The value of freedom: the development of the WeRFree capability instrument

Running heading:
Development of the WeRFree instrument

Jasper Ubels1,2*, Karla Hernandez-Villafuerte1, Michael Schlander1,2,3

1 Division of Health Economics, German Cancer Research Center (DKFZ), Heidelberg, Germany
2 Mannheim Medical Faculty, University of Heidelberg, Mannheim, Germany
3 Alfred-Weber Institute, University of Heidelberg, Heidelberg, Germany

Conflict of interest:
No funding was received to assist with the preparation of this manuscript.

\textbf{* Corresponding Author:}
Jasper Ubels
E-mail: j.ubels@dkfz.de

ORCID Jasper Ubels: 0000-0002-1431-5367
ORCID Karla Hernández-Villafuerte: 0000-0002-6685-1903
ORCID Michael Schlander: 0000-0002-3489-5856

\textbf{Word count article:} 5007 (excluding title page, references, appendix, tables, and figures)

\textbf{Word count abstract:} 249

\textit{NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.}
Abstract
The capability concept by Sen has been argued to be ambiguous with respect to some elements of freedom, such as the burdens that people might experience whilst achieving capabilities. Developing instruments with a more comprehensive definition of capability might increase their sensitivity to a broader range of constructs. In this study, a framework that is based on the concept of “option freedom”, a more comprehensive definition of capability, is operationalized into a newly developed instrument.

The Multi Instrument Comparison (MIC) database was used to develop an instrument. First, items from the MIC database were matched to themes from a framework that had been developed in an earlier qualitative study. Second, a measurement model was constructed with the selected items and model fit was assessed. Third, an instrument was created that can be used for wellbeing assessment.

A measurement model was constructed with 57 items and 11 factors. Data-driven explorative adjustments were made to improve model fit. Based on this model an instrument was developed with three scales (“Reflective Wellbeing”, “Affective Wellbeing” and “Perceived Access to Options”) totaling 15 items. This instrument showed adequate psychometric characteristics in terms of reliability and model fit indices.

The instrument shows that the concept of option freedom can be operationalized for wellbeing assessment. Furthermore, the analysis indicated that in the context of outcome measurement with the instrument, information about both capabilities and functionings related to subjective wellbeing is required to assess the wellbeing of an individual. Further research is required to validate the instrument.
Introduction

Health technology assessment (HTA) systematically examines the value of medical technologies by looking at their intended and unintended benefits and costs (Banta, 2003). Some HTA agencies require benefits to be measured in Quality Adjusted Life Years (QALY). QALYs are estimated with the preference adjusted scores of Health Related Quality of Life (HRQoL) instruments. However, proponents of the capability approach argue that the content of preference adjusted HRQoL instruments is too narrow since they are overly focused on measuring changes in HRQoL and are unable to assess the broader effects that a medical technology can have on an individual's life (Lorgelly et al., 2010). They argue that the benefits of medical technologies should be assessed in terms of their influence on the capabilities of individuals (Lorgelly et al., 2010). The concept of capability comes from the capability approach framework, which was initially developed by Amartya Sen (Sen, 1985). According to Sen, capabilities can be understood as the individuals' freedom to achieve what they value. Sen argues that a comprehensive assessment of wellbeing should take these individuals' capabilities into account.

However, measuring the benefits of new technologies in consideration of their effect on individuals' capabilities has proven to be difficult since developing an instrument that is based on the capability concept is challenging. To illustrate from a previous study we conducted, we found some of the currently available capability instruments miss content related to the difficulties that individuals might experience when trying to fulfill their capabilities (Ubels et al., 2022b). This observation is supported by several empirical analyses that have shown that some capability instruments are relatively insensitive to physical health problems (Engel et al., 2017, Davis et al., 2013, Hackert et al., 2017, Khan and Richardson, 2018). These problems might not block the achievement of capabilities but could significantly burden their realization, thus limiting the capabilities of individuals (Ubels et al., 2022b).

