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Abbreviations 

1000G 1000 Genomes 

CCHC  Cameron County Hispanic Cohort 

em  expectation maximization 

GERA  Genetic Epidemiology Research on Aging Cohort 

LD  Linkage Disequilibrium 

LoF  Loss-of-Function 

METS  Mexican Metabolic Syndrome Cohort 

MGB   Mass General Brigham Biobank 

MXBB  Mexican Biobank Cohort 

PAGE  Population Architecture using Genomics and Epidemiology 

PRODIGY Progress in Diabetes Genetics in Youth 

PS  Polygenic Score 

QTL  Quantitative Trait Locus 

SIGMA Slim Initiative for Genomic Medicine in the Americas Cohorts 

T2D-GENES Type 2 Diabetes Genetics Exploration by Next-generation sequencing 

in multi-Ethnic Samples 

TODAY Treatment Options for Type 2 Diabetes in Adolescents and Youth 

TOPMed NHLBI Trans-Omics for Precision Medicine 

UKBB  UK Biobank 

WES  Whole Exome sequencing 
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ABSTRACT 

Hypothesis: The prevalence of type 2 diabetes is higher in Latino populations 

compared with other major ancestry groups. Not only has the Latino population 

been systematically underrepresented in large-scale genetic analyses, but 

previous studies relied on the imputation of ungenotyped variants based on the 

1000 Genomes (1000G) imputation reference panel, which results in suboptimal 

capture of low-frequency or Latino-enriched variants. The NHLBI Trans-Omics for 

Precision Medicine (TOPMed) reference panel represents a unique opportunity to 

analyze rare genetic variations in the Latino population. 

Methods: We evaluate the TOPMed imputation performance using genotyping 

array and whole-exome sequence data in 6 Latino cohorts. To evaluate the ability 

of TOPMed imputation of increasing the identified loci, we performed a Latino type 

2 diabetes GWAS meta-analysis in 8,150 type 2 diabetes cases and 10,735 

controls and replicated the results in 6 additional cohorts including whole-genome 

sequence data from the All of Us cohort. 

Results: We show that, compared to imputation with 1000G, the TOPMed panel 

improves the identification of rare and low-frequency variants. We identified 26 

distinct signals including a novel genome-wide significant variant (minor allele 

frequency 1.6%, OR=2.0, P=3.4×10-9) near ORC5. A Latino-tailored polygenic 

score constructed from our data and GWAS data from East Asian and European 

populations improves the prediction accuracy in a Latino target dataset, explaining 

up to 7.6% of the type 2 diabetes risk variance. 
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Conclusions: Our results demonstrate the utility of TOPMed imputation for 

identifying low-frequency variation in understudied populations, leading to the 

discovery of novel disease associations and the improvement of polygenic scores. 
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INTRODUCTION 

Latino is a diverse ethnic group recently admixed from Native American, European, 

and African ancestries with a high prevalence of metabolic disorders, including 

type 2 diabetes. Although genetic studies in the Latino populations are limited, they 

have revealed unexpected pathways and potential therapeutic targets for type 2 

diabetes.[1–4] This is the case for a Native American haplotype within the 

SLC16A11 gene, which was identified as the main genetic contributor to type 2 

diabetes in Latino people[1, 4], a rare risk variant within HNF1A unique to Latino 

populations[2] and a loss-of-function (LoF) Latino-enriched variant within IGF2 

associated with a 20% reduced risk of type 2 diabetes.[3] 

Unlike genetically homogenous populations, the complex linkage disequilibrium 

(LD) structure of admixed populations imposes challenges in implementing 

statistical methods that are crucial to maximize genetic discoveries.[5] This is 

especially relevant for genotype imputation, a method to estimate the genotype 

probabilities at genetic variants that have not been experimentally genotyped.[6] A 

major factor limiting the accuracy of genotype imputation in Latino samples has 

been the poor representation of their haplotypes in available reference panels. 

Until recently, the only available panel for the imputation of Latino samples was the 

1000G reference panel, whose latest version includes only 352 Latino samples out 

of 2,504 total samples.[7] The multi-ancestry NHLBI Trans-Omics for Precision 

Medicine (TOPMed) program has released a reference panel for genotype 

imputation which includes the highest sequencing coverage (i.e. 30x) and the 

largest number of reference samples (i.e. 97,256) to date, of whom ~15% are 
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Latino individuals. It has shown to increase the number of well-imputed low-

frequency variants in the admixed Latino cohort HCHS/SOL.[8, 9] 

We hypothesized that by boosting the identification of variants in Latino samples 

with the recently released TOPMed reference panel, we would consequently 

improve our knowledge of the genetic architecture of type 2 diabetes in the Latino 

population. We show that TOPMed improves the coverage of genetic variation, 

especially within the rare and low-frequency spectrum, in 6 Latino cohorts. We then 

performed a type 2 diabetes GWAS meta-analysis in this population and identified 

previously unreported genetic signals. We also performed association analyses on 

a collection of type 2 diabetes-related phenotypes from TOPMed Latino imputed 

datasets to allow the interpretation of our novel genetic variants that have low 

frequencies or are absent in other publicly available biobanks, which mainly 

contain individuals of European ancestry. Finally, we leveraged the generated 

GWAS data to develop, in combination with GWAS datasets from other ancestries, 

an improved type 2 diabetes polygenic score (PS) for the Latino population. 

