
Applying GAN-based data augmentation to improve transcriptome-based 1 

prognostication in breast cancer 2 

 3 

Working title: Data augmentation for improved breast cancer prognostication 4 

 5 

Cristiano Guttà1, *, Christoph Morhard2, Markus Rehm1, 3, * 
6 

 7 

1 Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 8 

Stuttgart, Germany 9 

2 ProKanDo GmbH, Elfriede-Breitenbach-Straße 38a, 71640 Ludwigsburg, Germany 10 

3 Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstrasse 15, 70569 11 

Stuttgart, Germany 12 

 13 

*To whom correspondence should be addressed: 14 

Prof Dr Markus Rehm 

Institute of Cell Biology and Immunology  

University of Stuttgart 

Allmandring 31, 70569 Stuttgart, Germany  

E-mail: markus.morrison@izi.uni-stuttgart.de 

ORCID ID 0000-0001-6149-9261 
 

Cristiano Guttà 

Institute of Cell Biology and Immunology  

University of Stuttgart 

Allmandring 31, 70569 Stuttgart, Germany  

E-mail: cristiano.gutta@izi.uni-stuttgart.de  

 

 15 

Abstract 16 

Established prognostic tests based on limited numbers of transcripts can identify high-risk 17 

breast cancer patients yet are approved only for individuals presenting with specific clinical 18 

features or disease characteristics. Deep learning algorithms could hold potential for 19 

stratifying patient cohorts based on full transcriptome data, yet the development of robust 20 

classifiers is hampered by the number of variables in omics datasets typically far exceeding 21 

the number of patients. To overcome this hurdle, we propose a classifier based on a data 22 
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augmentation pipeline consisting of a Wasserstein generative adversarial network (GAN) with 23 

gradient penalty and an embedded auxiliary classifier to obtain a trained GAN discriminator 24 

(T-GAN-D). Applied to 1244 patients of the METABRIC breast cancer cohort, this classifier 25 

outperformed established breast cancer biomarkers in separating low- from high-risk patients 26 

(disease specific death, progression or relapse within 10 years from initial diagnosis). 27 

Importantly, the T-GAN-D also performed across independent, merged transcriptome datasets 28 

(METABRIC and TCGA-BRCA cohorts), and merging data improved overall patient 29 

stratification. In conclusion, GAN-based data augmentation therefore allowed generating a 30 

robust classifier capable of stratifying low- vs high-risk patients based on full transcriptome 31 

data and across independent and heterogeneous breast cancer cohorts. 32 

  33 
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Introduction 34 

Breast cancer is the tumor with the highest incidence in women, accounting for 2.3 million 35 

new diagnoses and 685,000 deaths worldwide in 2020. According to the World Health 36 

Organization, nearly eight million patients were diagnosed with breast cancer in the five years 37 

before 2020, making it the most prevalent tumor disease worldwide 1. In current clinical 38 

practice, the expression of estrogen receptor (ER), progesterone receptor (PR), and human 39 

epidermal growth factor receptor 2 (HER2) is determined by immunohistochemistry (IHC), 40 

with the expression patterns defining to which molecular subtype (luminal A, luminal B, 41 

HER2 positive or enriched and triple-negative breast cancer) individual tumors belong. 42 

Prognosis differs between these subtypes, and subtyping informs treatment plans in patients in 43 

which surgical resection of the tumor alone is insufficient 2. However, substantial response 44 

heterogeneities to the current standard of care treatments can be observed in populations of 45 

breast cancer patients 3, highlighting the need for additional prognostic markers that could 46 

serve to identify high risk patients that could instead benefit from alternative treatments or for 47 

which the burden from inefficient standard of care treatments could be avoided 4.  48 

Various multi-gene activity tests based on transcript abundance have been developed to assist 49 

in the clinical management of breast cancer  (e.g. Oncotype DX 5, MammaPrint 6,7, Prosigna 50 

