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Abstract 19 

Invasion of the malaria vector Anopheles stephensi across the Horn of Africa threatens 20 
control efforts across the continent, particularly in urban settings where the vector is able to 21 
proliferate. Malaria transmission across Africa is primarily determined by the abundance of 22 
dominant vectors, which often varies seasonally with rainfall. However, it remains unclear 23 
how An.stephensi abundance changes throughout the year, despite this being a crucial input 24 
to surveillance and control activities. We collate longitudinal catch-data from across its 25 
endemic range to better understand the vector’s seasonal dynamics and explore the 26 
implications of this seasonality for malaria surveillance and control across the Horn of Africa. 27 
Our analyses reveal pronounced variation in seasonal dynamics, the timing and nature of 28 
which are poorly predicted by rainfall patterns. Instead, they are associated with temperature 29 
and patterns of land-use, with seasonality frequently differing between rural and urban 30 
settings. Our results show that timing entomological surveys to coincide with rainy periods is 31 
unlikely to improve the likelihood of detecting An.stephensi. Integrating these results into a 32 
model of malaria transmission, we show that timing indoor residual spraying campaigns to 33 
coincide with peak rainfall offers little improvement in reducing disease burden compared to 34 
starting in a random month. Our results suggest that unlike other major malaria vectors in 35 
Africa, rainfall may be a poor guide to predicting the timing of peaks in An.stephensi-driven 36 
malaria transmission. This highlights the urgent need for longitudinal entomological 37 
monitoring of the vector in its new environments given recent invasion and potential spread 38 
across the continent.  39 
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Introduction  41 

There has been an estimated 40% reduction in the burden of malaria since 2000, 42 
predominantly due to significant scale-up of control interventions1. Increasing urbanisation of 43 
Africa’s human population (31% to 43% between 1990 and 2018, with >60% expected to live 44 
in urban areas by 20502) is also thought to have indirectly contributed to reductions in 45 
disease burden. Previous work has found significantly lower Entomological Inoculation Rates 46 
(EIR) in urban compared to rural settings3,4. This is thought to be underpinned by factors 47 
including differences in housing quality5,6, reduced suitability of habitats for Anopheles 48 
breeding in urban settings7–9, better access to treatment10, and higher population densities 49 
leading to lower mosquito-to-human ratios (and reduced transmission)11. Whilst these trends 50 
are not always consistently identified12,13 (including previous work showing some vectors can 51 
adapt to urban environments14), increasing urbanicity across Africa is anticipated to 52 
complement planned scale-up of malaria control interventions aimed at achieving the targets 53 
outlined in the World Health Organization’s 2030 Global Technical Strategy for Malaria15.  54 

This beneficial impact of increasing urbanization on malaria burden is contingent on urban 55 
settings remaining areas of comparatively low transmission. This is currently under threat in 56 
Africa because of the invasion and establishment of An. stephensi, a malaria vector that is 57 
potentially capable of thriving in urban areas of the continent16. There are three known forms 58 
of the species (“type”, “intermediate” and “mysorensis”) found across its native range in 59 
South Asia. The mysorensis form is predominantly found in rural settings, is highly zoophilic 60 
and typically possesses a low vectorial capacity17. By contrast, the type and intermediate 61 
forms represent efficient vectors capable of transmitting both Plasmodium falciparum and 62 
Plasmodium vivax18–20 in urban environments. This ability to proliferate in urban locations 63 
distinguishes this species from other malaria vectors in sub-Saharan Africa, and is thought to 64 
be underpinned by an increased tolerance for breeding in polluted water sources21, and 65 
superior ability to utilise the purpose-built water storage tanks present in many urban 66 
settings22,23.  67 

The African invasion by An. stephensi was first reported from Djibouti City in 201224 and has 68 
since been recorded in Ethiopia18,25, Sudan26,27, Somalia28 and Somaliland29, with recent 69 
work highlighting suitability of the continent’s largest population centres (where >100 million 70 
individuals live) as a habitat for this species16. Whilst causality has yet to be established, 71 
emergence of An. stephensi is thought to have contributed to resurgence of malaria 72 
transmission in Djibouti (10-fold increase in cases 2013-2019), highlighting the potential 73 
threat that this vector poses to malaria control across the Horn of Africa30 and the continent 74 
more generally31.  75 