 

SUBJECTS AND METHODS 

Discovery sample 

A detailed description of the methods is found in the electronic supplementary 

material. We aggregated data from 6 Latino cohorts with a total sample size of 

18,885 individuals (8,150 cases and 10,735 controls): the Slim Initiative for 

Genomic Medicine in the Americas (SIGMA) Cohorts[1–3], the Mexican Biobank 

Cohort (MXBB)[10], the Mass General Brigham (MGB) Biobank[11] and the 

Genetic Epidemiology Research on Aging Cohort (GERA)[12] (Figure 1, Table S1). 
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We selected Latino samples based on their genetically estimated ancestry and 

calculated the genetic-based global ancestry using Admixture[13] assuming five 

ancestral populations (k=5) (Figure S1). All human research was approved by the 

relevant Institutional Review Boards and conducted according to the Declaration of 

Helsinki. All participants provided written informed consent. 

 

Genotyping, quality control and imputation 

Genotyping was done using several commercially available genome-wide arrays, 

and for a subset of the samples (N=9,520), we integrated whole-exome 

sequencing (WES) (Table S1). We applied pre-imputation quality control to each 

dataset separately. Clean datasets were phased using SHAPEIT2[14] and used as 

input for imputation. For comparison purposes, we imputed the phased haplotypes 

using both 1000G Phase 3 version 5[15] and TOPMed reference panels freeze 

8[8]. 

 

Imputation performance evaluation 

We evaluated the performance of TOPMed and 1000G imputations by 

summarizing the chromosome-wise r2 quality measure and the number of well-

imputed (r2≥0.8) variants at different allele frequency thresholds. We used 

available WES data from SIGMA3 cohort and estimated the proportion of the 

sequenced variants, for chromosome 22 only, that were well-imputed with 

TOPMed and 1000G panels at different WES allele frequency thresholds. We used 

SnpEff[16] to annotate the WES variants and estimated the percentage of well-
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imputed variants identified with TOPMed and 1000G imputations. We also 

calculated the effective sample size needed to reach 80% statistical power to 

detect genome-wide significant associated signals (∝=5×10-8) at different effect 

sizes and allele frequencies covered by the imputations. 

 

Type 2 diabetes association and meta-analysis 

Association analyses were performed in each cohort with SNPTEST[17]. Models 

were adjusted for sex, age, BMI and 10 PCs to account for population structure. 

We ran additional models without adjusting for BMI. Only well-imputed variants 

(r2≥0.5) were meta-analyzed using the inverse of the corresponding squared 

standard errors in METAL.[18] The statistical significance threshold was set to 

P<5×10-8. 

To extract the distinct type 2 diabetes associated signals, we clumped all variants 

with an association P-value<5×10-6. We set an LD r2=0.5 and a distance between 

variants of 250 kb. If the variant was located within a previously reported type 2 

diabetes-related locus, we used a conditioning strategy to test for distinct signals. 

Distinct variants with sub-genome-wide significance (P<1×10-6) that were only 

imputed with the TOPMed reference panel, showed increased frequency in the 

Latino population and were > 250 kb from other reported genome-wide significant 

variants from large consortia analyzing either European or East Asian 

populations[19, 20] were considered for further investigation. 

 

Replication sample 
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Variants associated with type 2 diabetes risk at genome-wide and sub genome-

wide significance were tested for replication in six independent cohorts: the 

Cameron County Hispanic Cohort (CCHC)[21], the Urban American Indians and 

Arizona Pima Indians cohorts[22], the Population Architecture using Genomics and 

Epidemiology (PAGE) study[23], the All of Us Research Program[24] and the 

Progress in Diabetes Genetics in Youth (PRODIGY), which comprises the 

Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY)[25], the 

SEARCH for Diabetes in Youth studies[26], the Type 2 Diabetes Genetics 

Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) 

cohorts and the Mexican Metabolic Syndrome (METS) Cohort.[27] (Table S2). 