8,9, OncoMasTR10) and received regulatory approval as prognostic tests 11. Despite the 51 

prognostic value of these assays, their use is restricted to only subsets of patients with specific 52 

clinical characteristics (e.g. cancer stage, receptor or lymph node status, tumor size, 53 

menopause state, age group) 12–14. It would therefore be desirable if more generally applicable 54 

prognostic tests based on transcriptome data could be developed.  55 

The rapid advances in high-throughput sequencing technologies make tumor transcriptome 56 

data from larger patient cohorts increasingly available. The accessibility of -omics databases 57 

and companion clinical information now also encourages the application of deep learning 58 

(DL) methods to the oncology field, with the aim of learning and extracting features within 59 
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large scale data that are not readily accessible by classical statistical and pattern recognition 60 

approaches. It is hoped that from DL-based methods tools can be developed that can aid in 61 

further advancing cancer diagnosis, prognosis or predicting treatment efficacy in the future 15.  62 

DL algorithms such as convolutional neural networks (CNN) were originally applied for 63 

image analysis but could be successfully repurposed to take non-image objects as input, such 64 

as RNA-seq data 16. One of the major pitfalls when applying DL models to transcriptome 65 

datasets is the typical imbalance between the number of quantified mRNAs (high) and the 66 

number of patients (low), which can lead to overfitting when solving classification tasks 17. In 67 

addition, low numbers of samples or patients that represent one category (e.g. good prognosis) 68 

come at the risk of capturing patterns that are not robust when applied to larger populations 18.  69 

Feature selection strategies 19, under- and over-sampling 20 are three strategies that may help 70 

mitigating effects arising from imbalanced source data. An alternative strategy lies in novel 71 

data augmentation approaches, such as generative adversarial networks (GANs), by which 72 

source datasets can be enriched with artificially generated additional data. GANs are typically 73 

applied to imaging data and are composed of two subnetworks, the generator and the 74 

discriminator. While the former produces synthetic images, the latter is challenged to 75 

discriminate fake vs. real images. Reiterating this process, the generator learns to produce 76 

images with features that can no longer be separated from the real images by the 77 

discriminator, with these generated images then enriching the source dataset 21. In comparison 78 

to other generative models, GANs are currently preferred due to their computational speed 79 

and the quality of the generated images 22. In addition, they exhibit a lower risk of overfitting 80 

classifiers and are less susceptible to the impact of non-pertinent image features (such as 81 

brightness) when enriching training data with synthetic images 23. For example, GANs have 82 

been applied in the medical field to generate synthetic magnetic resonance, computed 83 

tomography or positron emission tomography images 24. Aside from image-data, different 84 
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GAN implementations were also successfully applied to transcriptome data for cancer 85 

diagnosis 25,26, staging 27 and subtyping 28.  86 

The Molecular Taxonomy of Breast Cancer International Consortium (METABRIC, hereafter 87 

MB) 29 and The Cancer Genome Atlas – Breast Invasive Carcinoma (TCGA-BRCA, hereafter 88 

TCGA) 30 cohorts represent two of the largest and most exhaustively annotated breast cancer 89 

datasets, including, in addition to mRNA expression data, features such as patient 90 

demographics, cancer staging, receptor statuses, and follow-up information such as survival 91 

times. Despite not being directly interoperable due to different sequencing technologies, these 92 

datasets can serve as use cases to test new DL-based prognostication approaches.  93 

In this study, we therefore set out to develop a prognostication framework that used the 94 

trained discriminator of a GAN architecture as a standalone classifier and compared its 95 

performance to classical breast cancer biomarkers and a classical CNN.  96 

 97 

Materials and methods 98 

Data integration 99 

The METABRIC (MB) dataset was used to develop the prototype network implementation. 100 

Transcriptome data (median Z-scores), overall survival (OS), disease specific survival (DSS) 101 

and associated clinical records were downloaded from cbioportal.org 31,32. The dataset was 102 

integrated with locoregional and distant recurrence information retrieved from Rueda et al. 33 103 

and Risk of Recurrence – Proliferation (ROR-P) scores reported by Xia et al 9. Clinical 104 

records, OS, DSS and progression free interval (PFI) of the validation TCGA-BRCA cohort 105 

