive enough even 
in patients with clinically confirmed cancer. Interestingly, we were able to show that both 
germline and somatic gene, and even exon-level, copy number alterations in TP53 could be 
detected in the plasma. Similarly, genome-wide copy number alteration detection in the plasma, 
using ichorCNA which detected 38.2% (13/34) of samples from active cancer patients, was 
restricted by the limit of detection required for confident CNV detection (~3-5% tumor fraction) 
and restricted to large events (>5Mb) (18, 32). While downstream bioinformatic analysis 
techniques have significantly increased the sensitivity of mutation detection by TS (33, 34), this 
strategy is also fundamentally limited by the reliance on idealized detection of mutations at few 
loci and the number of genomic equivalents available in small quantities of cfDNA (35). Many 
of our pediatric samples did not yield sufficient DNA for TS profiling, which would severely 
limit the use of TS in this patient population.  
 
Using methylation profiling, we were successful in detecting 91.2% (11/12) of breast cancers 
using our breast cancer signature, and 40.7% (11/27) of cancer positive samples using our 
general cancer signature. The large discrepancy between our breast-cancer specific signature and 
our pan-cancer signature suggests that a targeted approach is more effective. Our pan-cancer 
signature was also built using methylation array data while our breast cancer specific signature 
was built using cfMeDIP-seq data which provides more comparable data and more granular 
methylation information. However, due to the availability and rarity of genome-wide 
methylation data, such as other cfMeDIP-seq studies or whole genome bisulphite sequencing, 
building cancer-type specific signatures has proven difficult especially for diagnostically 
challenging cancers like soft tissue sarcomas and rare tumors. Similar to a previous study, using 
our cfMeDIP-seq data, we were also able to identify a set of LFS-specific methylation sites 
which could be used to classify LFS patients from non-carrier healthy controls (AUC = 0.97, 10-
fold cross-validation) (29). This finding may be useful for the diagnosis of LFS in patients 
without a detectable germline TP53 mutation or to stratify families with LFS-like phenotypes for 
increased surveillance. 
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In this study, we found fragment size analysis to be the least sensitive but often correlated with 
cancer status. This lack of sensitivity may be due to the differing baseline levels of fragmentation 
observed between patients potentially due to genetic and lifestyle factors (36). Given enough 
longitudinal samples, patient specific fragmentomic baselines could be used to increase 
sensitivity rather than a general non-specific cut-off. The need for these baselines is especially 
useful in LFS patients due to the inherently altered cfDNA fragmentation observed in this cohort. 
It may also suggest that different HCS may also require patient or HCS specific baselines and 
controls for sensitive and robust detection. 
 
Within cancer positive samples, combining mutation, copy number, fragment size, and 
methylation analyses increased our detection rate to 79.4% (27/34), a 37.5 - 58.8% increase over 
each individual analysis. The increase in sensitivity suggests that future clinical tests aimed 
towards early detection will need to integrate several analysis types that leverage different 
biological data to gain comprehensive insight into the cfDNA landscape. More striking, was the 
identification of a cancer-associated signal in 17.6% (13/74) of patients during a clinically 
cancer-free timepoint, wherein the participant subsequently developed a cancer or suspicious 
imaging finding at follow-up. In one participant’s case, our analyses were able to detect a cancer-
associated signal 16 months prior to diagnosis with conventional clinical modalities. The 
sensitivity gained from multi-modal analyses should also be balanced with false positive rates 
which can lead to unnecessary and costly follow-up procedures. However, this may be tolerated 
in high-risk patients such as those with LFS, who already undergo routine imaging modalities 
that also have high rates of false positivity (37, 38). Healthcare providers are also enthusiastic 
about the potential for ctDNA in HCS but remain cognizant of false positive rates (39). In this 
study, 27% (20/74) of cancer-free patients showed a cancer-associated signal by ctDNA analysis 
but no cancer or suspicious imaging findings were detected. However, due to the high prevalence 
of cancer in this population, careful follow-up should be done as to not discount these cases as 
false positives. Combination of imaging surveillance and integrated ctDNA analysis may be 
complementary in both increasing sensitivity and decreasing the rate of false positives. 
 