 

Quantitative Trait Locus (QTL) analyses 

Given the lack of large-scale publicly available biobanks with Latino samples that 

may allow for better characterization of our novel signals, we assembled a 

collection of cohorts to perform QTL analyses focused on 46 glycemic, 

anthropometric and lipid traits. In addition to 5 of the Latino cohorts analyzed in the 

type 2 diabetes meta-analysis (i.e. SIGMA1, SIGMA2, SIGMA3, MXBB and MGB 

Biobank), we included three extra cohorts, which we also imputed to the TOPMed 

panel: the METS Cohort, the Mexican Hypertriglyceridemia (MHTG) Cohort, as 

well as the genetically identified Latino samples from the UK Biobank (UKBB).[28] 

We also analyzed the Nightingale Nuclear Magnetic Resonance-based panel of 

168 metabolomic biomarkers in Latino samples from the UKBB. Association 

analyses were done with a maximum of 26,400 adult Latino individuals depending 

on the trait, of whom 19,459 were diabetes-free. 
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Credible sets 

For each novel variant, we identified the set of variants with 99% probability of 

containing the causal variant. We used a Bayesian method[29], considering 

variants in LD with the lead variant (r2>0.1). We calculated LD using genetic data 

from 1,996 Hispanic/Latino samples from TOPMed Freeze 5b. 

 

Genomic annotation 

We used the 99% credible sets for each novel signal to annotate their genomic 

effect using the VEP[30] (GRCh38.p7) and SNPNEXUS[31] applications. We used 

GTEx V8[32] to assess the influence of the variants in gene-level expression, as 

well as the TIGER Portal[33] for evaluating the gene-level expression in pancreatic 

islets and the Islet Gene View[34] for assessing the gene co-expression in human 

islets. We also assessed individual variant associations with a variety of common 

phenotypes and diseases using the Common Metabolic Disease Knowledge Portal 

(cmdgenkp.org. 2021 Nov 15), as well as other resources. 

 

Expression of genes near novel variants 

We assessed the expression levels of the genes ± 500 kb around the novel signals 

in human islets under different conditions pertaining to type 1 diabetes and type 2 

diabetes. Gene expression differences between groups were assessed using P-

values and adjusted P-values (Benjamini Hochberg correction) determined by the 
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Wald test using the DESeq2 pipeline.[35] Transcript per million (TPM) was 

normalized by Salmon 1.4.0.[36] 

 

Polygenic scores 

Polygenic scoring using single ancestry summary statistics and LD reference 

panels was calculated via Bayesian Regression and Continuous Shrinkage priors 

as implemented in PRS-CS.[37] We used the UKBB LD reference panel and 

GWAS summary statistics from European[19], East Asian[20] and Latin American 

populations. GWAS Latino summary statistics were calculated using a meta-

analysis with five of the discovery cohorts (i.e. SIGMA1, SIGMA2, SIGMA3, MGB, 

and GERA). Then, we used the estimated posterior SNP effect sizes for each 

ancestry to calculate and evaluate the performance of the PSs in a training cohort 

(i.e. MXBB). The best model was tested in a target cohort (i.e. the METS Cohort). 

Given that the ancestry-specific PSs were not highly correlated (r2<0.3), we also 

used PRS-CSx[38], a novel method that improves cross-population polygenic 

prediction by integrating GWAS summary statistics from multiple populations. We 

assessed the performance of the ancestry-specific versus the cross-population PS. 

 

RESULTS 

Overall analysis strategy 

Figure 1 summarizes our overall analysis strategy. We meta-analyzed 6 type 2 

diabetes GWAS of Latin American ancestry, comprising a total of 8,150 cases and 

10,735 controls. Individuals were from hospital and population-based studies. All 

cohorts were imputed with TOPMed and 1000G Phase 3 panels and the imputation 
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performance was evaluated. To replicate the novel loci, we analyzed 13,595 type 2 

diabetes cases and 23,403 controls from 6 independent cohorts of Latino ancestry. 

To gain further insight into the novel loci, especially for variants enriched in Latin 

American ancestry, we created a Latin American collection of type 2 diabetes-

related phenotypes that included a total of 26,400 Latino participants with 46 

available glycemic and anthropometric traits, as well as 168 metabolomic traits. We 

used publicly available resources to interrogate our top signals, including functional 

annotation of the credible sets and evaluating gene expression of nearby genes in 

pancreatic islets from either type 1 diabetes or type 2 diabetes cases and controls 

or treated under conditions relevant for diabetes pathophysiology. We then used 

the generated Latino GWAS data, in combination with GWAS from other 

ancestries, to construct ancestry-specific or cross-population type 2 diabetes PSs 

(Figure 1). 

 

TOPMed imputation performance 

Across all cohorts, imputation using the TOPMed reference panel resulted in 41M 

high quality (r2≥0.8) variants on average, of which 24M were rare (MAF<0.1%) 

representing a 6.5-fold increased number of rare variants imputed with TOPMed 

compared to 1000G (Figure 2a). For variants that were imputed by both panels in 

all cohorts, the quality of imputation consistently improved when using TOPMed, 

particularly for low-frequency and rare variants (Figure 2b). 

