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Abstract5

Background: Patient-specific quality assurance (PSQA) is part of the standard prac-6

tice to ensure that a patient receives the dose from intensity-modulated radiotherapy7

(IMRT) beams as planned in the treatment planning system (TPS). PSQA failures can8

cause a delay in patient care and increase workload and stress of staff members. A9

large body of previous work for PSQA failure prediction focuses on non-learned plan10

complexity measures. Another prominent line of work uses machine learning meth-11

ods, often in conjunction with feature engineering. Currently, there are no machine12

learning solutions which work directly with multi-leaf collimator (MLC) leaf positions,13

providing an opportunity to improve leaf sequencing algorithms using these techniques.14

Purpose: To improve patient safety and work efficiency, we develop a tabular trans-15

former model based directly on the MLC leaf positions (without any feature engi-16

neering) to predict IMRT PSQA failure. This neural model provides an end-to-end17

differentiable map from MLC leaf positions to the probability of PSQA plan failure,18

which could be useful for regularizing gradient-based leaf sequencing optimization al-19

gorithms and generating a plan that is more likely to pass PSQA.20

Method: We retrospectively collected DICOM RT PLAN files of 968 patient plans21

treated with volumetric arc therapy. We construct a beam-level tabular dataset with22

1873 beams as samples and MLC leaf positions as features. We train an attention-23

based neural network FT-Transformer to predict the ArcCheck-based PSQA gamma24

pass rates. In addition to the regression task, we evaluate the model in the binary clas-25

sification context predicting the pass or fail of PSQA. The performance was compared26

to the results of the two leading tree ensemble methods (CatBoost and XGBoost) and27

a non-learned method based on mean MLC gap.28

Results: The FT-Transformer model achieves 1.44% Mean Absolute Error (MAE)29

in the regression task of the gamma pass rate prediction and performs on par with30

XGBoost (1.53 % MAE) and CatBoost (1.40 % MAE). In the binary classification task31

of PSQA failure prediction, FT-Transformer achieves 0.85 ROC AUC (with CatBoost32

and XGBoost achieving 0.87 ROC AUC and the mean-MLC-gap complexity metric33

achieving 0.72 ROC AUC). Moreover, FT-Transformer, CatBoost, and XGBoost all34

achieve 80% true positive rate while keeping the false positive rate under 20%.35

Conclusions: We demonstrate that reliable PSQA failure predictors can be success-36

fully developed based solely on MLC leaf positions. Our FT-Transformer neural net-37

work can reduce the need for patient rescheduling due to PSQA failures by 80% while38

sending only 20% of plans that would not have failed the PSQA for replanning. FT-39

Transformer achieves comparable performance with the leading tree ensemble methods40

∗This paper was written prior to the author joining Amazon
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while having an additional benefit of providing an end-to-end differentiable map from41

MLC leaf positions to the probability of PSQA failure.42

ii
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I. Introduction57

Intensity-modulated radiation therapy (IMRT)1 achieves a dose distribution that is highly58

conformal to the target while minimizing the dose to normal tissue by modulating beam59

intensities within the radiation fields, often termed fluence maps. The beam modulation is60

performed using multi-leaf collimators (MLC) located within the gantry of a linear acceler-61

ator by varying the speed and position of each leaf and gantry angle.62

Leaf sequencing algorithms2,3,4,5,6,7,8 in the treatment planning system (TPS) optimize63

the MLC movements to deliver a desirable dose distribution as a treatment planer specifies.64

Ultimately, final dose distributions to patients are computed using the optimal leaf sequences.65

IMRT delivery is a complex, multi-step process with a number of possible sources of66

noise ranging from computational approximations in the underlying algorithms to physical67

effects in the linear accelerator components. Therefore, an extensive quality assurance (QA)68

process is required to prevent any unintended error from reaching the patient and affecting69

the patient’s clinical outcome. It is current practice in many clinics to perform a patient-70

specific QA (PSQA) for each patient’s radiation treatment plan9,10,11 to ensure that the71

linear accelerator delivers the correct dose distributions as designed and shown by TPS.72