The insensitivity of some of the currently available capability instruments might be a result of having used the narrow conceptualization of capability initially proposed by Sen (1985) when developing these instruments. In his conceptualization of capability, Sen (1985) focused on the ability of individuals to achieve what they value. This conceptualization does not articulate the difficulties experienced by individuals while realizing their capabilities (Ubels et al., 2022b). Consequently, an instrument based on a more comprehensive conceptualization of capability for instrument development is warranted (Ubels et al., 2022b, Ubels et al., 2022a). Such a broader conceptualization was proposed by Robeyns (2017), who suggested that a capability is best understood as an “option freedom”. Option freedom is a concept developed by Pettit (2003), in which freedom is composed of (1) options, which are the alternatives that an individual is in a position to realize, and (2) access to options, which refers to the ability of an individual to realize his/her options (details in Appendix Section 1.1 and 1.2).

The concept of option freedom was developed in the context of the philosophical debate on how freedom should be understood. The concept is consequently abstract and needs further adaptation before it can be used as a basis for instrument development. This can be done by developing a theoretical framework that is based on the concept of option freedom, with themes that reflect the options that individuals value as well as the blocks and burdens that they experience (details in Appendix Section 1.3). In a previous publication (Ubels et al., 2022a), we developed such a theoretical framework, which consists of themes that are to be captured by an instrument based on the concept of option freedom. A summary of the framework is provided in Appendix Section 1. This theoretical framework consists of four themes that reflect the perceived capabilities of individuals and the experienced wellbeing derived from living with those capabilities. The theme that represents the perceived capabilities is called “Perceived Access to Options”. The three other themes are related to the subjective experience of living with those capabilities: “Perceived Control”, “Self-Realization” and “Option }
Wellbeing”. These three other themes can be categorized as functionings (details in Appendix Section 1.3).

An instrument based on the framework proposed by Ubels et al. (2022a) should be able to assess wellbeing comprehensively, but this has yet to be tested. Therefore, this study aims to evaluate if this theoretical framework could be operationalized into a capability instrument. We will follow a method consisting of three phases with the following objectives: (1) to identify relevant items that can be used to operationalize the measurement of the four themes; (2) to assess if, by using these items, the four themes can be measured as constructs; and (3) to develop an instrument that can be used to assess capability wellbeing.

Methods
We conducted a confirmatory factor analysis (CFA). In a CFA, the causal relationship between latent variables and observable variables is studied (Kline, 2011). In the context of instrument development, latent variables are the constructs that an instrument measures (also called factors). These factors predict the responses to observed variables, which are the items of an instrument. The strength of this causal relationship is expressed in terms of the factor loading of the item on a factor. In a CFA, these relationships are modeled according to an a-priori specified measurement model. A measurement model describes the relationship between latent variables and observable variables - in the context of instrument development, constructs, and items respectively (Kline, 2011). By testing if there is a measurement model that predicts the dataset well, one can determine if an instrument can measure the constructs in a population.

Our analysis is conducted with data from the Multi-Instrument Comparison (MIC) study (Richardson et al., 2012). The objective of the MIC study was to compare different general and disease-specific HRQoL and wellbeing instruments. The study followed a cross-sectional design and was conducted in six countries (Australia, Canada, Germany, Norway, the United Kingdom, and the USA) with 9,665 participants. The MIC sample included groups of individuals affected by certain diseases (i.e., arthritis, asthma, cancer, depression, diabetes, hearing loss, and heart problems) as well as participants without disease (i.e., healthy individuals). The MIC study team removed unreliable responses. Unreliable responses were identified based on inconsistencies in responses to items, as well as the time that it took for participants to complete the full MIC questionnaire (see the removal process explanation in Appendix Section 2). This resulted in a database of 8,022 evaluable responses. Further information about the MIC study can be found at Richardson et al. (2012) and the website of the MIC project (https://www.aqol.com.au/index.php/agol-current).

Item selection: Relevant items considered for use in the measurement of the four themes
In the main questionnaire, participants of the MIC study completed 11 different instruments, in total consisting of 227 questions or items. These items appeared on a series of Likert-like scales, with response options ranging from two to eleven. For our analysis, the responses to all items were recoded such that higher values mean that an individual is better off or is less limited.

Out of 227 items, we selected those which are relevant to the four themes “Perceived Access to Options”, “Perceived Control”, “Self-Realization” and “Option Wellbeing” (See Appendix Table A1 and Ubels et al. (2022a). With this aim, the wording and content of the quotes supporting the identification of the four mentioned themes from Ubels et al. (2022a) were compared to the wording and content of the items included in the MIC questionnaires. Examples of quotes and selected items are presented in Appendix Table A1. Items with fewer than four response options were excluded from this selection to enhance measurement precision (Simms et al., 2019).
Model development: Construct testing

We randomly split the MIC sample into two subsets. One subset of the data functioned as a training dataset for constructing the measurement model. The resulting model set was validated on the second subset (hereafter test dataset).

