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Abstract 

Alzheimer’s disease (AD) is a serious neurodegenerative disorder without a clear understanding of the 

etiology and pathophysiology. Recent experimental data has suggested excitation-inhibition (E-I) 

imbalance as an essential element and critical regulator of AD pathology, but E-I imbalance has not been 

systematically mapped out in both local and large-scale neuronal circuits in AD. Using a multiscale neural 

model inversion framework, we identified disrupted E-I balance as well as impaired excitatory and 

inhibitory connections in a large network during AD progression based on resting-state functional MRI 

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. We observed that E-I 

balance is progressively disrupted from mild cognitive impairment (MCI) to AD and alteration of E-I 

balance is bidirectional varying from region to region. Also, we found that inhibitory connections are 

more significantly impaired than excitatory connections and the strength of the majority of excitatory and 

inhibitory connections reduces in MCI and AD, leading to gradual decoupling of neural populations. 

Moreover, we revealed a core AD network comprising mainly of limbic and cingulate regions including 

the hippocampus, pallidum, putamen, nucleus accumbens, inferior temporal cortex and caudal anterior 

cingulate cortex. These brain regions exhibit consistent and stable E-I alteration across MCI and AD, 

which may represent a stable AD biomarker and an important therapeutic target. Overall, our study 

constitutes the first attempt to delineate E-I imbalance in large-scale neuronal circuits during AD 

progression, which facilitates the development of new treatment paradigms to restore pathological E-I 

balance in AD.     
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Introduction 

Alzheimer’s disease (AD) is neurodegenerative disorder characterized by progressive and irreversible 

cognitive decline (Bateman et al., 2012). It is the leading cause of dementia affecting more than 47 million 

people worldwide and this number is expected to increase to 131 million by 2050 (Tiwari et al., 2019). 

The healthcare cost for patients with AD and other dementias is enormous and is estimated to be 236 

billion in the US for 2016 alone and predicted to quadruple by 2050 (Alzheimer’s Association, 2016). 

Despite decades of extensive research, a clear understanding of the etiology and pathophysiology of AD 

remains elusive. Current treatments are only symptomatic without slowing down the progression of the 

disease (Aldehri et al., 2018). The lack of effective treatment highlights the paramount importance of 

identifying new pathophysiological and therapeutic targets (Thakur et al., 2018). 

       Excitation-inhibition (E-I) balance represents a promising pathophysiological and therapeutic target 

for AD. First, disrupted E-I balance may underlie the key pathophysiological mechanism of AD. One of 

the pathological hallmarks of AD is the accumulation of amyloid-β (Aβ) peptides in the brain that occurs 

long before clinical disease onset (Karran et al., 2011; Huang and Mucke, 2012). During this long 

extended preclinical stage, soluble Aβ oligomers and amyloid plaques disrupt neuronal circuit activity and 

function by altering synaptic transmission and E-I balance leading to cognitive malfunction (Palop and 

Mucke, 2010; Busche and Konnerth, 2016; Palop and Mucke, 2016). In particular, high Aβ levels elicit 

epileptiform discharges and non-convulsive seizures in both hippocampal and neocortical networks of 

human amyloid precursor protein (hAPP) transgenic mice (Palop et al., 2007), which closely relates to the 

increased incidence of epileptic seizures in AD patients (Palop and Mucke, 2009). Second, E-I disruption 

is not only the consequence of Aβ deposit, but also the driver of the amyloid pathology. Experimental data 

indicate that Aβ release is regulated by neuronal activity (Nitsch et al., 1993; Bero et al., 2011) and driven 

by increased metabolism (Cohen et al., 2009; Johnson et al., 2014). Also, Aβ accumulation is associated 

with enhanced neural activity in task-related regions during memory encoding (Mormino et al., 2012) and 
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reduction of neural hyperactivity decreases Aβ aggregation as well as axonal dystrophy and synaptic loss 

(Yuan and Grutzendler, 2016). Lastly, restoration of E-I balance has been shown to rescue circuit 

dysfunction and ameliorate cognitive impairments in both AD mouse models (Verret et al., 2012; Busche 

et al., 2015; Yuan and Grutzendler, 2016) and human with early AD (Bakker et al., 2012), suggesting a 

direct link between E-I imbalance and cognitive malfunction. Taken together, these findings highlight the 

paramount importance of identifying E-I imbalance in AD, particularly in the initial disease stage for early 

diagnosis and intervention.  

        Functional magnetic resonance imaging (fMRI) is a core noninvasive method to measure brain 

activity (Glover, 2011) and has been widely used to study functional network alterations in AD (Filippi 

and Agosta, 2011; Brier et al., 2014; Dennis and Thompson, 2014). These studies have revealed both 

abnormal brain network activation/deactivation and dysfunctional connectivity patterns in AD. 

Specifically, a number of studies have reported deficit task-induced deactivation in the default mode 

network (DMN) (Lustig et al., 2003; Greicius et al., 2004; Rombouts et al., 2005), a collection of brain 

regions which are deactivated during cognitive tasks and implicated in internal mentation and episodic 

memory (Raichle et al., 2001; Fox and Raichle, 2007). Notably, such abnormal deactivation pattern is 

increasingly compromised over the course of AD from normal aging to amnestic mild cognitive 

impairment (aMCI) and to AD (Pihlajamäki and Sperling, 2009). As the core region of the memory 

network, the hippocampus (HPC) shows elevated activation in patients with aMCI, but reduced activation 

in patients with late aMCI and AD (Dickerson et al., 2004, 2005; Celone et al., 2006). In addition to 

abnormal functional network activation/deactivation, AD has been recognized as a disease of 

dysfunctional connectivity (Delbeuck et al., 2003; Stam et al., 2007; Wang et al., 2007; Supekar et al., 

2008; Sanz-Arigita et al., 2010). Studies using seed-based approach or independent component analysis 

(ICA) have observed widespread decrease in functional connectivity (FC) in both aMCI and symptomatic 