One of the prevalent ways to perform PSQA is using a 3D phantom with an embedded73

array of detectors to measure the dose delivered using the patient’s treatment beams. Then74

the computed dose distribution in the TPS is compared with the measured dose distribu-75

tion, and a gamma analysis is performed to quantify the agreement between the two12,13.76

Sometimes, PSQA fails due to a poor agreement between the computed and measured dose77

distributions requiring a replanning process and another PSQA, which is often done outside78

clinic hours. PSQA failure can cause increased workloads and stress for hospital staff mem-79

bers, delay patient treatment, or compromise patient safety if the work has to be rushed to80

preserve the patient’s original treatment schedule.81

To mitigate those issues and improve patient safety, many studies explored PSQA failure82

prediction. An extensive line of research focused on developing non-learned treatment plan83

complexity metrics such as modulation complexity score, mean aperture displacement, or84

small aperture score and investigating their correlation with PSQA failure14,15,16,17,18,19,20. A85

large number of papers further extended these approaches by developing classical machine86
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learning and deep learning models to predict the PSQA failure based on a vast array of the87

plan complexity metrics as well as other heuristic features21,22,23,24,25,26,27,28. Thongsawad et88

al. used MLC texture analysis and boosting algorithms for predicting gamma evaluation89

results29. Kimura et al. and Huang et al. used target metrics alternative to gamma pass90

rates, such as dose difference30,31. Other works leveraged convolutional neural networks to91

predict the PSQA failure directly from fluence maps32 or dose distributions33,34 obtained92

from TPS. Since these previous efforts leveraged heuristic feature engineering, their models93

are not differentiable and are unable to provide a differentiable map from MLC leaf positions94

to the probability of PSQA plan failure. This means that their models are not applicable to95

be directly used in the leaf sequencing algorithms to produce MLC positions that are likely96

to pass PSQA.97

In this study, we develop a tabular transformer neural network model FT-Transformer3598

based directly on MLC leaf positions to predict volumetric arc therapy (VMAT) PSQA99

failure. Using 968 patient plans previously treated with 2–4 VMAT arcs, we trained a100

regression model to predict the ArcCheck-based PSQA gamma pass rates. We evaluated101

our model in both the regression context and additionally in the classification context of102

predicting the pass or fail of PSQA by directly computing receiver operating characteristic103

(ROC) area under the curve (AUC) on the regression predictions.104

We compared the performance of our model with the results from two leading gradient105

boosted decision tree models in their CatBoost and XGBoost implementations36,37 widely106

used for tabular data as well as to a non-learned complexity metric, mean MLC gap.107

Neither FT-Transformer nor CatBoost have been used in the context of PSQA failure108

prediction. Our proposed approach is distinguished from the previous efforts in that we109

predict PSQA failure directly from MLC leaf positions and the FT-Transformer model we110

applied is end-to-end differentiable with no heuristic feature engineering. As the MLC leaf111

positions are the output of leaf sequencing optimization algorithms, our model could be112

directly leveraged as a differentiable regularizer to improve the leaf sequencing algorithms113

to produce deliverable treatment plans (i.e., plans with a lower chance of PSQA failure).114

This is especially useful for the algorithms that employ gradient-based optimization, some115

of which are implemented in commercial TPS4,8.116
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II. Methods117

In this section, we describe the pipeline of our study including the description of data col-118

lection and processing as well as the models, evaluation metrics and hyperparameter tuning119

approaches we use. This study was approved by the institutional review board of the Uni-120

versity of Washington (STUDY00015736).121

II.A. Data Description122

We retrospectively collected DICOM-RT PLAN38 files of 968 patients previously treated123

with 2 – 4 VMAT arcs using Elekta linear accelerators with Agility collimators between124

January 2019 and August 2021. All plans were designed in Raystation TPS∗. PSQA of each125

plan was done using ArcCHECK† and the gamma analysis of each PSQA used the criteria of126