Several measurement models were tested to establish if the four themes could be measured as constructs. These models were tested using a Robust Maximum Likelihood (MLR) estimator and developed in two stages:

(1) A theory-driven confirmatory stage: A measurement model was developed and tested to see if the hypothesized themes can be operationalized as constructs in an instrument. Further theoretically guided adjustments were made to see if the model fit of the measurement model could be improved.

(2) A data-driven explorative stage: Further data-driven adjustments to the measurement model were guided by studying model misfit. First, residual correlations of items (values higher than 0.1) and modification indices were studied to identify (local) misfit(s) (Kline, 2011). Second, for those items that showed misfit, their content and layout in the MIC questionnaire were studied. Third, when the content of items showed similarities or the layout of the MIC questionnaire could cause higher correlations amongst items, specific orthogonal factors were created to explain parts of the residual correlation. In the case of two items showing misfit and sharing content, the errors of the two items were correlated. Lastly, orthogonal factors were developed to account for common method variance caused by similarities in the number of response options (Podsakoff et al., 2012).

The theoretical and empirical adjusting stages resulted in the selection and development of a final measurement model. The robustness of the model fit was tested in two stages:

(1) The final model was validated with the test dataset.
(2) The final model was estimated with an estimator suitable for analyzing categorical data in order to test the measurement model's robustness. Items with up to seven response options were treated as categorical variables. The final measurement model was then estimated with a Diagonally Weighted Least Squares (DWLS) estimator and polychoric correlations for items with up to seven response options. This model was also estimated with the test dataset.

Model fit was examined with scaled versions of the χ^2, Comparative Fit Index (CFI), Tucker Lewis Index (TLI), Root Mean Squared Error of Approximation (RMSEA) and Standardized Root Mean Residual (SRMR) fit indices. Values higher than 0.9 for the CFI and TLI fit indices indicated acceptable fit, with values closer to 0.95 being preferable (Hu and Bentler, 1999). A RMSEA value lower than 0.6 and an SRMR lower than 0.8 were also used to indicate acceptable fit (Hu and Bentler, 1999). Nested model comparisons were made according to the guidelines of Chen (2007), who argues that differences in CFI, SRMR, and RMSEA values larger than 0.01, 0.015, and 0.015, respectively, indicate a substantial improvement in model fit. Smaller differences in these values represent a negligible difference in model fit, in which case the more parsimonious measurement model was considered superior.

Missing data were handled with a Full Information Maximum Likelihood (FIML) estimator for the models estimated with a MLR estimator and pairwise deletion for the model estimated with a DWLS estimator.

The software used for this analysis was the Lavaan package version 0.6-10 (Rosseel, 2012) in R version 3.5.2 (R Core Team, 2013). Additional information on the development of the final measurement model is provided in Appendix Section 2.
Instrument development for the assessment of capability wellbeing

An instrument was created that was based on the items included in the final measurement model in three steps:

1. First, the inter-factor correlations were studied. Correlations higher than 0.9 indicate that two constructs are closely associated with each other from a measurement perspective. To develop a parsimonious instrument, Le et al. (2010) suggest retaining only one of such correlated constructs, since measuring one construct sufficiently captures information about the other(s). Accordingly, we retained one construct for the instrument when such highly correlated factors were identified.

2. Second, items that cross-load on multiple factors were removed.

3. Third, one item was retained from groups of items that covered similar content. These items were selected on a case-by-case basis. Special attention was paid to the ceiling and floor effects of individual items, the variability of the responses over the different response options, and the content of the items. We also evaluated the item-total correlations, which showed negligible differences between items and, therefore, were not used in the item selection procedure. A detailed explanation of the selection process is provided in Appendix Section 3.

This instrument was developed with the full dataset. The aforementioned fit indices (i.e., χ^2, CFI, TLI, RMSEA, and SRMR) were used to assess the measurement model fit of the developed instrument. Cronbach’s alpha values were also computed for the instrument’s scales (Cronbach, 1951).