(TCGA) were integrated from cbioportal.org 31,32 and Liu et al. 2018 34, respectively. To 106 

merge the mRNA expression data of the two cohorts, normalized transcriptome datasets were 107 

downloaded using the R package MetaGxBreast 35. The transcript amounts were rescaled as 108 

described by Gendoo et al. 35 so that the 2.5 percentile corresponds to -1 and the 97.5 109 

percentile corresponds to +1.  Subsequently, transcripts overlapping between the two cohorts 110 
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and with quantitative information missing in not more than five patients were retained, 111 

resulting in transcripts for m = 14042 genes. The R script used to download and rescale the 112 

datasets is available in the Zenodo repository 36. 113 

 114 

Inclusion criteria and category definition 115 

Both cohorts were filtered to exclude normal-like subtype samples 9,37,38 and patients for 116 

which less than 10 years of follow-up time from diagnosis were available. Low and high risk 117 

categories were defined according to published clinical records8,9 as follows: 118 

- high risk patients:  119 

o MB cohort: disease specific death, locoregional or distant recurrence event 120 

recorded before 10 years from initial diagnosis;  121 

o TCGA cohort: disease specific death, progression, local recurrence or distant 122 

metastases before 10 years from initial diagnosis. 123 

- low risk patients: none of the above-mentioned events recorded before 10 years from 124 

initial diagnosis. 125 

In total, 1248 patients of the MB cohort (n = 567 high risk, n = 681 low risk) and 165 patients 126 

of the TCGA cohort (n = 132 high risk, n = 33 low risk) satisfied the inclusion criteria. Four 127 

patients from each cohort were excluded after merging due to insufficient expression data.  128 

 129 

Survival analysis and accuracy 130 

Log-rank testing was used to compare predicted low vs high risk patients over a follow-up 131 

time of 10 years. Kaplan-Meier (KM) survival curves were computed using GraphPad Prism 132 

8 (GraphPad Software, San Diego, CA). The area between the curves (ABC) displayed on the 133 

KM graphs for the pooled predictions was calculated as follows:  134 

- Low risk AUC minus Predicted low risk AUC; 135 

- Predicted low risk AUC minus Predicted high risk AUC; 136 
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- Predicted high risk AUC minus High risk AUC. 137 

The ABCs values are shown on the graphs in the abovementioned order top to bottom. The 138 

AUC was computed using GraphPad Prism 8 (GraphPad Software, San Diego, CA). 139 

Univariate and multivariate hazard ratios were calculated using the function coxph from the 140 

R’s library survival (v. 3.4.0, https://www.r-project.org/).  141 

 142 

GAN architecture 143 

The architecture was based on a Wasserstein 39 GAN 21 with gradient penalty 40 and an 144 

auxiliary classifier 41 as a variant of a conditional GAN implementation 42, yielding a AC-145 

WGAN-GP architecture. The Wasserstein loss was implemented to reduce vanishing 146 

gradients and mode collapse 43 in the early phases of the training when the discriminator 147 

outperformed the generator. Stability was improved by exchanging the weights clipping 148 

approach described in Arjovsky et al. 39, with the gradient penalty described in Gulrajani et al. 149 

40. To create a conditional GAN, an auxiliary classifier network was implemented 41, resulting 150 

in a more stable training process and reduced mode collapse compared to the standard 151 

conditional GAN approach, supplying labels to both discriminator and generator 43. A z-152 

vector of size 250 was fed as input for the generator. Following good training practice 44, 153 

strided convolutions with step size 2, batch normalization and LeakyRELU as activation 154 

function were used. Since using batch normalization in the discriminator and/or the ADAM 155 

optimizer led to an unstable training process, batch normalization 45 was only used in the 156 

generator, and RMSprop was selected as the activation function. A shallow network 157 

consisting of two layers in both the discriminator and the generator led to the most stable 158 

training process, due to the smaller number of trainable parameters compared to deeper 159 

networks. Hyperparameters were tuned empirically, selecting 1000 epochs for the training 160 

process. Three “discriminator-only” training runs were performed before each full network 161 

training run, and the generated pictures were subsequently smoothed with a final convolution 162 
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layer with one filter and stride size of 1. The GAN architecture generated expression data of 163 

size 144x144 when using the entire transcriptome dataset of the MB cohort alone (m = 18543 164 

genes) and 120x120 when merging the MB and TCGA cohorts (m = 14042 genes). In the 165 

latter setting, expression profiles with less than 14,440 transcripts were filled with random 166 

values, leading to better convergence. The resulting trained GAN Discriminator (T-GAN-D) 167 

was then used as an independent classifier to discriminate low and high risk patients. The 168 