The improvement of TOPMed imputation to detect low-frequency and rare variation 

was confirmed using WES data. The TOPMed panel allowed the identification of 
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>80% of the sequenced variants with a WES MAF≥0.1% compared to 60% for the 

same MAF cutoff with the 1000G panel (Figure 2d). The TOPMed panel also 

improved the identification of likely pathogenic variants predicted as deleterious, 

which usually occur at low frequency (Figure 2e). 

 

Type 2 diabetes GWAS meta-analysis 

To illustrate the gain in discovery when using TOPMed imputation, we tested 

genetic variants for association with type 2 diabetes in 6 cohorts, meta-analyzing 

65M variants with an imputation r2 quality ≥0.5. Our discovery sample comprised a 

total of 18,885 Latino non-related individuals (8,150 cases, 10,735 controls) (Figure 

1, Table S1, Figure S1). 

We identified 26 distinct variants at 13 loci associated with type 2 diabetes at a 

standard genome-wide significance threshold of P<5×10-8. Among them, we 

replicated 25 previously reported type 2 diabetes-associated common variants, 

including those consistently identified in multiple populations (e.g. variants at 

KCNQ1 and TCF7L2) and others enriched in the Latino population (e.g. variants at 

SLC16A11) (Figure 3a, Table S3, Figure S2). 

We identified a novel locus between the ORC5 and LHFPL3 genes on 

chromosome 7. The intergenic index variant, rs2891691, has low frequency in 

Latino people and is associated with 2-fold increased odds of developing type 2 

diabetes (MAF=1.7%, OR [95% CI] =2.0 [1.59-2.52], P=3.4×10-9) (Figure 3b,c). 

Although it was also imputed with the 1000G panel, TOPMed’s higher imputation 

quality strengthened the association (1000G: mean±SD imputation r2=0.948 ± 
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0.057, P=2.3×10-8; TOPMed: mean ± SD imputation r2=0.983 ± 0.009, P=3.4×10-9). 

This variant is rare in Europeans, yet prevalent among African and East Asian 

populations. However, no association with type 2 diabetes has been reported in 

these populations. The lack of association in African ancestry may suggest that the 

lead variant we identified is in LD with the causal variant in the Latin American but 

not in African or East Asian populations, a phenomenon also observed in other 

multi-ancestry meta-analyses.[39] It can also be explained by lack of power, or 

differences in environmental exposures in these populations. 

A sex-dimorphism in RELN gene expression has been documented, with higher 

RELN expression in women[40] and sex hormones likely mediating RELN 

expression. Because of the proximity of RELN to rs2891691, we evaluated the sex-

specific association with type 2 diabetes and also tested for heterogeneity between 

sex-specific allelic effects using GWAMA.[41] We found that rs2891691 showed a 

larger effect and was more associated with type 2 diabetes in women (OR [95% CI] 

=2.4 [1.73-3.22], P=6.6×10-8) compared to men (OR [95% CI] =1.5 [1.08-2.19], 

P=0.018), yet the between-sex heterogeneity did not reach statistical significance 

(P=0.076) (Table S5). 

 

Replication analysis 

The replication analysis comprised 13,617 type 2 diabetes cases and 20,822 

controls (Table S2). We assessed the association of rs2891691 with type 2 

diabetes in the four replication cohorts it was present. The meta-analysis of all 

replication cohorts was nominally significant and showed a consistent direction of 
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effect with the discovery sample (OR [95% CI] =1.18 [1.02-1.36], P=0.025) (Figure 

3c, Table S4). 

By querying our Latin American collection of type 2 diabetes-related phenotypes 

we found that the rs2891691 type 2 diabetes risk allele C was nominally associated 

with lower fasting glucose levels (beta [95% CI] =-0.18 [-0.02 - -0.034] mg/dl, 

P=0.026) (Table S7). 

The 99% credible set consisted only of the index variant rs2891691 (Table S9), 

which is in a quiescent or repressed chromatin state in diabetes-relevant tissues, 

such as islets of Langerhans, adipocytes, skeletal muscle, and adipose tissue 

(ChromHMM 13-state model). However, this variant (chr7:104276872:C:A, hg38) is 

located in a chromatin region (chr7:104276536-104277258) that shows stable 

open chromatin status after 2 or 4h of IFNα exposure in EndoC-βH1 cells, a human 

beta cell line.[42, 43] IFNα treatment induces endoplasmic reticulum stress in 

human islets and EndoC-βH1 cells, consequently reducing the insulin content with 

a rise in the proinsulin:insulin ratio.[44] 

To better characterize the role of the novel locus ORC5/LHFPL3, we assessed 

gene expression using the GTEx[32] and TIGER[33] Portals. We found that the 

ORC5 gene is expressed ubiquitously, while LHFPL3 is specifically expressed in 

the brain (Figure S4a,b). We then assessed the expression levels of genes ± 500 

kb around the novel signal in human islets under different conditions relevant to 

diabetes pathophysiology. ORC5 was expressed in human islets under basal 

conditions (Figure S5a). It was downregulated after 2h and 8h exposure to IFNα, 
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and upregulated by exposure to brefeldin A, an endoplasmic reticulum and Golgi 

stress inducer that inhibits glucose-stimulated insulin secretion[45] (Figure S5c). 