Results

Out of the 8,022 observations, 1,191 contained missing values. Most of the missing values ($n = 1,177$) corresponded to the Norwegian participants' responses to the ICECAP-A and AQoL–4D instruments. Norwegian translations of these instruments were unavailable at the time of data collection. The analysis of the data suggests that the probability of being missing is the same within the group of observations from the same country, and therefore, this data was missing at random. Table 1 shows the characteristics of the included MIC survey participants.

Item selection: Assessing the relevance of items used to measure the four themes

We selected 56 items from the MIC database based on the similarities in their content with quotes from the theoretical framework developed in Ubels et al. (2022a). Details of the selected items and the respective quotes are provided in Appendix Table A1. Relevant items for measuring the four themes were identified in seven out of the eleven instruments included in the MIC database (see Appendix Section 2).

Out of the 56 items, 26 were linked to the theme “Option Wellbeing”, 20 to the theme “Perceived Access to Options”, 6 to the theme “Self-Realization”, and 4 to the theme “Perceived Control”. For the subthemes “Access due to Social Wellbeing”, “Access due to Activity Wellbeing” and “Access due to Finances”, from the theme “Perceived Access to Options”, no items were identified (See Appendix Table A1). Similarly, no items were identified for the “Having Dignity” subtheme from the theme “Self-Realization”.
Table 1. Demographics of the MIC study sample.

<table>
<thead>
<tr>
<th></th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>8,022 (100%)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>18-24</td>
<td>513 (6.4%)</td>
</tr>
<tr>
<td>25-34</td>
<td>944 (11.8%)</td>
</tr>
<tr>
<td>35-44</td>
<td>1,137 (14.2%)</td>
</tr>
<tr>
<td>45-54</td>
<td>1,689 (21.1%)</td>
</tr>
<tr>
<td>55-64</td>
<td>2,008 (25.0%)</td>
</tr>
<tr>
<td>65+</td>
<td>1,731 (21.6%)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>3,848 (48.0%)</td>
</tr>
<tr>
<td>Female</td>
<td>4,174 (52.0%)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>2,522 (31.4%)</td>
</tr>
<tr>
<td>Some post-secondary, post-secondary certificate or diploma</td>
<td>3,241 (40.4%)</td>
</tr>
<tr>
<td>University degree and higher</td>
<td>2,259 (28.2%)</td>
</tr>
<tr>
<td>Disease</td>
<td></td>
</tr>
<tr>
<td>Healthy public</td>
<td>1,760 (21.9%)</td>
</tr>
<tr>
<td>Arthritis</td>
<td>929 (11.6%)</td>
</tr>
<tr>
<td>Asthma</td>
<td>856 (10.7%)</td>
</tr>
<tr>
<td>Cancer</td>
<td>772 (9.6%)</td>
</tr>
<tr>
<td>Depression</td>
<td>917 (11.4%)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>924 (11.5%)</td>
</tr>
<tr>
<td>Hearing problems</td>
<td>832 (10.4%)</td>
</tr>
<tr>
<td>Heart problems</td>
<td>943 (11.8%)</td>
</tr>
<tr>
<td>Stroke</td>
<td>23 (0.3%)</td>
</tr>
<tr>
<td>Chronic obstructive pulmonary disease</td>
<td>66 (0.8%)</td>
</tr>
<tr>
<td>Country</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>1,430 (17.8%)</td>
</tr>
<tr>
<td>Canada</td>
<td>1,330 (16.6%)</td>
</tr>
<tr>
<td>Germany</td>
<td>1,269 (15.8%)</td>
</tr>
<tr>
<td>Norway</td>
<td>1,177 (14.7%)</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>1,356 (16.9%)</td>
</tr>
<tr>
<td>United States of America</td>
<td>1,460 (18.2%)</td>
</tr>
</tbody>
</table>

Model development: Model fit of four constructs

Stage 1. Theory driven model development

The first measurement model consisted of four oblique factors representing each of the four themes. Model 1 in Table 2 displays the associated fit indices. The RMSEA, SRMR, CFI, and TLI indices of this model indicated inadequate model fit. For this reason, several theoretical re-specifications were made. These theoretical specifications concerned (1) two items that require participants to evaluate their own health, which were cross-loaded on the “Perceived Access to Options” factor and (2) six items that had a testlet format (a bundle of items that follow one introduction, i.e. “Did your health influence the following activities” followed by three Likert-scale items describing different activities), for which orthogonal specific factors were developed (details provided in Appendix Section 2). These theoretical re-specifications improved the model fit (Table 2, Model 2); however, the RMSEA, SRMR, CFI, and TLI indices still indicated misfit. To improve the model fit further, we conducted a data-driven explorative analysis.
Table 2. Fit statistics of tested models.