3% dose difference and 3 mm distance-to-agreement (3%/3mm). We excluded stereotactic127

body radiotherapy (SBRT) patients since our clinic applies different criteria for the gamma128

analysis with SBRT patients. We constructed a tabular dataset on beam level leveraging129

the DICOM-RT PLAN38 files of the treatment plans to form the samples: for each arc in a130

treatment plan, we used the leaf and jaw positions of the MLC collimators at each gantry131

angle.132

We aggregated the MLC positions by computing the MLC gap for each leaf-jaw pair at133

every gantry angle and averaging every 10 neighboring MLC pairs. Additionaly, we averaged134

the gantry angles over every 8-degree sector. For the labels, we used the ArcCheck-based135

percentage gamma pass rate of each arc obtained as part of the standard PSQA process in136

our clinic. To obtain the gamma pass rates, we parsed the ArcCheck-generated PDF reports137

corresponding to each patient using the PyPDF2‡ Python package. As the result, we obtained138

a tabular regression dataset with 360 purely numerical features and 1873 samples.139

For our ultimate goal of PSQA failure prediction, we consider the same data in the140

classification context by thresholding the regression labels and converting them into binary141

classification labels. We defined the action threshold level in the gamma analysis to be at142

95 % as is common in clinical practice39,40,41 and obtained binary classification labels (pass143

∗RaySearch Laboratories
†Sun Nuclear corporation
‡https://pypi.org/project/PyPDF2/
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or fail) based on this threshold. We reserved 65% of the samples for the training set, 15%144

for the validation set and 20% for the test set. To pre-process the data, we normalized the145

features and regression targets by subtracting their mean over the training set and dividing146

by their standard deviation over the training set.147

II.B. Transformer-based tabular deep learning model148

Background of machine learning models for tabular data. Gradient boosted de-149

cision trees (GBDT)36,37,42,43 are the traditionally dominant machine learning approaches150

for tabular data. These models are commonly used in practice and widely deployed in151

industry in various domains44. Although numerous models have been proposed based on152

using differentiable ensembles45,46,47,48,49, leveraging attention-based transformer neural net-153

works35,50,51,52,53,54, as well as other approaches55,56,57,58,59,60, recent work on systematic eval-154

uation of deep tabular models35,44 shows that there is no universally best model capable of155

consistently outperforming GBDT. Transformer-based models have been shown to be the156

strongest competitor of GBDT35,50,54,61,62, especially when coupled with a powerful hyper-157

parameter tuning toolkit35,63.158

Tabular transformer model. We employ the recent transformer-based tabular deep159

learning method FT-Transformer proposed by Gorishniy et al.35 which has been shown160

to be the strongest neural network approach in the tabular data domain35,61. Additionally,161

we compare the performance of our model with the gradient boosted decision trees, and we162

use the popular CatBoost36 and XGBoost37 packages.163

Evaluation of model performance. We evaluate the models in the regression context164

of predicting the gamma pass rates as well as in the classification context of predicting the165

PSQA plan failures. In the regression context, we use mean absolute error (MAE) and166

root mean squared error (RMSE) metrics as well as Pearson’s and Spearman’s correlation167

coefficients between the predictions and the ground truth gamma pass rate values. In the168

classification context, we use the receiver operating characteristic (ROC) area under the169

curve (AUC) to evaluate the model performance. We report the beam-level ROC AUC and170

patient-level ROC AUC. The patient-level predictions and labels are obtained by converting171

II.B. Transformer-based tabular deep learning model
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the beam-level predictions and labels such that a plan is labeled as fail if at least one beam172

in the plan failed QA. In the classification context we also evaluate the performance of a173

non-learned baseline approach based on the average MLC gap15 for comparison.174

Hyperparameter tuning. We use the Optuna Bayesian optimization toolkit63 for hy-175

perparameter tuning. The hyperparameter search spaces for each model are reported in176

Appendix A. To avoid overfitting, we use early stopping with patience for each model, i.e.,177

we stop training the models if no improvement in the validation score is observed for 30178

epochs with FT-Transformer or for 50 boosting rounds with CatBoost and XGBoost.179

