Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Using Deep Learning to Determine Amyloid Deposition through PET and Clinical Data for Alzheimer’s Prognosis

View ORCID ProfileSucheer Maddury, View ORCID ProfileKrish Desai
doi: https://doi.org/10.1101/2022.10.04.22280712
Sucheer Maddury
aLeland High School, San Jose, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sucheer Maddury
  • For correspondence: sumaddurycollege2024{at}gmail.com
Krish Desai
aLeland High School, San Jose, CA, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Krish Desai
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Amyloid deposition is a vital biomarker in the process of Alzheimer’s diagnosis. Florbetapir PET scans can provide valuable imaging data to determine cortical amyloid quantities. However the process is labor and doctor intensive, requiring extremely specialized education and resources that may not be accessible to everyone, making the amyloid calculation process inefficient.

Deep learning is a rising tool in Alzheimer’s research which could be used to determine amyloid deposition. Using data from the Alzheimer’s Disease Neuroimaging Initiative, we identified 2980 patients with PET imaging, clinical, and genetic data. We tested various ResNet and EfficientNet convolutional neural networks and later combined them with Gradient Boosting Decision Tree algorithms to predict standardized uptake value ratio (SUVR) of amyloid in each patient session. We tried several configurations to find the best model tuning for regression-to-SUVR.

We found that the EfficientNetV2-Small architecture combined with a grid search-tuned Gradient Boosting Decision Tree with 3 axial input slices and clinical and genetic data achieved the lowest loss. Using the mean-absolute-error metric, the loss converged to an MAE of 0.0466, equating to 96.11% accuracy across the 596 patient test set.

We showed that this method is more consistent and accessible in comparison to human readers from previous studies, with lower margins of error and substantially faster calculation times. Deep learning algorithms could be used in hospitals and clinics with resource limitations for amyloid deposition, and shows promise for more imaging tasks as well.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This study did not receive any funding.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Alzheimer's Disease Neuroimaging Initiative

I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • sumaddurycollege2024{at}gmail.com (S.M.); krishdesaiedu{at}gmail.com (K.D.)

  • Added link to GitHub repository containing the code.

Data Availability

All data and code is available at:

https://adni.loni.usc.edu/

https://github.com/sumaddury/Amyloid-PET-SUVR-Quantification

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted October 06, 2022.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Using Deep Learning to Determine Amyloid Deposition through PET and Clinical Data for Alzheimer’s Prognosis
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Using Deep Learning to Determine Amyloid Deposition through PET and Clinical Data for Alzheimer’s Prognosis
Sucheer Maddury, Krish Desai
medRxiv 2022.10.04.22280712; doi: https://doi.org/10.1101/2022.10.04.22280712
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Using Deep Learning to Determine Amyloid Deposition through PET and Clinical Data for Alzheimer’s Prognosis
Sucheer Maddury, Krish Desai
medRxiv 2022.10.04.22280712; doi: https://doi.org/10.1101/2022.10.04.22280712

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neurology
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3294)
  • Dentistry and Oral Medicine (364)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13378)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5155)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3271)
  • Health Policy (1141)
  • Health Systems and Quality Improvement (1191)
  • Hematology (431)
  • HIV/AIDS (1018)
  • Infectious Diseases (except HIV/AIDS) (14632)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (523)
  • Neurology (4927)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (725)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4214)
  • Public and Global Health (7506)
  • Radiology and Imaging (1706)
  • Rehabilitation Medicine and Physical Therapy (1014)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)