Despite the significant public-health this vector poses, substantial uncertainty remains in how 76 
its establishment might influence malaria dynamics in the region, particularly in the 77 
(predominantly urban) settings where the disease is currently largely absent. A key driver of 78 
this will be the vector’s seasonal dynamics. Mosquito populations may show marked 79 
variation in seasonal abundance, often exhibiting substantial annual fluctuations in size that 80 
drive the temporal profile of disease risk. The efficacy of many malaria control interventions 81 
(such as seasonal malaria chemoprevention32 (SMC), indoor-residual spraying33 (IRS) or 82 
larval source management34 (LSM)) depends on optimally timing their delivery relative to 83 
seasonal peaks in vector abundance. A better understanding of the seasonality of An. 84 
stephensi across its current range will help guide entomological monitoring and surveillance 85 
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activities in areas of possible invasion and have material consequences for the effective 86 
control of An. stephensi driven malaria transmission.  87 

Here we systematically collate longitudinal catch data for An. stephensi across its endemic 88 
range to better understand these dynamics. Our results highlight pronounced variation in the 89 
extent and timing of seasonality (poorly predicted by patterns of rainfall), with distinct 90 
dynamics separating rural and urban settings. We show that this variation has material 91 
consequences for the effective design of entomological surveillance programmes. 92 
Integrating these results with a previously published model of malaria transmission also 93 
highlights how this variation will influence the efficacy of malaria control efforts in parts of the 94 
Horn of Africa where the disease is currently (or has previously been) largely absent and 95 
underscores the need for rapid scaleup of entomological monitoring across the region.  96 

Methods  97 

Systematic Review of Anopheles stephensi Surveys  98 

We collated references from published systematic reviews of literature relating to 99 
An. stephensi16,35, and updated these previous searches by searching Web of Science and 100 
PubMed from Jan.2017 to Sep.2020. We included all records containing temporally 101 
disaggregated adult mosquito catch data with monthly (or finer) temporal resolution spanning 102 
at least 10 months, that had not been conducted as part of vector control intervention trials 103 
and where at least 25 An. stephensi mosquitoes had been caught over the study period. A 104 
total of 36 references were collated containing 65 time-series with monthly catch data (no 105 
study presented data at a finer temporal resolution) from surveys carried out across 106 
Afghanistan, Djibouti, India, Iran, Myanmar and Pakistan. See Supplementary Information 107 
for further details and references therein.   108 

Clustering of Similar Time-Series & Random Forest Prediction of Cluster Membership 109 

Following methodologies developed in previous work35, we fitted a Gaussian Process-based 110 
model to smooth these mosquito count time-series, using a Negative Binomial likelihood to 111 
account for overdispersion and a periodic kernel function to capture the repeating patterns 112 
often observed seasonally in mosquito populations. Model fitting was carried out within a 113 
Bayesian framework, using the probabilistic programming language STAN36. We then 114 
calculated summary statistics for each smoothed time-series to characterise their temporal 115 
properties (Supplementary Information), generating a set of parameters for each time-116 
series that summarises their temporal properties. We then scaled and normalised each 117 
summary statistic to give a mean 0 and unit variance –a process necessary for the principal 118 
components analysis (PCA) we apply to identify a lower-dimensional representation of the 119 
structure present in the data amenable to visualisation.  120 

Using k-means clustering, we identified clusters of time-series with similar temporal 121 
properties – the output of this process is a label for each time-series indicating which cluster 122 
(of time-series with similar temporal properties) each specific time-series was assigned to. 123 
For each study location, we extracted a suite of satellite-derived environmental variables 124 
(Supplementary Table 2) and used these variables alongside empirically calculated rainfall 125 
seasonality and average monthly catch as covariates within a random-forest based 126 
classification framework to predict cluster membership of each time-series. These models 127 
were fitted using the R package Ranger37 with 6-fold cross-validation utilised to optimise 128 
hyperparameters. Results are based on averaging the results of 25 iterations of cross-129 
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validation and model fitting and predictions made using out-of-bag estimates. There were 130 
significant imbalances in class size across clusters and so we carried out upsampling using 131 
the SMOTE38 algorithm. For results without upsampling see Supplementary Information. 132 