III. Results180

In this section we present the performance of the FT-Transformer model and compare it to181

the gradient boosted decision trees as well as to the non-learned mean-MLC-gap complexity182

metric baseline. We investigate the model performance both on the regression task of pre-183

dicting the ArcCHECK gamma pass rates and the classification task of predicting the QA184

failure.185

Regression results. We first present the performance of all models in predicting the186

gamma pass rates in Table 1. For each model we present four regression performance metrics:187

mean absolute error (MAE), root mean squared error (RMSE), Pearson’s r and Spearman’s188

r correlation coefficients. FT-Transformer offers competitive performance with CatBoost189

and XGBoost and all models achieve good results, with e.g. MAE of the gamma rate190

predictions between 1.4% and 1.53%. The MAE, RMSE, Pearson’s r and Spearman’s r191

values are consistent and are on the same order with the results of other studies in the192

literature21,22,23,28,32 even though they are not directly comparable given the differences in193

the experimental setups due to the varying hospital equipment and PSQA processes.194

Classification results. The ultimate clinical utility of our models is predicting the PSQA195

failures to reduce the patient treatment delays and the load on the hospital resources. This196

practical setup is best emulated by considering our models in the classification context.197

However, training the models using the regression labels instead of the classification labels198
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Table 1: Regression results. Rows correspond to models and columns correspond to
regression metrics.

MAE (%) RMSE (%) Pearson’s r Spearman’s r

FT-Transformer 1.44 1.95 0.51 0.51
XGBoost 1.53 1.89 0.58 0.59
CatBoost 1.40 1.84 0.6 0.59

directly allows us to leverage more fine-grained target information and avoid the challenges199

of severe class imbalance in the classification labels. Nonetheless, the predictions of our200

regression models could be evaluated in the classification context and we present these results201

in Table 2. We highlight that Table 2 shows two types of ROC AUC metrics: beam-level and202

patient-level. As mentioned in section II.B., the patient-level predictions are formed from203

the beam-level predictions by considering a patient plan to be failed if at least one of the204

beams in the plan is failed.

Table 2: Classification results. Rows correspond to models and columns correspond to
classification metrics.

Beam-level ROC AUC Patient-level ROC AUC

FT-Transformer 0.82 0.85
XGBoost 0.87 0.87
CatBoost 0.86 0.87
Mean MLC Gap Baseline 0.71 0.72

205

As the main takeaways of Table 2, we observe that the patient-level ROC AUC classifi-206

cation performance of FT-Transformer is very close to that of CatBoost and XGBoost and207

that all of the machine learning approaches significantly outperform the Mean-MLC-Gap208

baseline.209

While ROC AUC summarizes the classification performance for all of the prediction210

thresholds, a particular threshold has to be selected in practice. To investigate this, we211

further report the patient-level ROC curves for each of the machine learning models in212

Figure 1. Since missing a failed plan results in patient rescheduling, it is more costly than213

sending a successful plan for replanning. Therefore, in our clinical scenario it is beneficial to214

maximize the true positive rate of PSQA failure identification while keeping the false positive215

rate at a reasonable value. From the shape of the ROC curves in Figure 1, we observe that216
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(c) XGBoost

Figure 1: Patient-level ROC curves. (a) FT-Transformer (b) CatBoost (c) XGBoost.
The error bars represent the standard error across 5 seeds. The positive label corresponds
to plan failure.

FT-Transformer, CatBoost, and XGBoost serve this purpose well and all allow to achieve217

80% true positive rate while keeping the false positive rate under 20%.218

IV. Discussion219

We demonstrated that PSQA failure prediction is feasible using just the MLC leaf position220

data without feature engineering. We evaluated the FT transformer model in both regression221

and classification contexts and found that it outperforms the non-learned model with a mean222

MLC gap complexity metric, and performs similarly with the two leading gradient boosted223

decision tree models, CatBoost and XGBoost. The FT-Transformer neural network model,224