AD within the DMN including the bilateral precuneus/posterior cingulate cortex (PCC), medial prefrontal 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.22280681doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280681
http://creativecommons.org/licenses/by-nc/4.0/


cortex (mPFC), lateral temporal cortex and inferior parietal cortex (Sorg et al., 2007; Bai et al., 2009; 

Zhang et al., 2009; Qi et al., 2010; Brier et al., 2012). Consistently, other seed-based studies have reported 

reduced connectivity between the HPC and multiple DMN regions including the PCC, lateral temporal 

cortex and mPFC (Wang, et al, 2006; Allen, 2007). In addition to decreased FC, increased FC has also 

been observed in AD. A number of studies have reported that AD is associated with increased FC between 

the HPC and prefrontal cortex (PFC) (Wang et al., 2006), and between DMN regions and PFC (Bai et al., 

2009; Zhang et al., 2009; Qi et al., 2010), suggesting enhanced PFC connectivity may compensate for the 

reduced temporal function (Filippi and Agosta, 2011). Using graph theory analysis, Supekar et al. (2008) 

reported both abnormally decreased and increased FC in the entire brain, consistent with a high-

dimensional seed-based analysis method that found diverse FC impairments in AD (Wang et al., 2007). 

Aberrant FC pattern changes also depend on the specific AD progression stage. Brier et al., (2012) 

demonstrated increased FC in the salience network and decreased FC in the DMN, executive control and 

sensori-motor networks at the very mild AD stage, while all networks displayed reduced FC at the mild-

moderate AD stage.           

       Despite the great success of conventional fMRI analysis in characterizing altered network activation 

and connectivity patterns in AD, they are not able to identify E-I imbalance at circuit level because such 

statistical tools do not allow for determination of causal relationships between regions, nor do they 

provide insight into the dynamic meso-scale neuronal relationships that underpin BOLD signal variations. 

In contrast, generative modeling-based fMRI analysis has the capability of both inferring E-I balance at 

circuit level and simulating the impact of E-I imbalance on network dynamics (Li and Yap, 2022). For 

example, de Hann et al.  (2012, 2017) developed a large-scale neural mass model to examine the effects of 

excessive neuronal activity on functional network topology and dynamics. In the first study (de Hann et 

al., 2012), they demonstrated that synaptic degeneration induced by neuronal hyperactivity resulted in hub 

vulnerability in AD including loss of spectral power and long-range synchronization. In a subsequent 
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study (de Hann et al., 2017), paradoxically, the authors found that selective stimulation of all excitatory 

neurons in the network led to sustained preservation of network integrity in the presence of activity-

dependent synaptic degeneration. Using a computational framework termed “The Virtual Brain (TVB)”, 

Zimmerman et al., (2018) estimated personalized local excitation and inhibition parameters as well as 

global coupling strength based on resting-state fMRI (rs-fMRI) data from healthy individuals and patients 

with aMCI and AD. They demonstrated that the model parameters required to accurately simulate 

empirical FC significantly correlated with cognitive performance, which surpassed the predictive 

capability of empirical connectomes. However, these studies focused on network simulation and AD 

differentiation rather than E-I estimation. In addition, these models used structural connectivity (SC) as a 

proxy for synaptic efficiency, assumed the same local kinetic parameters for all regions and estimated 

only one global scaling coefficient for all long-range inter-regional connections, which cannot infer 

region-specific E-I imbalance in AD.  

           The goal of this study is to identify region-specific E-I imbalance during the progression of AD. 

Towards this aim, we apply a recently developed computational framework termed “Multiscale Neural 

Model Inversion (MNMI)” (Li et al., 2019; 2021) to the resting-state fMRI (rs-fMRI) data obtained from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database consisting of normal aging subjects 

and individuals with MCI and AD. The strengths of MNMI include using a biologically plausible neural 

mass model to describe network dynamics, estimating both intra-regional and inter-regional effective 

connectivity (EC), and constrain EC estimation with structural information. Specifically, MNMI estimates 

region-specific local recurrent excitation and inhibition coupling weight as well as individual inter-

regional connection strength at single subject level based on rs-fMRI, enabling the inference of region-

specific E-I balance. We first estimated individual connection strength for all subjects and then derived 

both intra-regional (local) and inter-regional (external) E-I balance from estimated EC. Using statistical 

analysis, we characterized both altered excitatory/inhibitory interactions among neural populations and 
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disrupted intra-regional/inter-regional E-I balance in MCI and AD. This computational study offers 

mechanistic insights into systematic alteration in E-I balance during AD progression, which facilitates the 

development of new diagnostic technique and new treatment paradigm to specifically detect and modulate 

E-I imbalance in AD. 
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Methods 
Overview of MNMI  

The schematic diagram of the MNMI framework is depicted in Fig. 1. The neural activity (x) is generated 

by a neural mass network model (Wilson and Cowan, 1972) consisting of multiple brain regions (R1, R2, 

etc.). Each region contains one excitatory (E) and one inhibitory (I) neural population coupled with 

reciprocal connections and receives spontaneous input (u). Different brain regions are connected via long-

range fibers whose baseline strengths are determined by SC from diffusion MRI and weak inter-regional 

connections are removed to avoid over-parameterization. The neural activity (x) is converted to BOLD 

signals (y) via convolution with a hemodynamic response function (HRF, Friston et al., 1998). Both intra-

regional recurrent excitation (WEE) and inhibition (WIE) weights and inter-regional connection strengths 

(W12, W21, etc.) as well as spontaneous input (u) are estimated using genetic algorithm to minimize the 

difference between simulated and empirical FC.  