Python code and the input files used to generate the predictions are available in the Zenodo 169 

repository 36. 170 

 171 

CNN architecture 172 

As the performance of the CNN implemented as the GAN’s discriminator showed satisfactory 173 

performance, a similar architecture was used as a benchmark classifier. Batch normalization 174 

was employed to ensure shorter training periods and RELU was used as the activation 175 

function. A fixed training length of 1250 epochs was set due to the limited sample size and to 176 

generate comparable iterations.  177 

The accuracy of both classifiers was calculated dividing the number of correct classifications 178 

by the total number of classifications performed. 179 

 180 

Results 181 

 182 

The METABRIC and BRCA-TCGA cohorts lend themselves as use cases for data 183 

augmentation and development of prognostication classifiers 184 

One of the major challenges of machine learning applied to -omics data and companion 185 

medical records is the imbalance between the high amounts of variables compared to the 186 

limited number of patients available.  Even in the case of breast cancer, one of the most 187 

frequent and widely studied malignant neoplasms, this limitation is apparent in the two major 188 
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public transcriptome datasets, namely the MB cohort (n = 1904 patients, m = 18543 189 

transcripts) and the TCGA cohort (n = 1101 patients, m = 20532 transcripts). This imbalance 190 

is exacerbated for prognostic analyses that require long-term (10 years) follow-up information 191 

and the application of further exclusion criteria (see methods), reducing cohort sizes to n = 192 

1248 and n = 165, respectively (Fig. 1A, B). Both cohorts behaved notably different, with 193 

patients in the MB cohort on average having an overall substantially better prognosis in 194 

overall survival and relapse-free, progression-free or disease specific survival (Fig. 1C, D). 195 

This is likely attributable to the MB dataset largely consisting of stage I and stage II patients 196 

(89.5% of patients with reported disease stage at diagnosis), whereas stage III and IV patients 197 

are more prominent in the TCGA dataset (40.4% of individuals with available disease stage at 198 

diagnosis). Despite these differences, the high risk subgroups of both cohorts showed 199 

comparable median survival times (MB = 31.9 months [Fig. 1E], TCGA = 26.3 months [Fig. 200 

1F]). Due to the limited sizes of these cohorts, they lend themselves as suitably challenging 201 

use-cases for applying and testing data augmentation for improving prognostication. In 202 

particular, we set out to implement a classifier based on a data augmentation network for 203 

improved patient stratification in the MB cohort, to subsequently validate robustness and 204 

transferability by integrating the independent TCGA cohort. 205 

 206 

A trained GAN discriminator robustly identifies low and high risk breast cancer 207 

patients 208 

To tackle the problem of data scarcity, we implemented a GAN architecture to augment 209 

transcriptomic data of the MB cohort and tested the performance of a trained discriminator in 210 

stratifying breast cancer patients. First, individual patient transcriptome profiles were rescaled 211 

and converted into arrays of pixels (Fig. 2A i) in order to use these images as an input for the 212 

GAN. Independent of these true patient data, the generator created images representing the 213 
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transcript profiles of synthetic hypothetical patients together with their category (low or high 214 

risk) (Fig. 2A ii). After being exposed to a fraction of the real transcriptome images and 215 

associated categories, its adversary, the discriminator network then tried to distinguish fake 216 

from real transcriptome images for high or low risk patients (Fig. 2A iii). Reiterating this 217 

training process over 1000 epochs, the generator learned to create realistic synthetic 218 

transcriptome images for high and low risk categories, which then could be used to augment 219 

the original MB cohort data. Associated characteristics of this process (discriminator loss, 220 

discriminator class loss, generator loss) are shown in Supplementary Fig. 1. Using this 221 

approach, the discriminator learned to identify features relevant for the risk category 222 

definition, aided by the synthetic profiles that enriched the real training data at each epoch. 223 