Probability of Detecting Anopheles stephensi With Different Surveillance Strategies 133 

We explore the implications of seasonal variation in An. stephensi abundance on the 134 
probability of detecting the vector in entomological surveys using a theoretical sampling 135 
method with a defined amount of effort (such as a human landing catch conducted by a 136 
single volunteer for one night). We use a statistical framework (described further in 137 
Supplementary Information) that calculates the cumulative probability of detection from: i) 138 
an overall assumed An. stephensi annual biting rate (ABR, arbitrarily set to 20 for illustrative 139 
purposes here); ii) changes in vector density over the course of the year (from our collated 140 
time-series); and iii) various factors relating to timing of, and effort expended in, the 141 
entomological survey. Specifically, for each time-series, we identified the month with the 142 
highest rainfall, and the month in which vector density was highest (noting that these months 143 
were very rarely the same month). We then calculated the cumulative probability of An. 144 
stephensi detection using the framework, under a range of different surveillance strategies. 145 
Specifically, three strategies were simulated: 146 

• Vector-Peak Timed: Starting the survey at the month with peak vector density 147 
(noting that in the absence of pre-existing detailed entomological information this is a 148 
hypothetical quantity designed to illustrate an approximate upper bound on the 149 
detection probability that could be achieved).  150 

• Rainfall-Peak Timed: Starting the survey at the month with peak rainfall. 151 
• Random Month Timed: The expected probability of detection achieved if the survey 152 

was started during a random month (calculated by simulating survey starting in each 153 
of the year’s 12 months and calculating the average cumulative probability).  154 

In addition to varying the survey’s starting time, we also varied the amount of sampling effort 155 
(number of days sampled within each month) and overall duration of the survey (consecutive 156 
months sampled given a defined number of nights sampling per month). Note that the aim 157 
here is not to describe the exact probability of missing An. stephensi in any given 158 
entomological survey, as this will depend on a wide array of other, poorly defined and 159 
heterogeneous factors (e.g. type of catch methodology used, location etc). We also assume 160 
that the collection method is unbiased (i.e. not biased towards catching mosquitoes with 161 
particular resting or biting properties) which is also highly unlikely. Instead, the aim is to 162 
highlight how variation in seasonal dynamics can influence the nature of surveillance 163 
required to successfully detect a single An. stephensi (i.e. successfully establish presence), 164 
and the probability of detection should be viewed as a relative measure (i.e. viewed in 165 
relation to other sampling efforts and survey timings possible for surveys) and not an 166 
absolute value. Note that this framework assumes no seasonal variation in factors other than 167 
mosquito abundance (such as the ability of the sampling method to accurately record ABR) 168 
that might influence the probability of An. stephensi being caught by our theoretical sampling 169 
method.  170 

Modelling Anopheles stephensi-Driven Malaria Dynamics and Control  171 

We integrated these vector abundance time-series into a published population-level model of 172 
Plasmodium falciparum malaria transmission and disease dynamics39–41 to explore the 173 
implications of An. stephensi seasonality on malaria control in settings in the Horn of Africa 174 
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where malaria is currently largely absent (see Supplementary Information for full 175 
description of the modelling framework). We use the modelling framework to understand 176 
how variation in mosquito seasonality might influence the impact of IRS, a key vector control 177 
intervention. As the dynamics of An. stephensi’s establishment and influence on temporal 178 
trends in malaria transmission during its establishment remain unclear, we focused on the 179 
time-period immediately following establishment (when the disease is at equilibrium) and 180 
provide an illustrative example of how seasonality of An. stephensi driven malaria 181 
transmission could influence the effectiveness of IRS in a site with no pre-existing history of 182 
malaria control. For simplicity we assume that all transmission is due to An. stephensi and 183 
that IRS efficacy against this species is consistent with that observed against other species 184 
across the continent42. We simulate the impact of a single, illustrative IRS spraying 185 
campaign in a setting with an annual EIR of 1.5 (average malaria prevalence of 8-9%), timed 186 
either for optimal impact, randomly or alongside peak rainfall, and assume that 80% of the 187 
vector’s resting sites are successfully sprayed (noting the vector is thought to also rest in 188 
animal houses which are not typically sprayed in public-health campaigns). For further 189 
details, see Supplementary Information.  190 