 

Prioritizing sub-genome-wide significant variants with additional evidence 

We next searched for variants whose association with type 2 diabetes was at sub-

genome-wide significance (P<5×10-6) but that deserved further replication as they 

were enriched or unique of Latino population, and/or exclusively imputed with the 

TOPMed panel. (Figure 4a). We first identified 23 sub genome-wide distinct 

variants. Of these, three located in or near TACC2, FGFR2, and CCND2 were in 

known type 2 diabetes loci but retained locus-wide significance (P<5×10-5) after 

conditioning on the nearest known associated variant. We consider these three 

variants as distinct from known type 2 diabetes-associated loci. In addition, three 

sub-genome-wide significant variants are located more than 1 Mb away from any 

previously reported type 2 diabetes association and are potentially novel (Figure 

4a, Table S6). We prioritized rs1016378028, a low frequency variant associated 

with 1.77-fold increased risk of developing type 2 diabetes (MAF=1.3%, OR [95% 

CI] =1.77 [1.41-2.21], P=7.0×10-7), because it is a Latino private variant, only 

imputed with the TOPMed reference panel, lies in an intron of HDAC2, a gene 

under strong purifying selection (probability of being LoF intolerant [pLI]=1, 

gnomAD, accessed March 2022) and it is highly and specifically expressed in 

pancreatic islets (tiger.bsc.es, accessed March 2022).[33] 
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Although the replication results did not show statistical significance, the direction of 

the effect was consistent with the discovery effect (OR [95% CI] =1.17 [0.94-1.45], 

P=0.1547) (Figure 4b,c, Table S4, S6). The variant is almost absent in non-Latino 

populations (MAF<0.01%). In the DIAMANTE European meta-analysis[46], a 

suggestive signal ~80 kb upstream of rs1016378028 (rs4945979, P=4.8×10-6) was 

reported. After conditioning for the rs4945979 variant, statistical significance of our 

identified variant remained essentially the same (OR [95% CI] =1.75 [1.4-2.2], 

P=4.5×10-7). 

By analyzing association with metabolites, we observed that the rs1016378028 risk 

allele was significantly associated with higher levels of acetone (beta [95% CI] 

=3.3[2.06-4.48], P=1.2×10-7), 3-hydroxybutyrate (beta [95% CI] =2.7[1.5-3.9], 

P=1.01×10-5) and acetoacetate (beta [95% CI] =2.5[1.3-3.6], P=3.3×10-5) (Figure 

4d, Table S8). The risk allele was also nominally associated with lower hip 

circumference (beta [95% CI] =-0.1[-0.01 - -0.18], P=0.02) and higher waist-to-hip 

ratio (beta [95% CI] =0.13[0.01-0.24], P=0.03) (Table S7). 

Because HDAC2 is highly and specifically expressed in pancreatic islets, 

compared to other human tissues (GTEx[32] and TIGER[33] Portals) (Figure 4e), 

we examined the HDAC2 gene expression in human islets exposed to different 

conditions and diseases states (i.e., type 1 diabetes and type 2 diabetes). 

Exposure of human islets to IFNα (8h log2-fold change=-0.38, P=6×10-7, 18h log2-

fold change=-0.28, P=3×10-4) or IFNγ+IFNβ (log2-fold change=-0.39, P=3×10-7) 

showed downregulated HDAC2 expression (Figure 4f). These cytokines mimic the 
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proinflammatory milieu of type 1 diabetes, inhibit β cell function[47, 48], induce β 

cell stress and may trigger β cell dedifferentiation in type 2 diabetes.[49, 50] 

 

Development of PSs for the Latino population 

We then developed a PS for type 2 diabetes in Latino people using our TOPMed 

imputed GWAS meta-analysis data. This PS explained 1.6% of type 2 diabetes 

status variance (Figure 5a), which is expected given the relatively small sample 

size of the GWAS used to construct the PS compared to European and East Asian 

summary statistics. The PS derived from the DIAMANTE European GWAS[46] and 

from AGEN East Asian GWAS[20] explained 5.1% and 4.4% of the type 2 diabetes 

variance in the Latino population, respectively. We observed that PSs of European, 

East Asian, and our Latino TOPMed meta-analysis showed a weak correlation 

(r2<0.2), suggesting that the three PSs could provide orthogonal information and 

improve the overall predictive performance. To develop a PS that incorporates 

GWAS data from the three ancestries, we used PRS-CSx[51], a method that 

allows for the integration of summary statistics and LD reference panels from 

different ancestries. The trans-ancestry PRS-CSx including our Latino GWAS, 

European, and East Asian GWAS summary statistics, explained 7.6% of the type 2 

diabetes variance in the Latino target sample. Our Latino GWAS added 1% of the 

explained variance compared to the PS using only European and East Asian 

GWAS summary statistics, which explained 6.6% of the variance. 