While many ctDNA studies are currently focused on singular or bimodal approaches to ctDNA 
detection, our study suggests that integrated multi-omic analyses should be adopted and explored 
further to assess the relative benefits of including additional assays, analyses, and biological 
information. We demonstrate that integration of multiple plasma-based analyses provides a more 
holistic view into the ctDNA landscape in low tumor burden settings, such as early detection. 
Except for cfMeDIP-seq, all analyses in this study also utilize tools that are already routinely 
used or can be readily and easily integrated into a clinical workflow. This study provides support 
for adopting multi-omic liquid biopsy for surveillance and early detection in HCS.  
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Figures Legends 
Figure 1:  
A) Histogram of LFS patient age separated by sex. 
B) Lollipop diagram of germline TP53 mutations represented in our cohort 
C) Sankey diagram of patients in our cohort 
D) Location and number of cancer types clinically diagnosed in our LFS patient cohort 
E) Diagram showing sequencing and analysis workflow 
Figures 1A and 1C were Created with BioRender.com 
 
Figure 2:  
A) Oncoplot showing variants identified in our patient cohort. Germline and somatic TP53 
mutations are seperated. 
B) Cumulative frequency distribution graphs showing the fragment length distributions for 
germline and somatic TP53 mutations identified in 3 patients. Farthest right – Cumulative 
frequency distribution graph of all germline and all somatic mutations identified in our cohort. 
Wildtype fragments are in black and germline/somatic variant fragments are in red in all graphs. 
P-values were calculated using the Kolmogorov–Smirnov test. 
C) Heatmap showing copy number alterations identified using ichorCNA. 
 
Figure 3:  
Tukey boxplots showing the distribution of the proportion of short (>150bp) fragments in 
healthy controls and LFS patients separated by cancer status (A), in LFS-Healthy patients (B), 
and cancer history (C). 
D) Scatter plot of the proportion of fragments >150bp and patient age at the time of blood 
collection. R2 values calculated using Pearson correlation.  
E) Fragment frequency distribution of samples from healthy controls (black), LFS Healthy 
(blue), and LFS Active Cancer patients (red; Upper). Z-scores across the fragment size 
distribution comparing LFS Healthy to healthy controls (Middle) and LFS Active Cancer to LFS 
Healthy (Bottom). 
Tukey boxplots showing z-scores calculated for the 10-89bp, 90-150bp, 151-220bp, and 221-
320bp compartments (F) and from the integrated logistic regression model (G) between cancer 
negative and positive LFS samples. 
H) Weights and standard errors of each compartment in the integrated model. p-values are 
displayed on the right. 
p-values were calculated using two-sided Student’s t-test. * p-value < 0.05, ** p-value < 0.01, 
*** p-value < 0.001 
 
Figure 4: 
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Heatmaps showing the methylation score at each methylation site in our pan-cancer (A) and 
breast-cancer (B) methylation signatures. A cumulative methylation score is plotted at the top. 
The methylation threshold was calculated using the 95th percentile of the healthy control scores. 
 
Figure 5: 
A) Comparison of cancer-associated signal detection across all analysis methods in cancer 
positive samples. 
Confusion matrixes showing detection rates for cancer positive (B) and cancer negative (C) LFS 
samples and patients. 
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Tables 