 

Figure 1. Overview of the MNMI framework. The neural activity (x) is described by a neural mass 
network model containing multiple brain regions (R1, R2, etc.). Each region consists of one excitatory (E) 
and one inhibitory (I) neural population coupled with reciprocal connections. Inter-regional connection 
strength is based on SC from diffusion MRI. The neural activity (x) is converted to corresponding BOLD 
signals (y) via a hemodynamic response function. The model parameters are optimized to minimize the 
difference between simulated FC and empirical FC.   
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Subjects 

The rs-fMRI data (baseline scans) was obtained from the ADNI dataset (http://adni.loni.usc.edu/). A total 

of 144 subjects with Mini-Mental State Examination (MMSE) scores were selected from the ADNI-Go 

and ADNI-2 studies, including 48 NC (25/23 males/females, age 73.1 ± 6.5 years, MMSE 29.1 ± 0.9), 48 

MCI (25/23 males/females, age 74.3 ± 9.8 years, MMSE 27.9 ± 1.6) and 48 AD subjects (25/23 

males/females,  age 73.3 ± 8.5 years, MMSE 23.1 ± 2.5). All subjects were matched in terms of age (p = 

0.752, one-way Analysis of Variance (ANOVA)) and gender. 

Image preprocessing 

Data quality control was implemented in ADNI to ensure consistency across imaging centers in terms of 

the scanner, imaging protocol, and signal-to-noise ratio (Jack Jr et al., 2008). The fMRI data (7 min, 140 

volumes) was preprocessed using AFNI (Cox, 1997) according to a well-accepted pipeline (Yan and 

Zang, 2010), which includes first ten volumes removal, head motion correction, normalization, nuisance 

signals regression, detrend and bandpass filtering (0.01 to 0.08 Hz). Nuisance regressors include head 

motion parameters (the “Friston-24” model), the mean BOLD signal of the white matter, and 

cerebrospinal fluid. To minimize artifacts due to excessive motion, the subjects with an average frame 

displacement (FD) (Power et al., 2014) greater than 0.5 mm will be removed. Finally, fMRI data will be 

smoothed with 6 mm full width at half maximum (FWHM) Gaussian kernel and then nonlinearly 

registered to the Montreal Neurological Institutes (MNI) space.   

Functional and structural connectivity 

Regional averaged BOLD rs-fMRI time series were extracted using the Desikan-Killiany (DK) atlas 

(Desikan et al., 2006) with 84 regions of interest (ROIs). To reduce computational burden and focus on 

the networks that are most affected in AD (Zott et al., 2018), we selected 46 ROIs from the DMN, 

salience, executive control (frontoparietal control) and limbic networks (Table 1) based on Yeo’s seven 

network definition (Yeo et al., 2011) and computed the individual FC matrix using Pearson’s correlation. 
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Table 1. Region of interest (ROI) selected in network modeling.  

Network ROI Abbreviation 

Default Mode 
Network 

Left inferior parietal cortex L.IPC
Right inferior parietal cortex R.IPC
Left isthmus cingulate cortex L.ICC
Right isthmus cingulate cortex R.ICC
Left middle temporal cortex L.MTC
Right middle temporal cortex R.MTC
Left precuneus  L.PCU
Right precuneus   R.PCU
Left rostral anterior cingulate cortex L.rACC
Right rostral anterior cingulate cortex R.rACC
Left superior frontal cortex L.SFC
Right superior frontal cortex R.SFC
Left superior temporal cortex L.STC
Right superior temporal cortex R.STC
Left posterior cingulate cortex L.PCC
Right posterior cingulate cortex R.PCC

Salience Network 

Left caudal anterior cingulate cortex L.cACC
Right caudal anterior cingulate cortex R.cACC
Left supramarginal gyrus L.SMG
Right supramarginal gyrus R.SMG
Left insula  L.IN
Right insula R.IN

Executive Control 
Network 

Left caudal middle frontal cortex L.cMFC
Right caudal middle frontal cortex R.cMFC
Left rostral middle frontal cortex L.rMFC
Right rostral middle frontal cortex r.rMFC
Left superior parietal cortex L.SPC
Right superior parietal cortex R.SPC

Limbic Network 

Left entorhinal cortex L.ETC
Right entorhinal cortex R.ETC
Left inferior temporal cortex L.ITC
Right inferior temporal cortex R.ITC
Left thalamus   T.THAL
Right thalamus R.THAL
Left caudate L.CA
Right caudate R.CA
Left putamen L.PUT
Right putamen R.PUT
Left pallidum L.PAL
Right pallidum R.PAL
Left hippocampus L.HPC
Right hippocampus R.HPC
Left amygdala L.AMY
Right amygdala R.AMY
Left nucleus accumbens L.ACB
Right nucleus accumbens  R.ACB
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        Structural connectivity was computed using probabilistic tractography based on the diffusion MRI 

data consisting of 100 unrelated subjects from the WU-Minn Human Connectome Project (HCP) young 

healthy adults, 1200 subjects release (Van Essen et al., 2013). The diffusion MRI data have been 

preprocessed using the HCP protocols. To compute SC, we conducted whole-brain tractography using 

asymmetry spectrum imaging (ASI) fiber tracking which fits a mixture of asymmetric fiber orientation 

distribution functions (AFODFs) to the diffusion signal (Wu et al., 2019, 2020). White matter streamlines 

were generated by successively following local directions determined from the AFODFs. The output 

streamlines were cropped at the grey/white-matter interface with a search distance of 2 mm, where the DK 

atlas was applied to obtain 84×84 SC matrix. The reduced SC matrix with 46 ROIs was extracted from the 

full SC matrix and averaged among the 100 subjects followed by normalization so the SC was bounded 

between 0 and 1. Finally, we selected the strongest 10% SC connections for network modeling and the 

weaker connections were removed (Frässle et al., 2017; Li et al., 2021).  