The trained GAN discriminator (T-GAN-D) resulting from this process then was used as a 224 

standalone classifier to categorize images from the test fraction of the cohort into the high or 225 

low risk categories (Fig. 2A iv), thus prognosticating patient outcome.  226 

We first implemented and tested the T-GAN-D for its prognostic capability using follow-up 227 

and mRNA expression data of the prototyping MB cohort, consisting of n = 1248 individuals 228 

and m = 18543 genes. Within this cohort, we independently cross-validated (CV) five-fold 229 

with randomly composed training data. Kaplan-Meier curves and log rank testing for each run 230 

yielded significant class separations in 4 out of 5 iterations (Fig. 2B, Supplementary Fig. 231 

2A). Pooling the results so that each patient of the MB dataset was present once in the 232 

survival analysis, the T-GAN-D separated high and low risk patients with high statistical 233 

significance (p-value = 2.71E-12) (Fig. 2C). To obtain a reference performance baseline, a 234 

classical CNN was challenged with the same task, using the same training and test sets for 235 

each iteration. The CNN yielded class separations with a p<0.05 in only two out of five 236 

iterations (Fig. 2D, Supplementary Fig. 2B). In the pooled comparison, the CNN performed 237 

well yet failed to outperform the T-GAN-D in separating low vs. high risk patients (Fig.2E, 238 

Supplementary Table 1). These results therefore demonstrate that the reiterative learning 239 
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process of a GAN to train its discriminator and use it as an independent classifier provides a 240 

more robust and slightly improved patient stratification than a classical DL approach. 241 

 242 

Introducing and independent cohort improves MB patient classification 243 

A common limitation of predictors and classifiers is their limited robustness and 244 

transferability to independent datasets. This might arise from overfitting or overtraining 245 

within the initial cohort but also from heterogeneity and batch effects between source 246 

datasets. For validating our approach further, we therefore merged the mRNA expression data 247 

of the MB and TCGA cohorts, which originally were quantified with bead-based microarray 248 

technology (Illumina Human V3) or RNA-Seq (Illumina HiSeq) platforms respectively 46, by 249 

rescaling the expression of transcripts overlapping between the two cohorts (m = 14042). We 250 

then retrained the discriminator using the entire TCGA data plus a fraction of the MB data 251 

from the merged dataset and generated predictions on an independent subset of MB patients 252 

(Fig. 3A), using five-fold cross-validation. The T-GAN-D again separated patients into low 253 

and high-risk categories with high statistical significance (Fig. 3B, Supplementary Fig. 3A). 254 

The CNN trained and tested with the same data performed similarly well (Fig. 3C, 255 

Supplementary Fig. 3B). The T-GAN-D trained on the merged and reduced dataset also 256 

showed improved accuracy when compared to all settings where both a CNN or the GAN 257 

were trained on the full or reduced MB dataset alone (Supplementary Table 1, 2). Therefore, 258 

in our setting, rescaling and converting transcriptome profiles into images was sufficient to 259 

successfully merge the two cohorts without the need for further preprocessing steps and 260 

allowed to stratify patients into high and low risk classes. 261 

 262 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.22280776doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.07.22280776
http://creativecommons.org/licenses/by-nc-nd/4.0/


The T-GAN-D outperforms classical outcome predictors and accurately stratifies early 263 

stage patients into risk categories 264 

We next compared the performance of CNN and GAN based classifications to other 265 

established clinical markers in breast cancer. These included a scoring system based on a 266 

multi-transcript signature (Risk-of-recurrence - proliferation, [ROR-P]), estrogen receptor 267 

status (ER), human epidermal growth factor receptor 2 status (HER2), and progesterone 268 

receptor status (PR). Likewise, tumor staging was included, yet was available for only 911 out 269 

of 1248 patients of the MB cohort. The hazard ratios (HR) obtained from a univariate analysis 270 

were comparable for ROR-P, HER2 or tumor staging as classifiers, and similar HRs were also 271 

obtained for the CNN and T-GAN-D classifiers developed from only the MB transcriptome 272 

dataset (Fig. 4A). Interestingly, the T-GAN-D classifier resulting from the merged cohort data 273 

returned a mean HR>2.0 (+/- 0.4), thereby surpassing all other markers. This feature was even 274 

more pronounced in a multivariate analysis including ER, HER2 and PR biomarkers (Fig. 275 