Patient Assay Positive 
Months Preceding 

Finding 
Clinical Finding 

LFS5 
Breast Methylation 4 Osteochondroma 

Pan-cancer Methylation 9 Osteosarcoma 

LFS31 Breast Methylation 8 Prostate Cancer 

LFS42 

Pan-cancer Methylation 8 

Suspicious lung nodules 

Suspicious lymph nodes in neck 

Breast Methylation 2 

Breast Methylation 

Pan-cancer Methylation 
- 

LFS45 
Copy Number 11 

Lung Cancer 
TP53 somatic mutation 5 

LFS51 
Breast Methylation 

Pan-cancer Methylation 
8 

Mucinous Adenocarcinoma and 

Neuroendocrine Tumor of the 

Appendix 

LFS54 Pan-cancer Methylation 6 Squamous Cell Carcinoma 

LFS59 

TP53 somatic mutation 

Breast Methylation 

Pan-cancer Methylation 

15 
Lung Metastasis from 

Leiyomyosarcoma 
TP53 somatic mutation 

Breast Methylation 
8 

LFS63 
Breast Methylation 

Pan-cancer Methylation 
6 

Liver, Thyroid, and Cervical 

Lesions 

LFS66 Breast Methylation 0 Breast Lump 

LFS67 
Breast Methylation 

Pan-cancer Methylation 
10 Basal Cell Carcinoma 

LFS68 

TP53 somatic mutation 

Breast Methylation 

Pan-cancer Methylation 

21 

Schwannoma 

Bilateral Renal AML TP53 somatic mutation 14 

TP53 somatic mutation 3 

TP53 somatic mutation 0 

LFS71 

TP53 somatic mutation 

Breast Methylation 

Pan-cancer Methylation 

- 
Tubular Adenoma (unresected) 

Adrenal Adenoma 

LFS73 Pan-cancer Methylation 10 Metastatic Bladder Cancer 

LFS78 

Breast Methylation 

Pan-cancer Methylation 
12 Liver and Bone Metastases from 

Breast Cancer 
Pan-cancer Methylation 3 

Table 1: Clinical findings in cancer negative patients with a molecular finding. 
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Materials and Methods 

Study Design and Patient Cohort 

This study was approved by the UHN institutional review board (REB# 19-6239). All patients 
underwent routine clinical care by board certified clinicians as per the standard-of-care. All 
samples were collected with informed consent for research.  

Blood Processing 

Venous blood samples were collected in EDTA or Streck tubes (Streck, La Vista, Nebraska). 
EDTA collection was processed within 2 hours. Whole blood samples were centrifuged at 4� 
(1900g, 10 minutes). PBMCs were separated from plasma and stored at -80�. Isolated plasma 
was centrifuged a second time at 4� (16,000g, 10 minutes) to remove residual cells and debris. 
Purified plasma was stored at -80� until cfDNA extraction. 

DNA Extraction 

DNA from blood was extracted using the QIAGEN QIAamp Circulating Nucleic Acid Kit 
(Qiagen, Hilden, Germany). Genomic DNA from PBMCs was extracted using the DNeasy Blood 
and Tissue Kit (Qiagen). After extraction, genomic DNA was sheared to similar sizes as cfDNA 
using an ultrasonicator (LE220, Covaris, Woburn, MA). Library preparation for TS, sWGS, and 
cfMeDIP-seq were performed only for samples with >40ng DNA yield. TS was excluded for 
samples with <40ng DNA yield. Samples with <10ng DNA yield were not processed. 

Cell-Free Methylated DNA Immunoprecipitation 

cfMeDIP-seq for each sample was prepared as previously described (21) using 10ng of UMI 
ligated cfDNA library with the following deviations from the protocol. Briefly, 0.1ng of A. 
thaliana DNA methylation control package containing one methylated and one unmethylated 
spike-in control BAC (Diagenode, Denville, NJ) was spiked into 10ng of cfDNA library. 5% of 
the sample was aliquoted as a control library. The remainder underwent immunoprecipitation 
using monoclonal antibody targeting 5-methylcytosine (5-mc) (Diagenode, clone #33D3). 
Immunoprecipitated libraries and control libraries were amplified, indexed, and pooled.  