Results  191 

Diversity in Temporal Dynamics Across the Collated Anopheles stephensi Time-192 
Series: A total of 65 time-series from across Afghanistan, Djibouti, India, Iran, Myanmar and 193 
Pakistan were identified (Fig.1A, Supp Fig.1). Substantial variation in the degree and timing 194 
of vector seasonality was observed, with the maximum percentage of annual vector density 195 
in any consecutive 4-month period (a proxy for degree of seasonality) ranging from 35-99% 196 
across the collated studies (average=62%). This contrasted with rainfall seasonality, where 197 
highly seasonal rainfall patterns were consistently observed across the locations the surveys 198 
had been carried out in (maximum percentage of annual rainfall in any consecutive 4-month 199 
period, mean=82, range 47-99%). We also observed a diverse range of temporal patterns, 200 
ranging from highly seasonal dynamics with a single seasonal peak, to bimodal population 201 
dynamics with two peaks within a single year, or more perennial patterns of abundance 202 
(Fig.1B).  203 

Statistical Characterisation and Clustering of Temporal Properties Highlights Distinct 204 
Archetypes: Summary statistics were calculated for each time-series to characterise their 205 
temporal properties (Supp Fig.2), followed by k-means clustering of the results to cluster the 206 
time-series into groups with similar temporal patterns. Our results highlight two distinct 207 
clusters of time-series, each characterised by distinct temporal patterns (Fig.2B). Cluster 1 208 
time-series had single seasonal peaks and were more seasonal (average of 68% of annual 209 
vector density in the consecutive 4-month period with highest density) than Cluster 2 time-210 
series, which had more perennial patterns of annual abundance (average 44% of annual 211 
vector density in the consecutive 4-month period with highest density) and contained several 212 
time-series with two peaks across the year. Despite differing significantly in mean vector 213 
abundance seasonality (Fig.2C and 2D, p<0.001), there was no significant difference 214 
between Clusters in rainfall seasonality (Fig.2D, p=0.59). Seasonality of rainfall (defined as 215 
the highest proportion of total annual rainfall occurring in any consecutive 4 month period) 216 
across sampled locations was high (average 82% and 84% for Clusters 1 and 2 217 
respectively) despite wide variation in vector abundance seasonality. Timing of peak rainfall 218 
relative to peak vector density significantly differed between clusters (Supp Fig.3), with peak 219 
rainfall and vector abundance separated by <1 month on average for Cluster 1 compared to 220 
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2.2 months for Cluster 2. There was, however, considerable within-cluster variation in 221 
timing–within Cluster 1, timing of peak vector density relative to rainfall ranged from -5.8 222 
months to +5.3 months (with 6 months the maximum gap that can occur within an annually 223 
repeating 12 month time-series, highlighting that the peaks in vector density relative to 224 
rainfall were found across the entirety of the year). We also explored varying the number of 225 
clusters specified in the k-means algorithm. Specifying 4 clusters resulted in further 226 
disaggregation of the 49 time-series in Cluster 1 into 3 separate clusters, each characterised 227 
by a single seasonal peak, but which differed in the timing of peak vector-density relative to 228 
peak rainfall (Supp Fig.4).  229 

Random-Forest Modelling of Seasonal Dynamics Highlights Urbanicity as a Key 230 
Factor: We fitted a random forest-based classification framework to predict cluster 231 
membership (Cluster 1 or Cluster 2, as defined in Fig.2A). Due to the significant class size 232 
imbalance between Cluster 1 (n=49) and Cluster 2 (n=16), we up-sampled Cluster 2 data to 233 
generate balanced classes. Across 25 iterations of random forest model fitting, mean AUC 234 
was 0.89 (indicating good predictive performance) and the model was able to correctly 235 
classify Cluster 1 and Cluster 2 time-series equally well (83% and 85% accuracy 236 
respectively).  237 