<table>
<thead>
<tr>
<th>Model</th>
<th>Source of misfit</th>
<th>Training dataset</th>
<th>(\chi^2)</th>
<th>df</th>
<th>RMSEA**</th>
<th>SRMR***</th>
<th>CFI†</th>
<th>TLI†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: A-priori model</td>
<td></td>
<td>training</td>
<td>43,477.9</td>
<td>1,478</td>
<td>0.095</td>
<td>0.100</td>
<td>0.727</td>
<td>0.711</td>
</tr>
<tr>
<td>Model 2: After theoretical re-specifications</td>
<td></td>
<td>training</td>
<td>30,574.0</td>
<td>1,462</td>
<td>0.079</td>
<td>0.096</td>
<td>0.814</td>
<td>0.804</td>
</tr>
<tr>
<td>Model 3: After post-hoc adjustments with method factors for item length</td>
<td></td>
<td>training</td>
<td>9,501.9</td>
<td>1,368</td>
<td>0.043</td>
<td>0.045</td>
<td>0.947</td>
<td>0.943</td>
</tr>
<tr>
<td>Model 4: Final model without method factors for response option length</td>
<td></td>
<td>training</td>
<td>10,713.8</td>
<td>1,379</td>
<td>0.046</td>
<td>0.045</td>
<td>0.939</td>
<td>0.935</td>
</tr>
<tr>
<td>Model 5: Final model MLR*</td>
<td></td>
<td>test</td>
<td>10,819.4</td>
<td>1,379</td>
<td>0.046</td>
<td>0.044</td>
<td>0.940</td>
<td>0.936</td>
</tr>
<tr>
<td>Model 6: Final model DWLS*</td>
<td></td>
<td>test</td>
<td>14,672.3</td>
<td>1,379</td>
<td>0.053</td>
<td>0.043</td>
<td>0.964</td>
<td>0.961</td>
</tr>
</tbody>
</table>

Comparative Fit Index (CFI), Tucker Lewis Index (TLI), Root Mean Squared Error of Approximation (RMSEA), Standardized Root Mean Residual (SRMR), degrees of freedom (df)

* Models 1 to 5 were estimated with a Robust Maximum Likelihood estimator (MLR), model 6 with a Diagonally Weighted Least Squares (DWLS) estimator.
** Values lower than 0.6 indicate of acceptable fit.
*** Values lower than 0.8 indicate of acceptable fit.
† Values higher than 0.9 indicate acceptable fit.

Source: Authors’ Elaboration

Stage 2. Data-driven model development

In the data-driven explorative analysis, four sources of misfit were identified.

1. Items having similar content, with the resulting covariance not being accounted for by the model.
2. The design of the instruments themselves, since some of the items were presented in a testlet format.
3. Miss-specified factor loadings, with some of the items cross-loading on multiple factors and others more appropriately loading on other factors than hypothesized.
4. Common method variance related to response option length of items in some questionnaires.

Two different measurement models were developed to account for these four sources of misfit. One model (Model 4 in Table 2) accounted for the first three sources of misfit, while the other accounted for all four (Model 3 in Table 2). The chi-square test suggests that Model 3 fits better than Model 4 (\(\Delta \, df = 11, \Delta \chi^2 = 1,211.9, p < 0.001 \)). Nevertheless, given that the chi-square test is sensitive to large sample sizes, it is unhelpful to inform the current model comparison (Chen, 2007). The CFI, the SRMR, and the RMSEA showed a comparable fit between both models, with differences being smaller than 0.01, 0.015, and 0.015, respectively (Chen, 2007). Given the sensitivity of the chi-square test, the negligible differences in model fit shown by the other indices, and the fact that Model 4 is more parsimonious than Model 5, we retained Model 4 as the final measurement model.