DNA Library Construction and Sequencing 

Pre-capture libraries were prepared using KAPA Hyper Prep Kit (Kapa Biosystems, Wilmington, 
MA) and xGen Duplex Seq Adapter-Tech Access (Integrated DNA Technologies [IDT], 
Coralville, IA). UMI ligated cfDNA libraries were then split for each assay (TS, sWGS, 
cfMeDIP-seq). To generate TS libraries, hybrid capture using a custom 100kb panel of 829 
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probes targeting TP53, BRCA1, BRCA2, PALB2, MLH1, MSH2, MSH6, PMS2, EPCAM, and 
APC (Supplemental Table 1) was performed on dual indexed pre-capture libraries, then PCR-
amplified. sWGS and TS libraries were indexed, pooled, and sequenced on the NextSeq 500 
using 150-bp paired-end sequencing reads (2x150 bp; Illumina, San Diego, CA). sWGS libraries 
were sequenced to a target 1X, and TS libraries were sequenced to a target 20,000X. cfMeDIP-
seq libraries were sequenced to a target 60 million clusters on the MiSeq Nano using 150-bp 
paired-end sequencing reads (2x150 bp; Illumina). UMI extraction and sequencing alignment to 
human genome reference GRCh38 was performed using Burrows-Wheelers Aligner version 
0.7.12 (https://github.com/oicr-gsi/bwa) (35) and deduplicated using Samtools version 1.9 
according to the following workflow: https://github.com/oicr-gsi/bwa. All sequencing coverage 
can be found in Supplemental Table 2. 

Targeted Sequencing Analysis 

Aligned reads were error corrected and amalgamated using ConsensusCruncher 
(https://github.com/pughlab/ConsensusCruncher) (33) according to the following workflow: 
https://github.com/oicr-gsi/consensusCruncherWorkflow. Germline variant calling was 
performed using The Genome Analysis Toolkit version 3.8 HaplotypeCaller (Broad Institute, 
Cambridge, MA) (40). Somatic variant calling was performed using MuTect2 version 3.8 (Broad 
Institute) (41). Variant calling was performed individually on single-strand consensus sequences, 
duplex consensus sequences, and all unique ConsensusCruncher outputs then merged. Variant 
allele frequency was annotated using read support from the all_unique ConsensusCruncher 
output. Single nucleotide polymorphisms considered benign were removed from further analysis. 
Candidate pathogenic variants were manually reviewed using Integrative Genomics Viewer 
version 2.8.13 (Illumina). Germline variants were classified according to the 2015 American 
College of Medical Genetics and Genomics guidelines (42). 

Copy Number Variation Analysis 

TP53 copy number variants were detected using PanelCNmops (v 1.14.0) (24) and VisCap 
(https://github.com/pughlab/VisCap) (25). GC-correction, read count normalization, copy 
number prediction, and tumor burden prediction were performed using the ichorCNA tool 
version 0.2.0 (Broad Institute) (https://github.com/broadinstitute/ichorCNA) (18) using the 
recommended default settings. An in-house panel of normals was generated using in-house 
healthy blood controls (n = 31). To enrich for ctDNA, ichorCNA was performed once on all 
fragments and again using only short fragments (90-150bp). This was performed due to 
increased detection of ctDNA reported in previous studies (27). IchorCNA outputs were then 
manually reviewed. The higher predicted tumor fraction (all vs short) was used as the ichorCNA 
output. For all ichorCNA analyses, only predicted tumor fractions > 0.03 were considered 
positive (based upon the ichorCNA limit of detection). 
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Fragment Size Analysis 

Global fragment size distributions were calculated using Picard CollectInsertSizeMetrics 
(v4.0.1.2). Fragment sizes of mutations detected using targeted panels were performed using a 
custom script and Samtools (v1.9). Briefly, aligned reads overlapping with a mutation of interest 
were pulled from the bam files and then binned into wildtype and mutant reads. Reads that had 
alterations at the site of interest not concordant with either mutation or wildtype were discarded. 