Neural mass model and hemodynamic response 

We employed computational neuronal modeling to capture the neural interactions and dynamics in the AD 

network. The regional brain dynamics was simulated by a neural mass model using the biologically 

motivated nonlinear Wilson-Cowan oscillator (Wilson and Cowan, 1972). The population-level activity of 

the jth region was governed by the following equations (Abeysuriya et al., 2018; Li et al., 2011): 

𝜏 𝐸 𝑡 𝑆 ∑ 𝑊 𝐶 𝐸 𝑡 𝑊 𝐸 𝑡 𝑊 𝐼 𝑡 𝑢 𝜀 𝑡                  (1)      

𝜏 𝐼 𝑡 𝑆 𝑊 𝐸 𝑡 𝜀 𝑡                                                          (2) 

where 𝐸  and 𝐼  are the mean firing rates of excitatory and inhibitory neural populations in brain region j, 

𝜏  and 𝜏  are the excitatory and inhibitory time constants (20 ms; Hellyer et al., 2016), and 𝑊 , 𝑊  and 

𝑊  are the local coupling strengths (i.e., recurrent excitation, recurrent inhibition and excitatory to 

inhibitory weight). The variable u is a constant spontaneous input and 𝜀 𝑡  is random additive noise 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.10.04.22280681doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.04.22280681
http://creativecommons.org/licenses/by-nc/4.0/


following a normal distribution (Deco et al., 2013; Wang et al., 2019). The long-range connectivity 

strength from region k to region j is represented by 𝑊  which is scaled by empirical SC (Ckj), and the 

nonlinear response function S is a sigmoid function 1 1 𝑒
µ

⁄  (µ=1.0; σ =0.25; Abeysuriya et al., 

2018).    

          To increase computational efficiency, we replaced the hemodynamic state equations in the original 

MNMI model (Li et al., 2021) with the canonical HRF and computed the hemodynamic response as the 

convolution of regional neural activity and the SPM-style HRF kernel (Friston et al., 1998):  

                ℎ 𝑡 𝑐                                               (3) 

where t indicates time, 𝛼 6, 𝛼 16, 𝛽 𝛽 1, 𝑐 1/6, and Γ represents the gamma function. The 

regional neural activity was calculated as the weighted sum of excitatory and inhibitory neural activity (i.e., 

𝑥 𝐸 𝐼 ; Becker et al., 2015; Li et al, 2021).   

Estimation of model parameters 

Both local (intra-regional) and long-range (inter-regional) connection strengths in the model were estimated. 

For the local parameters, we estimated both recurrent excitation (𝑊 ) and recurrent inhibition (𝑊 ) 

weights in each ROI, resulting in 92 local parameters. The EI coupling weight (𝑊 ) was assumed to be 

constant (3.0; Li et al., 2021) as the effect of 𝑊  could be accommodated by change in 𝑊 . To avoid over-

parameterization and false positive connections due to DTI noise, we estimated the strongest 10% inter-

regional connections (N = 212) and removed the remaining weaker connections. In addition, the 

spontaneous input (u) was also estimated, which resulted in a total of 305 free parameters for estimation. 

      We used the genetic algorithm (GA; implemented by the ga function in MATLAB global optimization 

toolbox) to estimate the model parameters. The parameters were bounded within certain ranges to achieve 

balanced excitation and inhibition in the network (Li et al., 2021): 𝑊  and 𝑊 ∈ 2, 4 , 𝑊 ∈ 2, 2 , 

and 𝑢 ∈ 0.2, 0.4 . GA maximized the Pearson’s correlation between the simulated and empirical FC 
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matrices with the functional tolerance set to be 1e-3 and the maximal number of generations set to be 128. 

We observed good convergence within 128 generations for all the subjects.  

Numerical integration 

The differential equations of the neural mass model were simulated using the 4th order Runge-Kutta (RK) 

scheme with an integration step of 10 ms; shorter integration step has no significant effect on the results 

reported. We simulated the network for a total of 200 sec, and the first 20 sec of the BOLD activity was 

discarded to remove transient effects. The remaining 180 sec time series were downsampled to 0.33 Hz to 

have the same temporal resolution as the empirical BOLD signals (TR = 3 sec). The model along with the 

optimization procedure were coded in MATLAB and run in parallel with 24 cores in a high-performance 

UNC Linux computing cluster. The typical computing time (for each individual subject) ranged from 20 to 

30 hours.            

Statistical analysis 

Model parameters were estimated for each subject and compared between NC and MCI, and between NC 

and AD. We used two-sample t-tests to compare local and inter-regional connection strengths as well as 

intra-regional and inter-regional E-I balance. Multiple comparisons were corrected by either the false 

discovery rate (FDR) or the Network-based Statistics (NBS; Zalesky et al., 2010) approach (p < 0.05).  
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Results 

MNMI performance 

The performance of MNMI is illustrated in Fig. 2. The GA converged within 128 generations for all 144 

subjects and the convergence time ranged from 20 to 30 hours with 24 computing cores. The average fitness 

value (Pearson’s correlation between simulated and empirical FC) was 0.61 for both the NC and MCI 

groups, and 0.62 for the AD group. Both the simulated neural activity and BOLD signals displayed rhythmic 

fluctuations (Fig. 2A, B). The oscillation frequency of the neural activity was about 7-10 Hz, consistent with 

α oscillations during relaxed wakefulness (Hughes and Crunelli, 2005). The frequency of the BOLD signals 

ranged between 0.01 and 0.05 Hz, in line with experimental observation (Tong et al., 2019). The empirical 

and simulated FC are displayed in Fig. 2C, D respectively. It is noted that the pattern of the simulated FC 

closely matched that of the empirical FC.      

 
Figure 2.  Performance of MNMI. (A) Sample activity of excitatory neural populations in eight randomly 
selected ROIs (four in top and four in bottom). (B) Sample BOLD signals in the same eight ROIs. (C) 
Empirical FC from a randomly selected subject. (D) Simulated FC from the same subject.   
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Disrupted intra-regional E-I balance in MCI and AD 

We first examined whether intra-regional (local) E-I balance was altered in MCI and AD. The recurrent 

excitation and inhibition weights within 46 ROIs are shown in Fig. 3A for NC and MCI, and Fig. 3B for 

NC and AD, respectively. We observed that compared to NC, three regions (R.IPC, L.rACC and R.cACC) 

showed marginally significant decrease (p < 0.05, uncorrected), while the other three regions (R.ETC, 