Besides the specific orthogonal factors, a substantial difference between Model 1 and Model 4 was how the subjective experience of capabilities was structured. In the first a priori
measurement model (Model 1), items from the MIC database loaded on four factors that represented each of the four themes (see Appendix Table A1). The “Self-Realization” construct included items related to individuals’ experience living a worthwhile life (e.g., code ONSj, Table A1) or having the idea that life is close to an ideal (e.g., code SWLS_a, Table A1). In Model 4, these items moved to the newly developed construct “Reflective Wellbeing”. Similarly, items that belong to Option Wellbeing in Model 1 and were related to satisfaction to different elements in life, were included in Model 4 in the “Reflective Wellbeing” construct (examples of such items are: satisfaction related to general life with codes ONSi and PWI_a, satisfaction with health with the code PWI_c, Table A1) or satisfaction with social relationships with the code PWI_e, Table A1). Additionally, the items of the “Option Wellbeing” factor that belong to the subtheme “Emotional Wellbeing”, in Model 4 were loaded on their own factor, which was relabeled to “Affective Wellbeing”. These items covered various emotional experiences, such as feelings of sadness (e.g., code aqol5, Table A1), anxiety (e.g., code sf24, Table A1), or pleasure (e.g., code aqol25, Table A1).

The robustness of the fit index values of measurement Model 4 was tested with the test dataset, which resulted in Model 5 (see Table 2). As mentioned above, a comparison of the fit index values of Model 4 and Model 5 showed that the differences in model fit are negligible. A further robustness test was conducted by estimating Model 4 using a DWLS estimator and treating items with up to seven response options as categorical, which resulted in Model 6. The similarities in fit indices after estimating Model 6 (see Table 2) indicated that the estimations related to Model 4 and Model 5 were robust.

The standardized factor loadings of the items of measurement Model 5 are presented in Appendix Table A2 and the item error correlations can be found in Appendix Table A3. The inter-factor correlations of measurement Model 5 can be found in Appendix Table A4. The results suggest that the correlation between the factors “Perceived Control” and “Affective Wellbeing” is 0.911. The other standardized factor correlations were moderate, ranging from 0.395 to 0.756.

Instrument development to assess wellbeing

From the 56 items of the measurement models presented above, 15 were selected to form an instrument that assesses capability wellbeing in terms of three constructs: “Perceived Access to Options”, “Reflective Wellbeing”, and “Affective Wellbeing”. The decision to exclude the “Perceived Control” was based on inter-factor correlations. The analysis showed a high correlation (> 0.9) between the “Perceived Control” and “Affective Wellbeing” constructs; therefore, measuring one of the constructs provides sufficient information about the other construct (Le et al., 2010).

The remaining three scales assess wellbeing in terms of health-related capabilities with the “Perceived Access to Options” scale and experienced wellbeing in terms of the “Affective Wellbeing” scale and the “Reflective Wellbeing” scale. The three scales consist of 15 items: “Perceived Access to Options” (Cronbach’s alpha: 0.89, 5 items), “Affective Wellbeing” (Cronbach’s alpha: 0.83, 4 items), and “Reflective Wellbeing” (Cronbach’s alpha: 0.89, 6 items). The fit of the measurement model of the instrument was adequate ($ \chi^2$: 1,756.8, df: 87, CFI: 0.970, TLI: 0.963, RMSEA: 0.055, SRMR: 0.036). The three scales and their corresponding items are listed in Appendix Section 4.

The 15 items were selected in such a way that they minimize floor and ceiling effects. We estimated the floor and ceiling effects based on the MIC study sample. For the “Perceived Access to Options”, “Reflective Wellbeing” and “Affective Wellbeing” scales, the floor effects were 0.01%, 0.04%, and 0.25%, and the ceiling effects were 15.76%, 0.96%, and 2.68%.
respectively. The proportion of participants per response option and item is provided in Appendix Table A5.

The resulting instrument developed in this study is titled the Wellbeing Related option-Freedom (WeRFree) instrument. Figure 1 is a graphic representation of the measurement model of the WeRFree instrument. Further results of the CFA conducted with the measurement model of the WeRFree (standardized factor, standardized intercepts, and standardized variances of the items on their respective scales) can be found in Appendix Table 6. Additionally, Appendix Table 7 presents item-total correlations per scale.
Figure 1. Graphical presentation of the WeRFree measurement model

Note: The item linked to the codes can be found in Appendix Table 2
Discussion

Following a process of three phases, we have developed the WeRFree instrument. This instrument was based on the framework proposed in Ubels et al. (2022a) and assesses wellbeing by combining information about health-related option freedom and the subjective experience of having those options. The instrument includes 15 items and three constructs: “Reflective Wellbeing”, “Affective Wellbeing”, and “Perceived Access to Options”.