Cell-Free Methylome Analysis 

The cfMeDIP-seq FASTQ files were analyzed using an integrated pipeline known as MedRemix 
(https://github.com/pughlab/cfMeDIP-seq-analysis-pipeline). First, extract_barcodes.py from 
ConsensusCruncher (https://github.com/pughlab/ConsensusCruncher, May 19, 2021 commit) 
was used to extract unique molecular identifier (UMI) barcodes and remove spacers from 
unzipped FASTQ files (33). Then, alignment was performed to the human genome (genome 
assembly GRCh38/hg38) by BWA-MEM v0.7.17, sorted and indexed by Samtools v1.14. Next, 
the depth of aligned fragments generated from paired reads of cfMeDIP-seq libraries were 
counted within nonoverlapping 300 bp windows, along with the number of CpGs within each 
window. The coverage depth was modeled as a two-component mixture, with the two 
components representing methylated and non-methylated bins, accounting for CpG density and 
GC content by negative binomial regression. The mean coverage of non-methylated reads was 
inferred from bins with zero CpGs as a function of GC content and treated as a fixed mixture 
component. The mixing coefficient of methylation status and regression coefficients between the 
mean coverage of methylated bins and CpG density were jointly inferred using an expectation-
maximization process and iterated until convergence. In this process, a posterior probability of 
each bin being methylated was computed.  
 
The pancancer signatures were obtained from Vrba et al (30). The authors obtained 1,250 
hypermethylated CpGs by comparing the Illumina HumanMethlation450 data of 23 types of 
cancer with their matched normal adjacent samples in TCGA. After mapping these CpGs to their 
chromosome coordinates (and then methylation bins) and removing the ones on the sex 
chromosomes, we obtained 1,245 DMRs in total. 
 
To identify LFS-specific and LFS-breast cancer specific signatures, we first removed bins that 
overlapped with regions in the ENCODE blacklist. Bins were further filtered by removing 
regions frequently methylated in healthy controls samples, bins with average posterior 
probabilities >β in healthy control samples. Additionally, as regions that are hypermethylated in 

cancer samples are typically located in CpG dense regions, we removed bins with γ or more CpG 

sites. Using grid search, β = 0.1 and γ = 1 were chosen. 
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The LFS-specific signatures were identified by comparing the 52 LFS healthy samples with the 
14 healthy control samples. We randomly chose 14 samples from the LFS healthy group and 
generated a subset by combining them with the 14 control samples. This process was repeated 
for 200 times, resulting in 200 balanced datasets. 100 of them were used for DMR identification, 
while the remaining 100 subsets were used in cross-validation. To identify DMRs, in each subset 
we selected the top ����  hypermethylated DMRs in the previvor group using limma R package, 
and only DMRs that existed in more than k times of the comparison were chosen. ����  and k 
were determined by grid search. Finally, ���� � 150 and � � 30 were chosen, and 92 DMRs 
were identified. 
 
The classification performance was then evaluated on the 100 held out subsets using 10-fold 
cross-validation. Random forest classifiers (scikit-learn 1.0.2) were trained on each subset, and 
the AUROC scores were calculated. 
 
The breast cancer DMRs were identified based on 3 groups of hypermethylated DMRs in our 
LFS breast cancer samples: 1) breast cancer vs LFS healthy; 2) breast cancer vs non-breast 
cancer; 3) breast cancer vs healthy control. The intersection of the first two groups of DMRs 
contains signatures specific to LFS breast cancer patients. The intersection of group 2 and 3 
contains signatures specific to breast cancer or tumor samples. We then used the union of these 
two intersection sets as breast cancer DMRs and obtained 38 signatures. To identify DMRs in 
breast cancer against previvor samples, we used similar strategy as we did for identifying LFS-
specific DMRs. 100 subsets were created and 185 DMRs were identified. For the other two 
differential methylation analyses, we did not perform subsampling since the datasets were 
balanced. The top ����  hypermethylated DMRs were selected. Similarly, ����  (100 for healthy 
control, 150 for non-breast cancer) was determined based on cross validation accuracy. 
 
The methylation score (cancer score) of a sample is defined as the cumulation posterior 
probabilities of the methylation bins that correspond to the DMRs. The higher the score, the 
more possible that the cancer specific DMRs are methylated in the corresponding sample, which 
indicate the patient is more likely to be cancer positive. 