CatBoost, and XGBoost all provide a substantial improvement over the complexity-metric-225

based baseline. However, the FT-Transformer model comes with a benefit of being end-226

to-end differentiable, providing a differentiable map from MLC positions to the probability227

of PSQA failure. Therefore, this model could be leveraged as a differentiable regularizer228

that allows gradient-based leaf sequencing optimization algorithms to produce a deliverable229

treatment plan that is likely to pass PSQA.230

It is challenging to directly compare models across different studies due to the lack of231

existing benchmark datasets and there being numerous combinations of TPS, beam models,232

linear accelerators, MLC designs, and PSQA procedures, all of which can affect the perfor-233

mance, making apple-to-apple comparison difficult. However, we note that our results are234

consistent with the performance published in the literature21,22,23,28,32. Our models achieve235

classification performance of 0.85-0.87 ROC AUC and are able to identify 80% of treatment236

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 8

plans that would have failed the PSQA while sending for replanning only up to 20% of237

successful plans. Using these models in clinical practice can substantially reduce the need238

for replanning and possibly rescheduling patient due to PSQA failure, which imposes extra239

workload and stress, and can ultimately compromise patient safety.240

Our work was motivated by recognizing the correlation between MLC related complexity241

metrics and PSQA failures. This leads to the idea of improving leaf sequencing algorithms242

to produce MLC movements that are more likely to pass PSQA to begin with, which we243

believe is an improvement from the previous efforts to reduce the frequency of replanning244

and redoing PSQA by identifying a treatment plan that is likely to fail in the upstream of245

the workflow, i.e., prior to doing PSQA. We successfully built a model to predict PSQA246

failure solely based on MLC and jaw positions exploiting recent advances in tabular machine247

learning models. Incorporating FT-Transformer model in the leaf sequencing algorithms to248

estimate the potential reduction in the PSQA failure probability of the resulting plans is left249

for future work.250

V. Conclusion251

In this work we applied the leading tabular machine learning approaches to the problem of252

PSQA failure prediction based solely on MLC leaf positions, and obtained effective models253

which have both direct clinical practice impact to reduce the PSQA failure as well as potential254

to improve MLC leaf sequencing algorithms to produce treatment plans that are more likely255

to pass PSQA.256
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mization with RayMachine in Pinnacle, Ray-Search White Paper (2003).279

9 T. LoSasso, C.-S. Chui, and C. C. Ling, Comprehensive quality assurance for the delivery280

of intensity modulated radiotherapy with a multileaf collimator used in the dynamic281

mode, Medical physics 28, 2209–2219 (2001).282

10 G. A. Ezzell, J. M. Galvin, D. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao,283

L. Xing, and C. X. Yu, Guidance document on delivery, treatment planning, and clinical284

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 10

implementation of IMRT: report of the IMRT Subcommittee of the AAPM Radiation285

Therapy Committee, Medical physics 30, 2089–2115 (2003).286

11 D. A. Low, J. M. Moran, J. F. Dempsey, L. Dong, and M. Oldham, Dosimetry tools287

and techniques for IMRT, Medical physics 38, 1313–1338 (2011).288

12 D. A. Low, W. B. Harms, S. Mutic, and J. A. Purdy, A technique for the quantitative289

evaluation of dose distributions, Medical physics 25, 656–661 (1998).290

13 D. A. Low and J. F. Dempsey, Evaluation of the gamma dose distribution comparison291

method, Medical physics 30, 2455–2464 (2003).292

14 K. C. Younge, D. Roberts, L. A. Janes, C. Anderson, J. M. Moran, and M. M. Matuszak,293

Predicting deliverability of volumetric-modulated arc therapy (VMAT) plans using aper-294

ture complexity analysis, Journal of applied clinical medical physics 17, 124–131 (2016).295

15 S. Crowe, T. Kairn, N. Middlebrook, B. Sutherland, B. Hill, J. Kenny, C. M. Langton,296

and J. Trapp, Examination of the properties of IMRT and VMAT beams and evaluation297

against pre-treatment quality assurance results, Physics in Medicine & Biology 60, 2587298

(2015).299

16 J. M. Park, S.-Y. Park, H. Kim, J. H. Kim, J. Carlson, and S.-J. Ye, Modulation indices300

for volumetric modulated arc therapy, Physics in Medicine & Biology 59, 7315 (2014).301