4B). When reducing the MB cohort to those patients for which staging information was 276 

available, HRs based on staging and T-GAN-D were comparable (Fig. 4C). To test whether 277 

both classifiers might be redundant, we performed a T-GAN-D based survival analysis within 278 

the tumor stage I and stage II subcohorts, which dominate the MB dataset. T-GAN-D based 279 

classification allowed separating high and low risk patients within both tumor stages (Fig. 4D, 280 

E), indicating non-redundancy of the T-GAN-D classification to tumor staging information.  281 

Taken together, these results show that training through data augmentation can enhance the 282 

prognostic performance of DL classifiers, and in this case surpasses individual classical 283 

biomarkers. In addition, the T-GAN-D performed well in prognostication of early stage breast 284 

cancer cases. 285 

 286 

The T-GAN-D stratifies TCGA patients despite these being scarcely represented  287 
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After observing that introducing TCGA patients into the training set of the T-GAN-D did not 288 

degrade, but improved the stratification of MB patients, we tested the performance of the 289 

classifier on the smaller TCGA dataset. To do this, we trained the discriminator using the 290 

entire MB data plus a fraction of the TCGA data from the merged dataset and generated 291 

predictions on an independent subset of TCGA patients (Fig. 5A), using five-fold cross-292 

validation. The T-GAN-D correctly predicted 78% of the cases (Fig. 5B, Supplementary 293 

Fig. 4, Supplementary Table 3).  In contrast, when trained on the MB dataset alone, the T-294 

GAN-D was not able to separate high and low risk patients (Fig. 5C, Supplementary Fig. 4), 295 

achieving an overall accuracy of only 43% (Supplementary Table 3). Therefore, the addition 296 

to the training set of a comparably small number of TCGA patients (n = 129) to the larger MB 297 

cohort (n = 1244) was sufficient to drastically improve the performance of the T-GAN-D 298 

predicting TCGA patient outcome. This demonstrates that even if the training set is largely 299 

dominated by patients belonging to one cohort, the introduction of a limited number of 300 

samples of a second, differently balanced dataset appears sufficient to possibly capture 301 

relevant patterns that contribute to achieving improved prognostic performance. 302 

 303 

Discussion 304 

The increasing availability and routine acquisition of large scale genomic data encourage the 305 

repurposing and application of AI to the field of oncology in order to identify novel means for 306 

improved and personalized prediction of prognosis 47. In this study, we developed a DL-based 307 

tool to stratify high vs. low risk breast cancer patients according to full transcriptome profiles. 308 

Using the MB and TCGA cohorts as use cases, we converted expression data into images and 309 

used the trained discriminator of our GAN architecture as a standalone prognostic classifier. 310 

Our results show that the T-GAN-D performed better than classical outcome predictors and 311 

maintained robust performance when merging the two cohorts.  312 
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AI has already been applied to breast cancer based on different classes of data, to inform 313 

diagnosis, treatment planning and prognosis 48,49. For example, pattern recognition and data 314 

augmentation proved to be promising approaches to assist in generating accurate diagnoses 315 

from mammography images 50,51.  Transcriptome data were also employed to develop ML-316 

based analysis pipelines for breast cancer subtyping, diagnosis, patient stratification and 317 

identification of altered pathways 52, and these techniques may improve the accuracy of 318 

cancer prognosis in the future. However, shortcomings must be taken into account, as 319 

applicable also to currently available breast cancer datasets. When dealing with low sample 320 

size - high dimension datasets such as the MB and TCGA cohorts, common DL classification 321 

algorithms such as neural networks may be prone to overfitting 53. Multi-gene signatures 322 

based on the expression of a lower number of transcripts may circumvent this problem, but 323 

are applicable only to subsets of patients with specific clinical characteristics 11–14. To tackle 324 

these problems, we aimed at developing a more universally applicable algorithm that takes 325 

advantage of GAN’s data augmentation and generalizing capability. In our training strategy, 326 

the T-GAN-D was exposed not only to a subset of original data, but also to the synthetic 327 

patients generated by the generator in each epoch. This approach for the augmentation of 328 

training data was demonstrated before to aid a discriminator in learning hidden features and 329 

correlations 54,55. When compared to a classic CNN, the T-GAN-D showed comparable, yet 330 

slightly improved performance. Other GAN implementations have been applied to the MB or 331 