We calculated the relative importance of each variable to the model’s predictive ability 238 
(Fig.2E). Patterns of land-use were strongly associated with different clusters–time-series 239 
from surveys in locations with lower population density (a proxy for rurality) more likely to 240 
belong to Cluster 2 (less seasonal), as were areas with a high proportion of land occupied by 241 
irrigated cropland. By contrast, a high proportion of land occupied by rainfed cropland was 242 
associated with Cluster 1 (more seasonal) dynamics. We also observed strong associations 243 
with temperature covariates, including the mean temperature of the driest quarter (where a 244 
high temperature was associated with Cluster 2), temperature seasonality (where a non-245 
monotonically increasing relationship was observed, see Fig.2E inset panels and Supp 246 
Fig.5 for all covariate response plots) and whether the study had been conducted in Iran 247 
(indicating potential spatial confounding). By contrast, rainfall seasonality was not an 248 
important predictor of temporal dynamics and was in the least 5 important variables. 249 
Examining the association between cluster membership and rurality/urbanicity (defined by 250 
study authors), there was indication of an association (chi-squared test, p=0.07), though this 251 
was not statistically significant at the 5% level. 88% (n=22/25) time-series from urban 252 
settings were assigned to Cluster 1, and only 12% (n=3/25) assigned to Cluster 2. 65% 253 
(n=24/37) of time-series from rural settings were assigned to Cluster 1, and 35% (n=13/37) 254 
to Cluster 2.  255 

Model predictive performance and variable importance rankings were similar when no up-256 
sampling was applied (AUC=0.81, Supp Fig.6), though predictive accuracy was highly 257 
unbalanced (Cluster 2 accuracy=50%, Cluster 1 accuracy=94%). Model performance and 258 
variable importance ordering remained similar when fitting the model and explicitly holding 259 
out a subset of the data to subsequently evaluate model performance (n=7 time-series, 260 
Supp Fig.7). Predictive power for seasonality (percentage of vector catch in any 4-month 261 
period) was more modest, although estimates were positively correlated (r=0.43, Supp 262 
Fig.8). 263 

Implications of Seasonal Dynamics for Entomological Surveillance of Anopheles 264 
stephensi across the Horn of Africa: We collated the same covariates for countries across 265 
the Horn of Africa and used the random forest model to predict cluster membership and 266 
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potential temporal dynamics of An. stephensi across the region (Fig.3A). Our results 267 
highlight distinct geographical areas considered more likely to belong to Cluster 1 (more 268 
seasonal) and Cluster 2 (less seasonal), as well as areas of significant uncertainty. We next 269 
asked what consequences this seasonality might have on entomological surveillance of the 270 
vector, with a focus on how these seasonal dynamics might interact with features of 271 
surveillance programmes such as the timing and duration of entomological surveys. Across 272 
the collated temporal profiles, in a setting with an ABR of 20, surveys consisting of 3 months 273 
sampling and 3 sampling days per month that were timed to start at periods of peak An. 274 
stephensi density were on average 64% more likely to detect the vector compared to starting 275 
the survey at a random month of the year; and 57% more likely to successfully detect the 276 
vector compared to starting the survey in the month of peak rainfall (Fig.3B). Timing 277 
entomological surveys to coincide with peaks in rainfall did not lead to a significant increase 278 
in the probability of successfully detecting An. stephensi (average 4% increase), suggesting 279 
that the timing of peak rainfall may be a poor measure for guiding entomological surveys 280 
searching for the vector. We next stratified these results by temporal Cluster (Fig.3C). For 281 
Cluster 1 (and a survey lasting 3 months, with 3 days sampling per month) we observed 282 
differences in the cumulative probability of detection when comparing strategies which start 283 
surveys at the location’s rainfall peak, compared to starting them at peak An. stephensi 284 
abundance – on average, the latter strategy increased the cumulative probability of detection 285 
by 62% compared to a randomly timed survey, compared to only a 40% increase over 286 
random timing for Cluster 2.  287 