17 S. Crowe, T. Kairn, J. Kenny, R. Knight, B. Hill, C. M. Langton, and J. Trapp, Treat-302

ment plan complexity metrics for predicting IMRT pre-treatment quality assurance re-303

sults, Australasian physical & engineering sciences in medicine 37, 475–482 (2014).304

18 L. Masi, R. Doro, V. Favuzza, S. Cipressi, and L. Livi, Impact of plan parameters on the305

dosimetric accuracy of volumetric modulated arc therapy, Medical physics 40, 071718306

(2013).307

19 J. Park, H. Wu, J. Kim, J. Carlson, and K. Kim, The effect of MLC speed and accel-308

eration on the plan delivery accuracy of VMAT, The British journal of radiology 88,309

20140698 (2015).310

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 11

20 M. Antoine, F. Ralite, C. Soustiel, T. Marsac, P. Sargos, A. Cugny, and J. Caron, Use of311

metrics to quantify IMRT and VMAT treatment plan complexity: A systematic review312

and perspectives, Physica Medica 64, 98–108 (2019).313

21 J. Li, L. Wang, X. Zhang, L. Liu, J. Li, M. F. Chan, J. Sui, and R. Yang, Machine314

learning for patient-specific quality assurance of VMAT: prediction and classification315

accuracy, International Journal of Radiation Oncology* Biology* Physics 105, 893–902316

(2019).317

22 L. Wang, J. Li, S. Zhang, X. Zhang, Q. Zhang, M. F. Chan, R. Yang, and J. Sui, Multi-318

task autoencoder based classification-regression model for patient-specific VMAT QA,319

Physics in Medicine & Biology 65, 235023 (2020).320

23 H. Hirashima, T. Ono, M. Nakamura, Y. Miyabe, N. Mukumoto, H. Iramina, and T. Mi-321

zowaki, Improvement of prediction and classification performance for gamma passing322

rate by using plan complexity and dosiomics features, Radiotherapy and Oncology 153,323

250–257 (2020).324

24 R. Yang et al., Commissioning and clinical implementation of an Autoencoder based325

Classification-Regression model for VMAT patient-specific QA in a multi-institution326

scenario, Radiotherapy and Oncology 161, 230–240 (2021).327

25 J. C. Lizar, C. C. Yaly, A. C. Bruno, G. A. Viani, and J. F. Pavoni, Patient-specific328

IMRT QA verification using machine learning and gamma radiomics, Physica Medica329

82, 100–108 (2021).330

26 T. Kairn, S. Crowe, J. Kenny, R. Knight, and J. Trapp, Predicting the likelihood of QA331

failure using treatment plan accuracy metrics, in Journal of Physics: Conference Series,332

volume 489, page 012051, IOP Publishing, 2014.333

27 T. Kusunoki, S. Hatanaka, M. Hariu, Y. Kusano, D. Yoshida, H. Katoh, M. Shimbo,334

and T. Takahashi, Evaluation of prediction and classification performances in different335

machine learning models for patient-specific quality assurance of head-and-neck VMAT336

plans, Medical physics 49, 727–741 (2022).337

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 12

28 D. Lam, X. Zhang, H. Li, Y. Deshan, B. Schott, T. Zhao, W. Zhang, S. Mutic, and338

B. Sun, Predicting gamma passing rates for portal dosimetry-based IMRT QA using339

machine learning, Medical physics 46, 4666–4675 (2019).340

29 S. Thongsawad, S. Srisatit, and T. Fuangrod, Predicting gamma evaluation results of341

patient-specific head and neck volumetric-modulated arc therapy quality assurance based342

on multileaf collimator patterns and fluence map features: A feasibility study, Journal343

of Applied Clinical Medical Physics , e13622 (2022).344

30 Y. Kimura, N. Kadoya, Y. Oku, T. Kajikawa, S. Tomori, and K. Jingu, Error detec-345

tion model developed using a multi-task convolutional neural network in patient-specific346

quality assurance for volumetric-modulated arc therapy, Medical Physics 48, 4769–4783347