Each standard deviation of the trans-ancestry PRS-CSx was associated with an 

OR [95% CI] =1.9 [1.6-2.2], P=3.7×10-19. People in the 2.5 percentile of the PRS-
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CSx showed 4 times more risk of developing type 2 diabetes (OR [95% CI] =4.01 

[1.87-8.62], P=3.7×10-4) (Figure 5c). The ROC AUC [95% CI] of the full model 

including the trans-ancestry PRS-CSx was 0.748 [0.72-0.775] compared to the 

AUC [95% CI] of 0.729 [0.701-0.758] of the PRS-CS including European GWAS 

summary statistics only, representing a 2% improvement in prediction accuracy 

(P=0.008). 

 

DISCUSSION 

Latino populations have been systematically underrepresented in most genetic 

studies. Yet, recent studies of type 2 diabetes in Latino populations have been 

fruitful, even with sample sizes orders of magnitude smaller than those of 

European or East Asian ancestries. To date, the poor representation of Latino 

samples with genotype and phenotype data constrains nearly every step of a gene-

disease association framework, including genotype imputation, a cost-effective 

technique to improve the resolution of a GWAS. This is more problematic for low-

frequency and rare variation. Instead, next-generation sequencing technologies 

have typically been chosen, but are more expensive, precluding the study of large 

samples. This study was motivated by the recent release of the TOPMed 

imputation panel, which is the reference panel with the largest number of Latino 

haplotypes as compared to all available reference panels. 

In this study, we aggregate genotype and WES data from 6 separate datasets to 

test the improvement in accuracy of the TOPMed imputation compared to 1000G. 

To illustrate how this reference panel can boost the discovery of complex disease 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 4, 2022. ; https://doi.org/10.1101/2022.09.30.22280535doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.30.22280535
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

variants we performed a type 2 diabetes GWAS meta-analysis using the TOPMed 

imputed data. TOPMed imputation not only improved the statistical significance of 

our findings but allowed for the testing of up to 24M rare variants, compared to 3M 

properly imputed with the 1000G panel. The high-quality of TOPMed imputation at 

low frequency and rare spectrum is especially relevant for the study of disease-

causing variation, because deleterious variants usually span such frequencies. We 

show that by imputing with TOPMed, it is possible to test >90% of the variants with 

a MAF≥0.1% predicted to be deleterious by CADD score; these variants were 

previously only possible to detect by relying on more expensive sequencing 

technologies. While ascertaining variants at frequencies lower than 0.1% may still 

require WGS or WES, we estimate that the power to identify associated variants 

may be limited unless we undertake sequencing efforts with sample sizes orders of 

magnitude larger than our study. For example, for MAF<0.1%, the effective sample 

size required to reach sufficient statistical power to detect associations with an 

effect of OR>2.0 is above 170,000 individuals. Since the cost for sequencing such 

a large sample size is a major constraint for the study of underrepresented 

populations, we propose that highly accurate imputation with dense reference 

panels may be a more cost-effective approach. 

In this study, we identified a novel low-frequency variant associated with type 2 

diabetes, rs2891691, which lies between the ORC5 and LHFPL3 genes and 

showed increased accuracy of imputation and association power when using the 

TOPMed panel. ORC5 encodes the subunit 5 of the origin recognition complex 

implicated in the DNA replication origins, and in transcription silencing and 
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heterochromatin formation.[52] LHFPL3 is a member of the tetraspanin 

superfamily, which functions as membrane protein organizer. The rs2891691 risk 

allele is present in 1% frequency in Latino people. Carriers are associated with 

two-fold increased risk of developing type 2 diabetes, with a possibly higher risk in 

women. 