Modelling the Impact of Anopheles stephensi Seasonality On Vector Control 288 
Measures: Integrating the temporal profiles of An. stephensi abundance with a malaria 289 
transmission model, we explored how variation in temporal dynamics influences the impact 290 
of IRS (with two different insecticides, Fig.4A). Across the An. stephensi temporal profiles, 291 
optimal timing of IRS delivery resulted in an average of 47.6% reduction in annual malaria 292 
incidence in the 12 months following spraying for pirimithos methyl, and 28.9% for 293 
bendiocarb (Fig.4B). These results represent 1.12x and 1.41x increases over the average 294 
impact achieved if the campaign is timed to a random month of the year. The extent to which 295 
optimal timing provided greater impact than random timing was dependent on the degree of 296 
seasonality and insecticide however–it increased with the degree of seasonality and was 297 
consistently larger for bendiocarb than pirimithos methyl (due to the latter’s longer duration 298 
and retention of residual activity following spraying). Timing the IRS campaign to occur when 299 
rainfall peaks did not significantly increase impact compared to timing the campaign to a 300 
random month (with less than a 2% average increase in impact for both pirimithos methyl 301 
(Fig.4C) and bendiocarb (Fig.4D)) and had significantly lower impact than optimally timed 302 
campaigns (39% and 15% lower impact for pirimithos methyl and bendiocarb respectively).  303 

Discussion 304 

Invasion and establishment of An. stephensi across the Horn of Africa represents an urgent 305 
threat to malaria control in the region. Understanding the temporal profile of vector 306 
abundance of the species will inform effective deployment of surveillance, monitoring and 307 
control interventions aimed at mitigating this potential impact, particularly in urban settings 308 
where malaria has historically been largely absent or only minimally present. Collating data 309 
from across the vector’s endemic range, we identify broad diversity in the extent and nature 310 
of An. stephensi seasonal dynamics. This variation is associated with a wide array of 311 
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ecological factors, including seasonal fluctuations in temperature and patterns of land use, 312 
including a potential role of urbanicity in shaping dynamics.  313 

Our analyses identified population per km2 as the most important predictor of cluster 314 
membership, with high population density being strongly associated with Cluster 1 dynamics 315 
(more seasonal patterns of abundance). This potential disparity in temporal dynamics across 316 
rural and urban settings will likely have implications for both how resources aimed at 317 
surveillance control should be targeted to these different settings, and the public health 318 
impact of different control interventions. Our results suggest that urban An. stephensi 319 
populations are likely to display more seasonal dynamics, supporting the utility of temporally 320 
targeted interventions like short-lived IRS or LSM in these settings. The same is not 321 
necessarily true in rural settings, where shorter duration control interventions are likely to be 322 
impactful but may be less consistent in their effectiveness (without local surveys being 323 
conducted to establish the timing and extent of seasonality) due to the range of seasonal 324 
profiles observed, which included more perennial patterns of abundance. Implementing 325 
these measures and achieving sufficient intervention population coverage in urban settings 326 
is likely to present logistical challenges, given the historical absence of large-scale vector 327 
control campaigns from urban communities. If these barriers can be surmounted however, 328 
our results suggest such measures are likely to be impactful, though remaining uncertainty 329 
around the degree of endophily An. stephensi can display43 might necessitate alternative 330 
interventions to IRS that are not dependent on resting behaviour, such as LSM34. 331 

Our results also suggest a limited role for rainfall in shaping the diverse temporal dynamics 332 
across the collated An. stephensi catch-data, contrary to results observed for other Africa 333 
malaria vector species (e.g. An. gambiae44,45). Specifically, that areas with highly seasonal 334 
rainfall may not have highly seasonal patterns of An. stephensi abundance. Instead, our 335 
analyses highlight an association between temperature and seasonal patterns of abundance 336 
with both temperature seasonality and the average temperature during the driest quarter 337 
being highly predictive of dynamics. This is consistent with previous work identifying 338 
temperature as a key driver of mosquito population dynamics, due to its impact on an array 339 
of mosquito life-history traits including biting rate, lifespan and fecundity (amongst several 340 
others)46,47. It should be stressed however that these covariates identified here are not 341 
necessarily predictive of absolute An. stephensi abundance in a region, but rather the 342 
seasonality in abundance. A much more detailed sampling strategy considering variability in 343 
the accuracy and biases of sampling methods and other geospatial methods will be needed 344 
to identify whether the vector has invaded a region. 345 