(2021).348

31 Y. Huang et al., Virtual Patient-Specific Quality Assurance of IMRT Using UNet++:349

Classification, Gamma Passing Rates Prediction, and Dose Difference Prediction, Fron-350

tiers in Oncology , 2798 (2021).351

32 S. Tomori, N. Kadoya, T. Kajikawa, Y. Kimura, K. Narazaki, T. Ochi, and K. Jingu,352

Systematic method for a deep learning-based prediction model for gamma evaluation in353

patient-specific quality assurance of volumetric modulated arc therapy, Medical Physics354

48, 1003–1018 (2021).355

33 T. Matsuura, D. Kawahara, A. Saito, H. Miura, K. Yamada, S. Ozawa, and Y. Nagata,356

Predictive gamma passing rate of 3D detector array-based volumetric modulated arc357

therapy quality assurance for prostate cancer via deep learning, (2022).358

34 S. Tomori, N. Kadoya, Y. Takayama, T. Kajikawa, K. Shima, K. Narazaki, and K. Jingu,359

A deep learning-based prediction model for gamma evaluation in patient-specific quality360

assurance, Medical physics 45, 4055–4065 (2018).361

35 Y. Gorishniy, I. Rubachev, V. Khrulkov, and A. Babenko, Revisiting Deep Learning362

Models for Tabular Data, arXiv preprint arXiv:2106.11959 (2021).363

36 L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, CatBoost:364

unbiased boosting with categorical features, Advances in neural information processing365

systems 31 (2018).366

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 13

37 T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, in Proceedings of367

the 22nd acm sigkdd international conference on knowledge discovery and data mining,368

pages 785–794, 2016.369

38 M. Y. Law and B. Liu, DICOM-RT and its utilization in radiation therapy, Radiograph-370

ics 29, 655–667 (2009).371

39 G. H. Chan, L. C. Chin, A. Abdellatif, J.-P. Bissonnette, L. Buckley, D. Comsa,372

D. Granville, J. King, P. L. Rapley, and A. Vandermeer, Survey of patient-specific373

quality assurance practice for IMRT and VMAT, Journal of Applied Clinical Medical374

Physics 22, 155–164 (2021).375

40 Y. Pan, R. Yang, S. Zhang, J. Li, J. Dai, J. Wang, and J. Cai, National survey of patient376

specific IMRT quality assurance in China, Radiation Oncology 14, 1–10 (2019).377

41 H. Mehrens, P. Taylor, D. S. Followill, and S. F. Kry, Survey results of 3D-CRT and378

IMRT quality assurance practice, Journal of applied clinical medical physics 21, 70–76379

(2020).380

42 J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals381

of statistics , 1189–1232 (2001).382

43 G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu, Light-383

gbm: A highly efficient gradient boosting decision tree, Advances in neural information384

processing systems 30 (2017).385

44 R. Shwartz-Ziv and A. Armon, Tabular data: Deep learning is not all you need, Infor-386

mation Fusion 81, 84–90 (2022).387

45 S. Popov, S. Morozov, and A. Babenko, Neural oblivious decision ensembles for deep388

learning on tabular data, arXiv preprint arXiv:1909.06312 (2019).389

46 H. Hazimeh, N. Ponomareva, P. Mol, Z. Tan, and R. Mazumder, The tree ensemble390

layer: Differentiability meets conditional computation, in International Conference on391

Machine Learning, pages 4138–4148, PMLR, 2020.392

47 Y. Yang, I. G. Morillo, and T. M. Hospedales, Deep neural decision trees, arXiv preprint393

arXiv:1806.06988 (2018).394

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 14

48 P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulo, Deep neural decision forests,395

in Proceedings of the IEEE international conference on computer vision, pages 1467–396