TCGA cohorts in the past, addressing different aims such as the generation of missing data 56, 332 

the identification of multi -omics signatures 57 and prognostication 58. While showing 333 

encouraging results, these prior works limited the follow up time to 5 years and focused on 334 

death events only. Besides considering longer follow up times, the inclusion of progression or 335 

recurrence events in the class definition can be considered a more exhaustive assessment of a 336 

patient´s risk category, since OS or DSS alone may be insufficient especially in early stage 337 

screenings 59. In addition, short follow up times were shown to affect the prognostication 338 
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performance of ML algorithms leading to low sensitivity, mostly due to the insufficient 339 

occurrence of recurrence or death events 60.  340 

We demonstrated that the conversion of transcriptome profiles into images allowed the 341 

integration of independent transcriptome datasets. To date, the majority of gene expression 342 

databases cannot be directly integrated due to different sequencing technologies, protocols or 343 

batch effects, with the consequence of producing merely qualitative results in a meta-analysis 344 

fashion or unveiling evidences that remain cohort-specific 61. To test if our conversion 345 

strategy could allow a straightforward integration of heterogenous datasets, we challenged the 346 

T-GAN-D in assessing the risk category of MB patients, training the network with a subset of 347 

MB patients plus the entire TCGA cohort. Introducing patients belonging to a different cohort 348 

improved the performance of the classifier, which in our case outperformed established 349 

clinical biomarkers and a published ROR-P signature 9 in  uni- and multi-variate analyses. 350 

The T-GAN-D classifier also stratified early stage breast cancer patients into low and high 351 

risk groups, even though no additional factors such as treatment regimens, age, subtype or 352 

other clinical features were considered when composing the training datasets. Early stage 353 

patients expected to experience recurrence or progression may benefit from more frequent 354 

screenings, yet it remains to be assessed if the transcriptome-based classifier operates 355 

independently of or correlates with other established risk factors. 356 

High accuracy in predicting the risk class of the smaller and imbalanced TCGA cohort was 357 

achieved when training the T-GAN-D with a subset of TCGA patients plus the whole MB 358 

dataset. Classical ML algorithms (SVM and random forest, among others) were also shown to 359 

benefit from the combination of TCGA RNA-Seq and MB microarray data, which in a 360 

previous study improved 5 years OS prognostication 62, but lead to misleadingly high 361 

accuracy due to highly imbalanced classes. Taken together, our results suggest that the T-362 

GAN-D remains robust when merging cohorts differently balanced between positive and 363 

negative outcomes, and that the network is still able to capture relevant risk patterns when one 364 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 8, 2022. ; https://doi.org/10.1101/2022.10.07.22280776doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.07.22280776
http://creativecommons.org/licenses/by-nc-nd/4.0/


cohort is heavily underrepresented in the training dataset. Therefore, our classification 365 

framework may allow the integration of new, smaller datasets, lending itself as a suitable 366 

prototype for generating prospective personalized outcome predictions for scarce de novo 367 

data. 368 

In conclusion, our proof-of-concept study represents an avenue for developing a scalable data 369 

augmentation-based tool that could be a stepping stone towards individualized prognosis in 370 

the future. Molecular high throughput techniques are increasing in quality, resolution and 371 

amount of data produced and are more and more commonly captured in clinical research and 372 

diagnostic environments. It was estimated that within the next decade, between 2 and 40 373 

exabytes of genomic data will be generated every year 63, with large quantities being related 374 

to human health and disease. GAN-based approaches therefore could become a meaningful 375 

approach to exploit such data for the benefit of patients. In addition,  -omics domains other 376 

than transcriptomics likewise have the potential to enter the clinical arena as part of routine 377 

analytical practice, including proteome, metabolome or lipidome data. Such data classes can 378 

readily be integrated with clinical-pathological information 64, and could be processed with 379 

the assistance of GAN based approaches to improve patient-tailored interventions or 380 

prognostication. 381 
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 543 

Figure legends 544 

Fig. 1. MB and TCGA patient demographics and survival 545 

(A) Patients demographics of the MB subcohort. (B) Patients demographics of the TCGA 546 
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subcohort. (C) Overall and (D) relapse-free, progression-free or disease specific survival of 547 

the MB and TCGA cohorts. (E) Kaplan Meier curves comparing low vs high risk patients of 548 

the MB and (F) the TCGA cohorts. 549 

 550 

Fig. 2. The T-GAN-D robustly stratifies low and high risk breast cancer patients 551 