L.PAL and R.ACB) showed marginally significant increase (p < 0.05, uncorrected) for recurrent 

excitation in MCI (Fig. 3A1). In AD, six regions also displayed significant difference in recurrent 

excitation compared to NC, including L.cMFC, R.PAL, L.HPC and L.AMY with decreased excitation, 

and L.PCC and R.ACB with increased excitation (Fig. 3B1). Note that the significant excitation increase 

in R.ACB survived multiple correction (p < 0.05, corrected) and R.ACB was the only region that showed 

significant and consistent excitation change across MCI and AD. Both MCI and AD also showed 

significant difference in recurrent inhibition compared to NC. In MCI, the recurrent inhibition weight of 

five regions (L.cMFC, R.SPC, R.ITC, L.PAL and R.ACB) was significantly decreased (p < 0.05) while 

one region (L.SFC) showed significant increase (p < 0.05; Fig. 3A2). In particular, the change in L.cMFC 

survived multiple correction. In AD, the change in recurrent inhibition was much more pronounced than 

MCI (Fig. 3B2). Specifically, eleven ROIs exhibited significant difference in AD compared to NC where 

change in seven ROIs passed multiple correction. The recurrent inhibition of R.ICC, L.PCU, R.rACC, 

L.PCC, L.cMFC, R.SPC, R.ITC and L.PAL was significantly reduced, while that of L.SFC, R.cACC and 

L.HPC was significantly increased in AD. The regions that survived multiple correction included R.ICC, 

R.cACC, L.cMFC, R.SPC, R.ITC, L.PAL and L.HPC (Fig. 3B2, marked by double pink star). Notably, 

five ROIs showed consistent change in recurrent inhibition across MCI and AD (compare Fig. 3A2 with 

Fig. 3B2), including L.SFC, L.cMFC, R.SPC, R.ITC and L.PAL. Importantly, the difference in R.SPC, 

R.ITC and L.PAL was only marginally significant in MCI, which evolved to survive multiple correction 

in AD, suggesting more disruption of excitatory/inhibitory interactions in AD.  
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Figure 3. Impaired recurrent excitation and inhibition in MCI and AD. (A1) Comparison of average 
recurrent excitation weight between NC and MCI. (A2) Comparison of average recurrent inhibition weight 
between NC and MCI. (B1) Comparison of average recurrent excitation weight between NC and AD. (B2) 
Comparison of average recurrent inhibition weight between NC and AD. One star indicates uncorrected 
significance (p < 0.05) and double stars indicate corrected significance by FDR (p < 0.05). DMN: default 
mode network, SAL: salience network, EXE: executive control network, LIM: limbic network. Error bars 
indicate standard errors. The notations are the same for figures below.     
 

         To visualize the alterations in recurrent excitation and inhibition better, we listed the significant 

changes in MCI and AD in Table 2 where the red up arrow indicates significant increase while the green 

down arrow indicates significant decrease. Several observations can be made. First, more connections 

with more significant difference were compromised in AD than MCI. This is to be expected as AD 

represents a more severe disease stage than MCI. Second, the strength of the majority of connections 

(69%) was decreased in MCI/AD compared with NC. This is consistent with the widespread decrease in 

FC during the progression of AD (Filippi and Agosta, 2011; Brier et al., 2014; Dennis and Thompson, 

2014). Third, if a region exhibited impairments in both recurrent excitation and inhibition, their directions 

of change were opposite to each other thus strengthening E-I imbalance, except for the executive control 

network where recurrent excitation and recurrent inhibition changed in the same direction. This suggests 

that there may exist certain compensatory mechanisms in the executive control network to maintain 
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similar E-I balance in the presence of AD pathology due to the critical role of this network in cognitive 

function (Miller et al., 2001; Petrides, 2005; Koechlin and Summerfield, 2007). Lastly, recurrent 

inhibition is more significantly disrupted by MCI/AD than recurrent excitation, in agreement with the 

emerging viewpoint of interneuron dysfunction in network impairments (Li et al., 2016; Palop and Mucke, 

2016; Xu et al., 2020). The consistent impairments across MCI and AD may also suggest that inhibitory 

connections are more stable biomarkers of AD.          

Table 2. Alterations in recurrent excitation and inhibition in MCI and AD. One star indicates 
uncorrected significance and double stars indicate corrected significance by FDR. 

Network ROI MCI AD
Excitation Inhibition Excitation Inhibition

DMN Inferior parietal (right) * ↓    
Isthmus cingulate (right)      * *↓

Precuneus (left)     * ↓

Rostral ACC (left) * ↓     

Rostral ACC (right)    * ↓ 
Superior frontal (left)  * ↑   * ↑ 
Posterior cingulate (left)   * ↑ * ↓

SAL Caudal ACC (right) * ↓    * *↑
EXE Caudal middle frontal 

(left) 
 * *↓ * ↓ * *↓

Superior parietal (right)   *↓
 

* *↓
LIM Ectorhinal cortex (right) * ↑

 

Inferior temporal (right)   * ↓   * *↓
Pallidum (left) * ↑ * ↓   * *↓
Pallidum (right)   * ↓  
Hippocampus (left)  * ↓ * *↑
Amygdala (left)   * ↓  
Accumbens (right) * ↑ * ↓ * *↑  

 

        The alteration in recurrent excitation and inhibition strengths resulted in intra-regional E-I imbalance 

in MCI and AD as shown in Fig. 4. The intra-regional (local) E-I balance was quantified as the net EC 

(i.e., recurrent excitation strength – recurrent inhibition strength). In MCI, three regions showed 

significant decrease in intra-regional E-I balance without passing multiple correction, including L.rACC, 

R.cACC and L.HPC (Fig. 4A). Three other regions in the limbic network displayed significant increase in 
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intra-regional E-I balance, including R.ITC, L.PAL and R.ACB, among which the elevation within L.PAL 

and R.ACB passed multiple correction. In AD, five regions showed consistent E-I impairments as MCI, 

including R.cACC, R.ITC. L.PAL, L.HPC and R.ACB (Fig. 4B). In particular, the E-I alteration in 

R.cACC and L.HPC became more significant in AD than MCI, surviving multiple correction. In addition 

to the five common ROIs, the intra-regional E-I balance in L.PCU, L.PCC, L.PUT and L.AMY were also 

impaired in AD, with significant increase in L.PCU and L.PCC, and significant decrease in L.PUT and 

L.AMY (p < 0.05); the increase in L.PCC was able to pass multiple correction (p < 0.05, corrected). 