1475, 2015.397

49 S. Badirli, X. Liu, Z. Xing, A. Bhowmik, K. Doan, and S. S. Keerthi, Gradient boosting398

neural networks: Grownet, arXiv preprint arXiv:2002.07971 (2020).399

50 G. Somepalli, M. Goldblum, A. Schwarzschild, C. B. Bruss, and T. Goldstein, SAINT:400

Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-401

Training, arXiv preprint arXiv:2106.01342 (2021).402

51 S. O. Arık and T. Pfister, Tabnet: Attentive interpretable tabular learning, in AAAI,403

volume 35, pages 6679–6687, 2021.404

52 X. Huang, A. Khetan, M. Cvitkovic, and Z. Karnin, Tabtransformer: Tabular data405

modeling using contextual embeddings, arXiv preprint arXiv:2012.06678 (2020).406

53 W. Song, C. Shi, Z. Xiao, Z. Duan, Y. Xu, M. Zhang, and J. Tang, Autoint: Automatic407

feature interaction learning via self-attentive neural networks, in Proceedings of the408

28th ACM International Conference on Information and Knowledge Management, pages409

1161–1170, 2019.410

54 J. Kossen, N. Band, C. Lyle, A. N. Gomez, T. Rainforth, and Y. Gal, Self-attention411

between datapoints: Going beyond individual input-output pairs in deep learning, Ad-412

vances in Neural Information Processing Systems 34 (2021).413

55 R. Wang, B. Fu, G. Fu, and M. Wang, Deep & cross network for ad click predictions,414

in Proceedings of the ADKDD’17, pages 1–7, 2017.415

56 R. Wang, R. Shivanna, D. Cheng, S. Jain, D. Lin, L. Hong, and E. Chi, DCN V2:416

Improved deep & cross network and practical lessons for web-scale learning to rank417

systems, in Proceedings of the Web Conference 2021, pages 1785–1797, 2021.418

57 A. Beutel, P. Covington, S. Jain, C. Xu, J. Li, V. Gatto, and E. H. Chi, Latent cross:419

Making use of context in recurrent recommender systems, in Proceedings of the Eleventh420

ACM International Conference on Web Search and Data Mining, pages 46–54, 2018.421

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.10.02.22280624doi: medRxiv preprint 

https://doi.org/10.1101/2022.10.02.22280624
http://creativecommons.org/licenses/by-nd/4.0/


Patient-specific QA Failure Prediction with Deep Tabular Models page 15

58 G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, Self-normalizing neural422

networks, Advances in neural information processing systems 30 (2017).423

59 J. Fiedler, Simple modifications to improve tabular neural networks, arXiv preprint424

arXiv:2108.03214 (2021).425
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A Hyperparameter search spaces436

A.1. FT-Transformer437

The number of attention heads is always set to 8.438

439

Table 3: Optuna hyperparameter search space for FT-Transformer

Parameter Search Space

Number of layers UniformInt[1, 4]
Feature embedding size UniformInt[64, 512]
Residual dropout {0, Uniform[0, 0.2]}
Attention dropout Uniform[0, 0.5]
FFN dropout Uniform[0, 0.5]
FFN factor Uniform[2/3, 8/3]
Learning rate LogUniform[1e− 5, 1e− 3]
Weight decay LogUniform[1e− 6, 1e− 3]

A.2. Catboost440

The hyperparameter search space and distributions are presented in Table 4.441

442

Table 4: Optuna hyperparameter search space for Catboost

Parameter Search Space

Max depth UniformInt[3, 10]
Learning rate LogUniform[1e− 5, 1]
Bagging temperature Uniform[0, 1]
L2 leaf reg LogUniform[1, 10]
Leaf estimation iterations UniformInt[1, 10]

A.3. XGBoost443

The hyperparameter search space and distributions are presented in Table 5.444

445
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Table 5: Optuna hyperparameter search space for XGBoost

Parameter Search Space

Max depth UniformInt[3, 10]
Min child weight LogUniform[1e− 8, 1e5]
Subsample Uniform[0.5, 1]
Learning rate LogUniform[1e− 5, 1]
Col sample by level Uniform[0.5, 1]
Col sample by tree Uniform[0.5, 1]
Gamma {0, LogUniform[1e− 8, 1e2]}
Lambda {0, LogUniform[1e− 8, 1e2]}
Alpha {0, LogUniform[1e− 8, 1e2]}
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