The work also highlights the exceptionally limited amount of longitudinally collected 346 
entomological data from across An. stephensi's current geographical range (including the 347 
Horn of Africa region) that currently exists. In highly seasonal settings there is a risk of 348 
erroneously concluding An. stephensi’s absence, particularly as the time of low vector 349 
catches may not coincide with times of low rainfall, as is frequently the case for other 350 
mosquitoes endemic to Africa. Longitudinal surveys enabling better description of these 351 
dynamics would therefore be useful in enabling subsequent refinement and timing of shorter 352 
surveys aimed at detecting presence only (whilst also providing additional information on 353 
temporal dynamics that can facilitate the effective targeting and timing of interventions such 354 
as IRS or LSM). Indeed, our results suggest that rainfall may provide a poor guide to timing 355 
of intervention campaigns in settings where An. stephensi is the dominant vector, 356 
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underscoring the crucial role detailed entomological data collection and establishment of 357 
patterns empirically will play in optimising vector surveillance and disease control efforts.  358 

There are several important limitations to the work presented here. Firstly, we assume that 359 
the inferred ecological relationships linking environmental features to temporal dynamics will 360 
translate from the vector’s historical range to the Horn of Africa. Indeed, our results highlight 361 
significant plasticity and variation in An. stephensi’s seasonal abundance depending on the 362 
setting, and therefore the extent to which our results will extrapolate to new settings remains 363 
unclear–making collection and analysis of longitudinal catch-data collected from the Horn of 364 
Africa an urgent research priority. Relatedly, due to the limited amount of data available and 365 
the wide geographical range over which the collated studies were conducted, we cannot rule 366 
out possible spatial confounding in shaping the inferred associations. Analysis of the 367 
distribution of locations stratified by rural/urban status and cluster assignment did not reveal 368 
obvious patterns of spatial confounding (Supp Fig.9), though the study being conducted 369 
from Iran was a high-ranking variable in the random forest model and it is possible some 370 
degree of spatial confounding is present. We were also unable to consider is the possibility 371 
of variation in temporal dynamics between An. stephensi forms. Identification of the An. 372 
stephensi form is challenging, requiring close visual examination48 or molecular methods49. 373 
Availability of this data was limited, and we lack the ability to disaggregate time-series by the 374 
specific form caught and hence preclude form as a confounder of some of the identified 375 
relationships linking environmental factors and temporal dynamics. Another limitation relates 376 
to our usage of mosquito abundance data, which is highly prone to biases driven by the 377 
collection method used. Whilst the analyses here use normalised mosquito counts (rather 378 
than raw abundance), trapping method bias might vary between season, which could affect 379 
the reliability of the seasonal patterns inferred, as well as introduce additional variation into 380 
catch data not captured here and which would influence the results describing the probability 381 
of detecting An. stephensi under different sampling effort and survey timing contexts.  382 

We do not include insecticide resistance into our model of malaria transmission. Insecticide 383 
resistance is well-documented for An. stephensi50–52, and recent populations assayed in 384 
Ethiopia showed resistance to all four major insecticide classes53,54, suggesting that IRS 385 
might have a lower impact than suggested here. Relatedly, we do not consider uncertainty in 386 
An. stephensi bionomic properties (e.g timing of biting or whether resting occurs 387 
predominantly indoors or outdoors), which might vary by season and could further modulate 388 
the impact of interventions such as IRS where killing is mediated primarily through indoor 389 
resting following feeding. Variation in An. stephensi’s bionomic properties has previously 390 
been identified55, including a propensity for crepuscular biting and resting outside of houses 391 
compared to other Anopheles species dominant in sub-Saharan Africa16,19,43 that might 392 
render IRS less effective and necessitate consideration of other strategies such as LSM. 393 
Whilst the aim of this work is to illustrate how seasonality modulates (rather than precise 394 
estimates of) intervention impact, these considerations underscore the urgent need for a 395 
more detailed characterisation of An. stephensi across the Horn of Africa to quantify its 396 
bionomic properties and insecticide resistance profile more precisely in these settings, and 397 
identify the most effective control interventions to deploy.  398 

Our work highlights significant variation in temporal dynamics across An. stephensi 399 
populations; variation that is shaped by distinct ecological factors, can markedly differ 400 
between urban and rural settings, and which has material consequences for the 401 
effectiveness of vector control interventions. Our work also highlights the need to better 402 
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understand the vector’s dynamics in settings where it has newly established, and how these 403 
dynamics might differ to other Anopheles species also present and capable of malaria 404 
transmission. Indeed, the trajectory of An. stephensi’s establishment and subsequent 405 
dynamics in the Horn of Africa remains deeply unclear and the scarcity of published 406 
entomological studies from the region underscores the need for studies longitudinally 407 
surveying locations where An. stephensi has recently arrived. This will be important to 408 
understanding the patterns of seasonal variation the vector displays, and support optimising 409 
the delivery of malaria control interventions aiming to mitigate the impact of this invasive 410 
vector. 411 