By using the TOPMed panel, we identified a second low-frequency variant, 

rs1016378028, associated with a 1.7-fold increased risk of type 2 diabetes, which 

is not imputed with the 1000G panel. This variant was prioritized from a subset of 

variants at a sub genome-wide significant threshold that showed additional 

evidence of association. rs1016378028 is a Latin American private variant 

(MAF=1.3% in Latin America, MAF=0.2% in East Asia, MAF<0.05% in other 

populations), and lies within HDAC2, a gene highly intolerant of protein-changing 

variation that is mostly expressed in pancreatic islets.[33] 

HDAC2 is a member of the histone deacetylase family which catalyzes the removal 

of acetyl groups from histones, a chromatin modification involved in the repression 

of gene transcription. HDACs play a regulatory role in insulin signaling, β cell 

function and pancreatic endocrine cell development. For instance, at low glucose 

levels, HDAC2 is recruited to the insulin promoter to downregulate its 

expression.[53] Consistently, in human islets, the HDAC2 expression negatively 

correlates with insulin gene expression (r=-0.56, FDR=3.7×10-16) and positively 

correlates with IAPP expression, which encodes for a hormone secreted after food 

intake to promote satiation (r=0.38, FDR=1.8×10-7).[34] HDAC2 also binds and 

deacetylates IRS-1 uncoupling its downstream phosphorylation cascade. Both 
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insulin expression and signaling are partially restored after treatment with HDAC2 

inhibitors.[54, 55] We show that cytokine treatment of pancreatic islets 

downregulated HDAC2 expression. This may be a protective response, given that 

HDAC inhibition favors β cell development, shows anti-inflammatory effects and β 

cell protection against cytokine-induced apoptosis.[54, 55] 

Because there is no comprehensive phenome-wide association data to guide the 

interpretation of variants enriched in Latin American populations, we assembled a 

QTL resource focused on glycemic and cardiometabolic traits by aggregating data 

from a total of 26,400 Latino individuals. This approach allowed us to follow up the 

identified signals and will be a valuable resource for future associations studies of 

Latino enriched variants with cardiometabolic traits. We observed that carriers of 

the rs1016378028 risk allele have higher levels of the ketone bodies, acetone 3-

hydroxybutyrate and acetoacetate, which are produced through the breakdown of 

fatty acids and serve as an alternative energy source to glucose. Uncoupled 

hepatic production of ketone bodies may be a pathological consequence of relative 

insulin deficiency in diabetes.[56] 3-hydroxybutyrate also participates in the lysine 

β-hydroxybutyrylation, a histone mark that promotes transcription of starvation-

responsive genes.[57] While the mechanism linking rs1016378028, diabetes risk 

and 3-hydroxybutyrate levels remains to be determined, our results suggest the 

rs1016378028 variant and HDAC2 as a potential genetic type 2 diabetes risk 

factor. 

We leveraged our GWAS results and existing publicly available data to develop an 

improved PS for Latino ancestry. PSs developed in a particular ancestry group 
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poorly transfer to other populations, exacerbating disparities between populations. 

PS performance is greatly impacted by the accuracy of the effect sizes for each of 

the variants included in the GWAS summary statistics, which are influenced by the 

study sample size. We provide an improved PS model for Latino populations, by 

using a combination of GWAS and LD data from East Asian, European and our 

Latino GWAS. This PS showed a performance similar to the previously reported in 

European ancestry[58] with individuals at the top 2.5 percentile showing a four-fold 

increased risk of type 2 diabetes. Evaluating this PS in additional external datasets 

of Latino ancestry may prove useful in assessing its potential clinical utility. 

Leveraging new resources to reanalyze Latin American data, such as imputation 

with the TOPMed reference panel, proved to be successful in identifying additional 

type 2 diabetes-related loci. Further efforts are needed to increase the power of 

discovery and to follow up on novel findings in diverse populations. Until then, 

translation of identified genetic variation-to-function and application to the clinic in 

Latin American populations will remain highly compromised compared to the 

resources available for European populations. For example, the lack of multi-omic 

data in publicly available biobanks including metabolically relevant tissues from 

individuals of Latin American descent, limits the characterization of the Latino-

enriched or private novel signals. While in this study we gathered a high number of 

Latino samples with extensive biomarker and clinical characterization, larger 

sample sizes are still needed to achieve sufficient statistical power to detect low-

frequency variants. Efforts must be expanded to build shareable resources with a 

high representation of different ancestries. This would enable ancestry-specific 

effects to be interpreted within the local ancestry context, which is instrumental to 
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identify causal genes, to improve the biological mechanistic insight and to develop 

targeted therapies. 

Overall, this study confirms the superior imputation performance of TOPMed, 

representing a cost-effective and unique opportunity to analyze low-frequency and 

rare variation in Latino samples at scale. It also presents the largest type 2 

diabetes GWAS meta-analysis performed in individuals of Latin American ancestry 

imputed with the TOPMed reference panel. Despite the sample size being orders 

of magnitude smaller compared to studies performed in other populations, the 

novel discoveries presented here suggest that more novel genetic associations 

and new biology of type 2 diabetes will be found as the sample size of discovery 

samples, reference panels, and large-scale biobanks with phenome-wide data 

increase in studies including non-European populations. 