Overall, the intra-regional E-I imbalance in MCI and AD was highly consistent and concentrated on the 

limbic network and cingulate cortex.        

 
Figure 4. Disrupted intra-regional E-I balance in MCI and AD. (A) Net local EC in MCI. (B) Net local 
EC in AD. One star indicates uncorrected significance and double stars indicate corrected significance by 
FDR.     
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        We next examined network-averaged recurrent excitation and inhibition change in MCI and AD. 

There was no significant difference between NC and MCI for average recurrent excitation (Fig. 5A1) 

while the executive control network showed decreased recurrent inhibition in MCI compared to NC (p <  

0.05, uncorrected). By comparison, significant reduction in both recurrent excitation and recurrent 

inhibition was observed in the executive control network in AD and the change in recurrent inhibition 

survived multiple correction (Fig. 5B1, B2). Moreover, the default mode network also exhibited reduction 

in recurrent inhibition while the salience network showed increase in recurrent inhibition (p < 0.05, 

uncorrected; Fig. 5B2). Thus, on the network level, impairments in recurrent excitation and inhibition 

progressively increase from MCI to AD and the executive control network showed the most significant 

and consistent alterations. Again, the decrease in both recurrent excitation and inhibition may compensate 

the loss of each other, thus maintaining relatively stable E-I balance in the executive control network.       

 
Figure 5. Network-averaged recurrent excitation and inhibition. (A1) Average recurrent excitation 
within four functional networks for NC and MCI. (A2) Average recurrent inhibition within four functional 
networks for NC and MCI. (B1) Average recurrent excitation within four functional networks for NC and 
AD. (B2) Average recurrent inhibition within four functional networks for NC and AD.   
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Disrupted inter-regional E-I balance in MCI and AD 

In addition to intra-regional recurrent connections, inter-regional excitatory and inhibitory connections 

were also disrupted in MCI and AD. The color-coded average inter-regional EC matrices for NC, MCI 

and AD are shown in Fig. 6A, B, and C, respectively (the wide light blue area indicates the removed 

weaker connections). We observed that the EC patterns were similar for NC, MCI and AD where there 

were more excitatory (positive) connections than inhibitory (negative) connections. The significant EC 

connections in MCI (compared to NC) are indicated by the blue edges in Fig. 6D (p < 0.05, uncorrected), 

where they were distributed quite dispersedly among the four networks. The significant EC connections in 

AD (compared to NC) are shown in Fig. 6E where the blue edges indicated uncorrected significant 

connections and the red edges denoted significant connections that were corrected by NBS. Compared 

with MCI, the significant connections in AD concentrated more within and between the DMN and limbic 

networks. Of note, the corrected significant connections (red edges) involved mostly the executive control 

and limbic networks. Also, the average inter-regional EC of MCI was highly correlated with that of AD (R 

= 0.6, p < 0.0001; Fig. 6F), indicating the similar EC pattern between MCI and AD. To visualize the EC 

changes better, we compared the significant inter-regional EC between NC and MCI in Fig. 7A, and 

between NC and AD in Fig. 7B. As indicated by the EC difference in the bottom panels, most of the 

connections had less excitatory influence (or more inhibitory influence) in MCI and AD, indicating less 

excitatory communication between regions in MCI and AD. The corrected significant connections in AD 

included R.SPCR.PUT, R.CAR.THAL, R.SFCR.PAL, R.PALR.PUT, R.rMFCR.PUT, 

R.CAR.rMFC, and R.PUTR.PAL.     

         To evaluate the inter-reginal E-I balance change in MCI and AD, we computed the net inter-regional 

EC which is the summation of all incoming inter-regional EC to a particular ROI (Fig. 8). The net EC 

change from NC to MCI is shown in Fig. 8A where six regions showed impaired inter-regional E-I 

balance (p < 0.05, uncorrected). A majority of the six ROIs showed decreased net EC or excitation, 
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including L.PCU, R.IN, R.ITC, R.PUT and R.PAL, and only one ROI (R.cMFC) exhibited increased net 

EC. In AD, three common regions showed reduced net excitation as MCI, including R.ITC, R.PUT and 

R.PAL, all belonging to the limbic network (Fig. 8B). In particular, the significant changes in R.PUT and 

R.PAL were able to survive multiple correction by FDR, again indicating more severe E-I disruption in 

AD than MCI. Moreover, the net EC of L.HPC was also significantly reduced (p < 0.05), while the net EC 

of R.PCC was significantly elevated in AD (p < 0.05), both without passing multiple correction. On the 

network level, we observed the average net EC (summation of all excitatory and inhibitory inter-regional 

EC) from the executive network to the salience network was significantly decreased in MCI (p < 0.05, 

uncorrected; Fig. 9A, B). In AD, the average net EC from the executive network to the limbic network and 

from the DMN to the limbic network was also significantly reduced with the latter passing multiple 

correction (Fig. 9A, C), suggesting cortical-limbic decoupling. Overall, the excitatory influence between 

networks is substantially decreased in MCI and AD.         

 
Figure 6. Inter-regional effective connectivity (EC) and significant EC connections. (A) Average 
inter-regional EC matrix for NC. (B) Average inter-regional EC matrix for MCI. (C) Average inter-regional 
EC matrix for AD. (D) Significant EC connections in MCI. (E) Significant EC connections in AD. (F) 
Correlation between average MCI inter-regional EC and average AD inter-regional EC. For (D) and (E), 
green edges indicate insignificant nodes, blue edges indicate uncorrected significant nodes (p < 0.05), 
and red edges indicate significant nodes corrected by Network-based Statistics (NBS; p < 0.05).    
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Figure 7. Comparison of significant inter-regional EC between NC and MCI (A) and between NC 
and AD (B). For both (A) and (B), the top panel plots the average inter-regional EC while the bottom 
panel plots the EC difference (i.e., change from NC to MCI or AD).  