(A) Workflow of the data processing, including the schematics of the generator network and 552 

its adversary, the discriminator network. Together these result in an AC-WGAN-GP 553 

architecture. After the conversion of patient transcriptome profiles into images, 4/5 of the MB 554 

dataset was used to train the GAN’s discriminator. After 1000 epochs, the trained 555 

discriminator was used as a standalone classifier to separate the remaining 1/5 patients of the 556 

dataset into low and high risk categories. (B) Kaplan-Meier curves separating low vs. high 557 

risk patients as predicted with the T-GAN-D (iteration 1 of the 5-fold CV shown as 558 

representative). (C) Kaplan-Meier curves generated pooling the category predictions obtained 559 

for all patients of the MB dataset after five independent CV runs. (D) Separation of low vs. 560 

high risk patients predicted with a classical CNN on the same subset used in B and (E) 561 

comparison obtained pooling the predictions of five independent CV runs. The area between 562 

the curves (ABC) between Low risk (blue dashed line) and Predicted low risk (solid blue 563 

line), Predicted low risk and Predicted high risk (solid red line), Predicted high risk and High 564 

risk groups (dashed red line) are shown top to bottom in D and E. 565 

 566 

Fig. 3. Introducing the independent TCGA cohort improves MB patient classification 567 

(A) Schematic representing the training strategy: rescaled data from the entire TCGA cohort 568 

were merged with 4/5 of the MB cohort to train the T-GAN-D, which was subsequently used 569 

to predict the risk class of the remaining 1/5 of MB patients. The process was iterated 5 times. 570 

(B) Kaplan-Meier curves based on the pooled predictions of the T-GAN-D trained on both 571 

cohorts. (C) Kaplan-Meier curves separating low vs. high risk patients predicted with the 572 
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CNN that was trained after merging the MB and the TCGA cohorts. The area between the 573 

curves (ABC) between Low risk (blue dashed line) and Predicted low risk (solid blue line), 574 

Predicted low risk and Predicted high risk (solid red line), Predicted high risk and high risk 575 

groups (dashed red line) are shown top to bottom in B and C. 576 

 577 

Fig. 4 The T-GAN-D outperforms classical biomarkers after merging the MB and 578 

TCGA cohorts and significantly stratifies early stage MB patients 579 

(A) Comparison of the hazard ratios (Cox model, univariate) of a multi-transcript signature 580 

(ROR-P) and established prognostic biomarkers (ER, HER2, PR) vs. the CNN and the T-581 

GAN-D before and after cohort merging. (B) Multivariate Cox hazard ratio of the T-GAN-D 582 

compared to ROR-P and receptor status and (C) disease stage. (D) Kaplan -Meier curves of 583 

Stage I and (E) Stage II patients stratified by the T-GAN-D into low and high risk categories. 584 

 585 

Fig. 5 The T-GAN-D stratifies TCGA patients despite these being scarcely represented 586 

in the merged training set 587 

(A) Schematic representing the training strategy: rescaled data from the entire MB cohort 588 

were merged with 4/5 of the TCGA cohort to train the T-GAN-D, which was subsequently 589 

used to predict the risk class of the remaining 1/5 of TCGA patients. The process was iterated 590 

5 times. (B) Stratification of the TCGA patients by T-GAN-D trained on the merged dataset 591 

and (C) the MB dataset alone. Kaplan-Meier curves were generated pooling the predictions of 592 

all iterations of the 5-fold CV. The area between the curves (ABC) between Low risk (blue 593 

dashed line) and Predicted low risk (solid blue line), Predicted low risk and Predicted high 594 

risk (solid red line), Predicted high risk and High risk groups (dashed red line) are shown top 595 

to bottom in B and C. 596 
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