 

FIGURES TITLES AND LEGENDS 

Fig. 1. General overview of the study. Six cohorts of admixed Latino ancestry, 

representing a total of 8,150 type 2 diabetes cases and 10,735 controls, were 

imputed with the TOPMed and 1000G Phase 3 panels (black box). A type 2 

diabetes GWAS meta-analysis of the imputed variants resulted in the identification 

of two novel loci, which were tested for replication in six additional Latino cohorts 

(green box). They were also interrogated for association with a collection of 

phenotypes in eight Latino cohorts (blue box) and for functional evidence in 

multiple available resources (grey box). The generated Latino type 2 diabetes 

GWAS data was used, in combination with GWAS from other ancestries, to 
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construct ancestry-specific and cross-population type 2 diabetes polygenic scores 

(brown box). 

 

Fig. 2. Performance of the TOPMed reference panel for the imputation of 

Latino samples. 

a. Number of chromosome-wide well-imputed variants (imputation r2≥0.8) by allele 

frequency for each analyzed cohort when using the 1000 Genomes Phase 3 (blue) 

or the TOPMed (black) reference panels. 

b. Average chromosome-wide imputation quality by allele frequency for each 

analyzed cohort when using the 1000 Genomes Phase 3 (blue) or the TOPMed 

(black) reference panels. 

c. Effective sample size required for reaching 80% statistical power to detect 

genome-wide significant signals at different effect sizes (OR). The dotted lines 

show the discovery effective sample size of this study (N=18,531) 

d. Percentage of the exome sequenced variants in chromosome 22 that could be 

imputed when using the 1000 Genomes Phase 3 (blue) or the TOPMed (black) 

reference panels. 

e. Percentage of the exome sequenced LoF and deleterious CADD-predicted 

variants in chromosome 22 that could be imputed when using the 1000 Genomes 

Phase 3 (blue) or the TOPMed (black) reference panels. 

 

Fig. 3. Type 2 diabetes GWAS meta-analysis in Latino population. 
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a. Manhattan plot of the meta-analysis association statistics highlighting the loci 

with genome-wide significance (red) or sub genome-wide significance (orange) for 

type 2 diabetes. 

b. Regional association plot of the novel ORC5/LHFPL3 locus associated with type 

2 diabetes risk. 

c. Forest plot of the GWAS association statistics for the novel ORC5/LHFPL3 locus 

in the discovery (black) and the replication (blue) cohorts. 

 

Fig. 4. Sub genome-wide significant HDAC2 novel type 2 diabetes loci. 

a. Scatter plot of the effect allele frequencies from the sub genome-wide significant 

variants in Latino versus European populations, highlighting those that are distinct 

from the known lead type 2 diabetes -associated variants (purple) and those that 

are in novel loci (yellow). 

b. Regional association plot of the novel HDAC2 locus associated with type 2 

diabetes risk. 

c. Forest plot of the association statistics in the discovery (black) and the 

replication (blue) cohorts. 

d. Serum 3-hydroxybutyrate levels in non-carriers and carriers of rs1016378028 

variant. 

e. HDAC2 gene expression in multiple tissues from GTEx and TIGER portals. 

f. HDAC2 gene expression in human islets from type 1 and type 2 diabetes and 

control islets treated or not with different cytokines or other stressor compounds. 

INF-α: interferon alpha; INF-γ: interferon gamma; IL1β: interleukin 1 beta. The 
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presence of each condition is labeled in orange and the control group in green. 

Asterisks represent the adjusted P-values (Benjamini Hochberg correction). ** 

adjusted P<0.01, *** adjusted P<0.001. 

 

Fig. 5. Polygenic Risk Score for the risk of type 2 diabetes in Latino 

population. 

a. Variance explained by a PS using these Latino GWAS association statistics 

(green), the AGEN East-Asian GWAS association statistics (red), the DIAMANTE 

European GWAS association statistics (grey), a combination of DIAMANTE 

European and AGEN East-Asian GWAS association statistics (yellow) and a 

combination of DIAMANTE European, AGEN East Asian and these Latino GWAS 

association statistics (blue). METSB was used as testing cohort. 

b. ROC curves for the type 2 diabetes risk prediction explained by a model 

including sex, age and 10 PCs of ancestry (black) and a model including the same 

covariates and a PS constructed using combination of DIAMANTE European, 

AGEN East Asian and these Latino GWAS association statistics (blue). 

c. Distribution of a cross-population PS using a combination of DIAMANTE 

European, AGEN East Asian and these Latino GWAS association statistics in type 

2 diabetes cases (blue) and controls (black). Table shows the OR per standard 

deviation attributed to the cross-population PS, as well as the OR for high-risk 

individuals. 
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Full summary statistics will be made available through the Common Metabolic 

Diseases Knowledge Portal (https://cmdkp.org/), and the GWAS catalog. PRS 

weights for each ancestry will be shared via the PGS catalog 

(https://www.pgscatalog.org) and the Common Metabolic Diseases Knowledge 

Portal. 
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Figure 5 
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