 

 

 
Figure 8. Disrupted inter-regional E-I balance in MCI and AD. (A) Net inter-regional EC in MCI. (B) 
Net inter-reginal EC in AD.   
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Figure 9. Altered inter-network connection strength in MCI and AD. (A) Average inter-network EC in 
NC. (B) Average inter-network EC in MCI. (C) Average inter-network EC in AD. Pink box indicates 
uncorrected significance (p < 0.05) and red box indicates corrected significance (p < 0.05).  

 

Disrupted overall E-I balance in MCI and AD 

The above analysis indicates that both intra-regional and inter-regional E-I balance are impaired in MCI 

and AD. As the overall neural excitability depends on both intra-regional and inter-regional input drive, 

we computed the overall E-I balance as the ratio of net excitation (recurrent excitation + all incoming 

excitatory inter-regional EC) to net inhibition (recurrent inhibition + all incoming inhibitory inter-regional 

EC) for all ROIs. We found that the overall E-I balance was altered in a number of regions in MCI and 

AD and most of the regions were located in the limbic network (Fig. 10). Specifically, the E-I ratio of 

R.IN, R.PUT, R.PAL and L.HPC was significantly decreased (p < 0.05), while that of R.cMFC and 

R.ACB was significantly increased in MCI (p < 0.05); the change in R.PAL and R.ACB survived multiple 

correction (Fig. 10A). Notably, in both MCI and AD, the changes in overall E-I balance remained 

consistent for R.PUT, R.PAL, L.HPC and R.ACB, all four regions from the limbic network (compare Fig. 

10B with 10A). In addition to R.PAL and R.ACB, the E-I balance changes in R.PUT and L.HPC were 

able to pass multiple correction in AD. Besides, the overall E-I ratio of L.IN and L.PUT was significantly 

reduced, while that of L.PCC, R.PCC, L.ETC and R.HPC was significantly increased in AD, all without 

surviving multiple correction. Overall, the majority of disrupted regions show reduced E-I ratio and the 

alteration of E-I balance is the most stable in the limbic network during AD progression. Lastly, we 

examined the change of spontaneous input during AD progression. There was no difference in 
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spontaneous input between NC and MCI, while the spontaneous input was significantly decreased in AD 

(p < 0.05; Fig. 11). This suggests that the overall excitatory drive to the network is reduced in the AD 

phase, consistent with overall reduction in E-I balance.          

 
Figure 10. Impaired overall E-I balance in MCI and AD. (A) Comparison of overall E-I balance between 
NC and MCI. (B) Comparison of overall E-I balance between NC and AD.   
 
 

 
Figure 11. Evolution of spontaneous input during AD progression. (A) Comparison of spontaneous 
input between NC and MCI. (B) Comparison of spontaneous input between NC and AD.  
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Discussion 

Excitation-inhibition (E-I) balance is a fundamental property of neuronal circuits that regulates multiple 

essential brain functions such as information coding, synaptic plasticity, memory stability and 

neurogenesis (Deneve and Machens, 2016; Rubin et al., 2017; Bhatia et al., 2019; Lopatina et al., 2019; 

Sadeh and Clopath, 2021). Disruption of E-I balance has been implicated in both AD animal models 

(Palop et al., 2007; Verret et al., 2012) and human AD (Dickerson et al., 2004, 2005; Celone et al., 2006; 

Bakker et al., 2012). Converging evidence suggests that E-I imbalance is a critical regulator of AD 

pathology (Palop and Mucke, 2010; Busche and Konnerth, 2016; Palop and Mucke, 2016; Frere and 

Slutsky, 2018; Styr and Slutsky, 2018; Ambrad et al., 2019) and may represent a core element that 

underpins a “central feature” of AD linking multi-levels of analysis (Maestú et al., 2021). Identifying 

pathological E-I balance during the progression of AD thus constitutes an important first step to develop 

new diagnostic techniques that use E-I imbalance as a biomarker and new treatment paradigms that aim to 

restore E-I imbalance for early intervention. However, current analytical approaches in fMRI focus 

predominantly on statistical techniques and macroscopic modeling such as static/dynamic functional 

connectivity, independent component analysis and graph theory (Sporns, 2014; Li et al., 2009; Preti et al., 

2017), which cannot identify disrupted E-I balance at cellular and circuit levels. Using a recently 

developed Multiscale Neural Model Inversion (MNMI) framework, we identified disrupted E-I balance 

along with impaired excitatory and inhibitory neural interactions in a large network during AD 

progression. Our study provides both a novel framework to measure pathological E-I balance and 

important insights into the systematic features and circuit mechanisms of E-I alterations.  

Systematic features of E-I alterations 

One important hallmark of AD pathology is the progressive disruption of synaptic transmission (Sheng et 

al., 2012; Marsh and Alifragis, 2018). Consistently, we demonstrated that both excitatory and inhibitory 

interactions are substantially altered during the progress of AD and such alterations exhibit systematic 
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features. First, excitatory and inhibitory connections are progressively disrupted during AD progression. 

For both intra-regional and inter-regional neural interactions, more connections are impaired in AD than 

MCI and the degree of impairments also becomes more significant in AD. This suggests that E-I 

imbalance parallels AD development and is causally linked to AD pathology. Second, AD pathology 

differentially alters excitatory and inhibitory connections. Compared with recurrent excitatory 

connections, more recurrent inhibitory connections are impaired and to a greater extent, in agreement with 

the emerging viewpoint of GABAergic dysfunction in AD (Li et al., 2016; Palop and Mucke, 2016; Xu et 

al., 2020). Importantly, alterations of inhibitory connections exhibit a more stable pattern than excitatory 

connections as consistent impairments are observed across MCI and AD (Fig. 3). Lastly, AD progression 

is associated with a general decoupling of excitatory and inhibitory interactions. Although the strength of 

excitatory and inhibitory connections could either increase of decrease in MCI/AD, reduction of 

connection strengths dominates increasing ones for both intra-regional and inter-regional connections 

(Fig. 3 and Fig. 7), consistent with the “synaptic dismantling” theory of AD (Selkoe et al., 2002). The 

heterogenous but reduction-dominated alterations in excitatory/inhibitory coupling strengths (i.e., 

effective connectivity) also concord with the observed bidirectional change yet widespread decrease in 

functional connectivity in MCI and AD (Filippi and Agosta, 2011; Brier et al., 2014; Dennis and 

Thompson, 2014).            