In the first phase, we created a link between the item selection for the measurement model and the qualitative background on which the measurement model was based (Ubels et al., 2022a). This allowed us to be transparent about how these items reflect the qualitative themes. The MIC study database, used for our item selection, covered most of the themes and subthemes proposed by Ubels et al. (2022a). However, it did not contain items that could be linked to the subthemes “Access due to Social Wellbeing”, “Access due to Activity Wellbeing”, “Access due to Finances”, and “Having Dignity”. Further research is necessary to examine if items related to these subthemes load on new factors, and thus add additional information for wellbeing assessment, or if the items load on factors that are already included in the WeRFree instrument. The latter would suggest that information from these four subthemes are already covered by the WeRFree instrument.

Our study’s second phase aimed to operationalize the themes from the theoretical framework as constructs in a measurement model. The first version of the measurement model was directly based on the theoretical framework (Ubels et al., 2022a). It showed poor fit; therefore, the model was improved by conducting theoretical adjustments. The poor fit of the resulting model indicated that the internal structure of the constructs was different than suggested by the original theoretical framework (Ubels et al., 2022a). Consequently, explorative data-driven adjustments were performed to restructure the measurement model and study if model fit could be improved. The model that showed best fit differed from the original qualitative framework in how the subjective experience of capabilities was structured. On the one hand, Ubels et al. (2022a) suggested that two themes capture the subjective experience of capabilities: "Option Wellbeing" (i.e., the happiness and satisfaction that people experience when their options are fulfilled to an adequate level) and "Self-Realization" (i.e., the experience of living a meaningful life). On the other hand, the explorative data analysis suggested that a better model fit could be achieved by distinguishing between reflective and affective wellbeing. "Reflective Wellbeing" refers to cognitive appraisals about an individual's wellbeing, such as having a sense of life satisfaction and meaning. "Affective Wellbeing" represents the emotional aspects of wellbeing, such as happiness and sadness.

Structuring the subjective experience of capabilities as consisting of a cognitive ("Reflective Wellbeing") and emotional ("Affective Wellbeing") construct is in line with insights from the literature of subjective wellbeing research (Diener, 1984). The psychological literature illustrates that affective wellbeing should further be subdivided into positive and negative affect (Lucas et al., 1996, Diener, 1984, Busseri and Sadava, 2011). However, the exact relationships among these three constructs are still under debate (Busseri and Sadava, 2011). In our study, the bifactor-like approach used in the CFA, which applies specific orthogonal factors to explain the covariance of positive affect and negative affect, can be considered to be an adequate method of modeling overall affective wellbeing. A similar bifactor approach to model subjective wellbeing has been applied by Jovanović (2015). Future research is needed to determine how subjective wellbeing is best understood (Busseri and Sadava, 2011).

Regarding the capability construct, the best-fitting measurement model was consistent with the original theoretical framework. In both, the measurement of capabilities was operationalized with the construct "Perceived Access to Options”. This construct assesses how individuals perceive their ability to access options and captures the difficulties that people
experience while achieving their capabilities (e.g., pain). These difficulties are reflected in the HRQoL of the individuals; therefore, we can argue that health-related aspects of capability can be measured using items from standard HRQoL questionnaires that already exist and have been validated in different countries and for several diseases. This idea is consistent with Cookson (2005), who pointed out that some of the items in the EQ-5D (an HRQoL instrument commonly used to calculate QALYs) might reflect health-related capabilities. Cookson takes the item “usual activities” from the EQ-5D as an example and concludes that individuals can only respond to this item by reflecting on the effect of health on non-health-related functionings. Thus, in this context, health is a capability for health and non-health-related functionings.

The factor “Perceived Access to Options” showed a low-moderate correlation with "Reflective Wellbeing" (0.406) and "Affective Wellbeing" (0.530). This suggested that the health-related capabilities and the subjective wellbeing of individuals are two distinct elements of wellbeing. Therefore, an instrument solely measuring capability conceptualized as option freedom might be less sensitive to functionings related to the subjective wellbeing of individuals. This is in line with the observation by Clark (2005) that wellbeing assessment might be improved by combining information about capabilities and the subjective wellbeing derived from having those capabilities. Consequently, when assessing wellbeing, the measurement of both the health-related capabilities and subjective wellbeing constructs would result in a more comprehensive assessment of wellbeing than the sole assessment of one of them.