Healthy Control Cohorts 

Healthy blood controls were consented and recruited with institutional approval (REB#: 19-
6239) and underwent TS (n = 24), sWGS (n = 29), and cfMeDIP-seq (n = 28). All healthy 
control data were aligned to GRCh38 as described above and processed according to GATK best 
practices. Healthy control plasma analyses were performed the same as described above. 
Heatmap visualizations were created using the R package Complexheatmap (v2.9.4) (43). 
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Supplemental Figure Legends 
 
Supplemental Figure 1: 
A) Barplot showing the number of patients in each LFS family. The number on top denotes the 
number of samples from each family. 
B) Sankey plot showing the breakdown of plasma samples. 
C) Tukey boxplots showing cfDNA yields (ng/mL of plasma) compared between healthy 
controls and LFS (left), LFS pediatric and LFS adult (middle), and LFS XX and LFS XY sexes 
(right).  
D) Tukey boxplots showing total cfDNA yield.  
E) Scatter plot comparing cfDNA yield (ng/mL of plasma) with age at blood draw. 
F) Upset plot showing intersect of samples with TS, sWGS, and cfMeDIP sequencing. 
p-values were calculated using Student’s two-sided t-test. * p-value > 0.005, ** p-value > 0.01, 
*** p-value > 0.001 
 
Supplemental Figure 2: 
A) Heatmap showing amplicon based copy number predictions from PanelCNmops and VisCap 
normalized to cancer negative patients without germline alterations. TP53 exons are denoted at 
the bottom. 
B) Scatter plot comparing the copy number predictions from PanelCNmops and VisCap (Top), 
PanelCNmops and ichorCNA (Middle), and VisCap and ichorCNA (Bottom). 
C) Scatter plot comparing the tumor fraction predictions from ichorCNA full fragment analysis 
and ichorCNA short fragment analysis. 
R2 values were calculated using Pearson correlation. 
 
Supplemental Figure 3: 
A) Scatter plot showing correlation between the proportion of short (<150bp) fragments and 
tumor fraction predicted by ichorCNA. 
B) Fragment frequency distributions comparing cancer free and active cancer LFS patients with 
the median healthy control (red line; Top) and cancer negative and cancer positive LFS patients 
with the median LFS Healthy (red line; Bottom). 
C) Heatmap showing the number of standard deviations away from the LFS Healthy median for 
each patient (rows). Top annotation shows the frequency distribution of the LFS Healthy median. 
Right shows z-scores calculated for each fragment size compartment. 
D) Scatter plots showing the correlation between z-scores calculated from each fragment size 
compartment. 
R2 values calculated using Pearson correlation. 
 
Supplemental Figure 4: 
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A) Tukey boxplots of QC metrics used to assess enrichment of methylated DNA. Dotted line 
represents the cut-off values for passing QC. 
B) Tukey boxplots showing the proportion of fragments across three fragment size compartments 
in cfMeDIP-seq libraries. 
C) Scatterplot showing the correlation between the proportion of short fragments in cfMeDIP-
seq and sWGS libraries. 
D) Volcano plot of differentially methylated regions identified in LFS patients. 
AUC-ROC curve showing classification of LFS patient from non-carrier healthy controls (E) and 
classification of breast cancer positive LFS patients (F). 
R2 values were calculated using Pearson correlation. p-values were calculated using Student’s 
two-sided t-test. * p-value > 0.005, ** p-value > 0.01, *** p-value > 0.001 
 
Supplemental Figure 5:  
Upset plot showing the detection overlap between analyses in all cancer positive samples (A), 
late-stage cancers (B), early-stage cancers (C), breast cancers only (D), and cancer negative 
samples (E). 
F) Comparison of genomic variants, fragment size z-score, and methylation signature across all 
patients with serial samples. 

Supplemental Tables 
Supplemental Table 1 – Panel Design  
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