Bidirectional alteration of E-I balance 

One important finding of this study is that we observed bidirectional alteration of E-I balance. Depending 

on the specific modulation of excitatory and inhibitory connections, E-I balance can be either increase or 

decrease for different regions. Our findings are consistent with experimental data that hyperactive neurons 

coexist with hypoactive neurons in AD mouse model (Busche et al., 2008) and MCI and AD are 

associated with both regional hyperactivation and hypoactivation in human (Celon et al., 2006; Corriveau-

Lecavalier et al., 2019). We further reveal that increase of E-I balance is mostly due to decease of 
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inhibitory connections (Fig. 3 and Fig. 4), in agreement with experimental findings that neuronal 

hyperactivity is a result of decreased synaptic inhibition (Busche et al., 2008). Of note, studies have 

revealed alteration of E-I balance depends on the stage of AD progression where the HPC shows 

hyperactivity in aMCI, but reduced activities in late aMCI and AD (Dickerson et al., 2004, 2005; Celone et 

al., 2006). By comparison, modeling results indicate that alterations in E-I balance remain consistent across 

MCI and AD for the same region and HCP exhibits reduced E-I balance throughout (Figs. 3, 4, 10). This 

may be due to the fact that elevated E-I balance in HPC is a temporal event in the early aMCI stage, 

similar to the transient increase of FC in the DMN and salience networks at the very mild AD phase (Brier 

et al., 2012), while MCI patients included in this study are already in the moderate or late MCI phase.  

A core network of E-I imbalance in AD 

Despite the heterogeneous and distributed changes in E-I interactions, we observed stable patterns of E-I 

disruptions in a set of brain regions including the HPC, pallidum, putamen, nucleus accumbens, inferior 

temporal cortex (ITC) and caudal anterior cingulate cortex (cACC). These brain regions are consistently 

impaired across MCI and AD for intra-reginal E-I balance (Fig. 3), inter-regional E-I balance (Fig. 8) or 

overall E-I balance (Fig. 10). Such a core network highlights the paramount importance of the 

limbic/subcortical regions and cingulate areas in AD pathophysiology. The involvement of HPC, the core 

region in the memory network, is consistent with the vast majority of literatures about the central role of 

this critical structure in AD (Dickerson et al., 2004, 2005; Wang et al., 2006; Palop et al., 2007; Bakker et 

al., 2012). The reduction of E-I balance in HPC due to increased inhibition is also consistent with the 

experimental findings that high GABA content in reactive astrocytes of the dentate gyrus was discovered 

in brain samples from human AD patients as well as AD mouse model resulting in increased tonic 

inhibition and memory deficit (Wu et al., 2014). The stable participation of the basal ganglia including 

pallidum, putamen and nucleus accumbens in E-I disruption is somewhat unexpected as the primary 

function of this subcortical structure is motor control (Groenewegen, 2003), but not completely surprising 
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because recent studies have revealed the disturbance of basal ganglia in dementia traditionally classified 

as motor disorders (Vitanova et al., 2019). Specifically, MRI studies have consistently revealed substantial 

volume reduction in the basal ganglia including the putamen and caudate nucleus (Cho et al., 2014; de 

Jong et al., 2008, 2011). The striatum, consisting of the putamen, nucleus accumbens and caudate nucleus, 

is particularly susceptible to AD degeneration since both Aβ plaques and neurofibrillary tangles (NFT) of 

hyperphosphorylated tau are found in the stratal regions (Vitanova et al., 2019) and Aβ deposition starts in 

the striatum of presenilin-1 mutation carriers (Klunk et al., 2007). Importantly, Aβ may even begin to 

develop in the striatum 10 years before expected symptom onset (Bateman et al., 2012), suggesting that 

the basal ganglia could be an important pathophysiological target in AD that is affected early in the Aβ 

cascade but has not yet receive sufficient investigation. Because the basal ganglia are thought to contribute 

to cognitive function (Leisman et al., 2014), disruption of its nuclei would lead to cognitive and memory 

impairments in AD. The ITC plays an important role in verbal fluency, a cognitive function that is 

compromised during the early AD onset stage (Bouras et al., 1994). The disruption of E-I balance in ITC 

is consistent with the significant synaptic loss in this region in individuals with aMCI (Scheff et al., 2011), 

which may underlie early AD symptomatology. Lastly, the anterior cingulate cortex (ACC) plays a vital 

role in multiple cognitive process including executive function, memory and emotion (Carter et al., 1999; 

Bush et al., 2000; Weible et al., 2013). It is one of the earliest affected areas by Aβ accumulation (Braak et 

al., 1991; Raj et al., 2012) and exhibits disrupted FC in MCI and AD (Liang et al., 2015; Liu et al., 2017). 

It has been demonstrated that Aβ altered E-I balance in ACC through inhibiting presynaptic GABA-

release from fast-spiking interneurons onto pyramidal cells (Ren et al., 2018). Overall, with consistent and 

significant E-I disruption, the core network may represent a stable biomarker and an important therapeutic 

target in AD.             
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Conclusions 

Using a multiscale neural model inversion framework, we identified disrupted E-I balance as well as 

impaired excitatory and inhibitory connections during AD progression. We observed that E-I balance is 

progressively disrupted from MCI to AD and alteration of E-I balance is bidirectional varying from region 

to region. Also, we found that inhibitory connections are more significantly impaired than excitatory 

connections and the strength of the majority of excitatory and inhibitory connections reduces in MCI and 

AD, leading to gradual decoupling of neural populations. Moreover, we revealed a core AD network 

comprising mainly of limbic and cingulate regions exhibit consistent and stable E-I alteration across MCI 

and AD, which may represent an important therapeutic target to restore pathological E-I balance.    
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