The WeRFree instrument, developed in the last phase of our study, illustrates how such a comprehensive assessment of wellbeing can be done in practice with a parsimonious instrument. To achieve this parsimony, we decided to include the "Affective Wellbeing" construct and exclude the construct “Perceived Control” in the instrument. The decision to favor the “Affective Wellbeing” construct was based on theory. In the article by Ubels et al. (2022a), it was hypothesized that “Perceived Control” is a key construct that influences how individuals experience their capabilities, which is represented by the outcome variables “Reflective Wellbeing” and “Affective Wellbeing”. As such, “Perceived Control” is not necessarily an outcome variable, which meant that the “Affective Wellbeing” construct was included in the instrument.

The WeRFree instrument has two advantages over existing capability instruments based on Sen’s conceptualization. First, WeRFree is potentially more sensitive to the health-related burdens that people experience. This is realized by the factor “Perceived Access to Options”, which measures individuals’ health-related capability. Second, the WeRFree allows differentiating between elements of wellbeing linked to the capabilities of the individual and elements of wellbeing that are linked to functionings. Sen’s conceptualization might impede researchers from making this distinction (Ubels et al., 2022b).

These advantages have resulted in an instrument that should be able to comprehensively assess the effects of new health technologies. Empirical evidence suggests that some HRQoL instruments are relatively insensitive to the psychosocial effect of health technologies due to their focus on (physical) health (Khan and Richardson, 2018, Richardson et al., 2015). As for the capability instruments, the evidence pointed to them being insensitive to changes in (physical) health (Engel et al., 2017, Davis et al., 2013, Hackert et al., 2017, Khan and Richardson, 2018), which is a key element of health-related capability (Ubels et al., 2022a). Due to its broad content, the WeRFree instrument has the potential to capture changes in both physical and psychosocial aspects of capability wellbeing. This, however, needs to be confirmed in future studies.
Limitations
The first limitation is related to the explorative nature of the current research, where the values of the models' fit indices estimated with the training dataset should not be interpreted as confirming or rejecting hypotheses concerning the ability of the measurement model to predict the covariance structure of the data (Wagenmakers et al., 2012). Additionally, the model's fit indices estimated with the test dataset should be interpreted with caution since both the training and test dataset share the measurement errors that are caused by the research design. This could lead to an overestimation of the models' fit in both datasets. Further research with external datasets should be conducted to confirm the model's fit.

In addition, WeRFree instrument's items essentially function as a capability list (Robeyns, 2005). As a capability list, further procedural steps (such as a public defense of the content) need to be followed before the instrument can effectively be used to inform policy making (Robeyns, 2005). As such, at the moment, the WeRFree instrument could be considered as a proposal for a capability instrument that will require further development before it can be used in policy-making.

Conclusion
The WeRFree showed how the concept of option freedom could be operationalized to measure individuals' wellbeing. More importantly, this is the first proposed instrument with the potential of combining information about capabilities with information about the subjective experience of those capabilities. Further research needs to be conducted to test the instrument's psychometric characteristics, reliability and validity.

In light of the importance of accurately and comprehensively assessing the value of new medical interventions, the content of a capability instrument used with this aim should be broad enough to measure new technologies' effects accurately. The WeRFree instrument has such a broad base since it is based on a comprehensive concept of capability and has content that captures the subjective wellbeing derived from living with those capabilities. Researchers interested in the assessment of wellbeing should consider using a comprehensive concept to operationalize capability for wellbeing assessment and combine this information with subjective wellbeing, since both yield unique information that should be used for policy making in specific contexts, such as the assessment of the effects of health technologies.
References

Khan, M. A. & RICHARDSON, J. 2018. Variation in the apparent importance of health-related problems with the instrument used to measure patient welfare. Quality of life research, 27, 2885-2896.

PODSAKOFF, P. M., MACKENZIE, S. B. & PODSAKOFF, N. P. 2012. Sources of method bias in social science research and recommendations on how to control it. Annual review of psychology, 63, 539-569.