Data and Code Availability 412 

All data collated as part of this study and the code required to reproduce these analyses can 413 
be found at the following link: https://github.com/cwhittaker1000/stephenseasonality.  414 
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 436 

 437 

 438 

 439 

Figure 1: Sources and Locations of Anopheles stephensi Time-Series Data and 440 
Examples for Each Country. (A) Map of the geographical range over which time-series 441 
entomological collections have been carried out. Countries with studies are highlighted in 442 
light grey, and the locations of individual studies indicated by the individual points, coloured 443 
according to country (Afghanistan=red, Djibouti=yellow, India=green, Iran=turquoise, 444 
Myanmar=blue and Pakistan=pink). (B) Example An. stephensi time-series from each 445 
country, with the empirical monthly mosquito catch (black points), fitted gaussian process 446 
curves (mean=coloured line, ribbon=95% Bayesian Credible Interval) and monthly rainfall 447 
(matching sampling location and year of sampling) for each (light blue bars). The x-axis 448 
indicates the month of sampling, the y-axis either the monthly rainfall (left hand side y-axis) 449 
or number of vectors caught in each month (right hand side y-axis; note that the absolute 450 
number of mosquitoes caught between time-series are not comparable due to variable 451 
sampling effort). n indicates the number of time-series in each country. 452 

  453 
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 454 

Figure 2: Characterisation and Clustering to Identify Time-Series with Similar 455 
Temporal Properties. (A) Results of principal components analysis (PCA) and k-means 456 
clustering for 2 clusters. Points on main figure indicate individual time-series, with point 457 
colour indicating cluster membership. Ellipsoids demarcate the 75th quantile of the density 458 
associated with each cluster. Principal components 1 and 2 are plotted, together explaining 459 
69% of the total variation in temporal properties across the time-series. (B) Time-series 460 
belonging to each cluster. Pale lines represent individual time-series, brighter line the mean 461 
of all the time-series belonging to that cluster – in all cases vector density is normalised to 462 
sum to 1 over the course of the year, and time-standardised so that the highest vector 463 
density for each time-series is arbitrarily set to occur at month 7. (C) Plot comparing the 464 
percentage of annual total mosquito catch and percentage of annual total rainfall occurring in 465 
any consecutive 4-month period for each time-series, coloured by cluster membership. (D) 466 
Boxplots show the percentage of annual total mosquito catch (left) and annual total rainfall 467 
(right) series occurring any in consecutive 4-month periods for each time-series. Rainfall 468 
data comes from the CHIRPS dataset37 and is specific to study location and time-period. 469 
Each point indicates an individual time-series. (E)  Variable importance plot for each of the 470 
covariates included in the random forest model used to predict cluster membership– bar 471 
height indicates the mean variable importance across the 25 individual iterations of random 472 
forest fitting, with error bars representing the 95% confidence interval. Inset plots are the 473 
partial dependence plots for the top 5 most important variables in the model showing how 474 
the average prediction for Cluster 2 (y-axis, with higher values indicating an increased 475 
probability of Cluster 2 membership) varies with (normalised) variable value (x-axis).  476 
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 478 

 479 

 480 

 481 

Figure 3: Possible Seasonal Dynamics of Anopheles stephensi Across the Horn of 482 
Africa, and Consequences for Entomological Surveillance and Monitoring. (A) 483 
Environmental covariates were collated across countries in the Horn of Africa where An. 484 
stephensi has been found, and the random forest classification model from Fig 2E used to 485 
predict potential temporal dynamics. Map shows the probability of temporal dynamics 486 
belonging to Cluster 1 (more seasonal), with pink corresponding to Cluster 1 dynamics being 487 
more likely and black indicating Cluster 2 dynamics (more perennial) are more likely, with 488 
white indicating both are equally likely. (B) For a setting with an annual biting rate of 20, the 489 
average probability (across all 65 collated An. stephensi temporal profiles ) of detecting An. 490 
stephensi (where detection is defined as catching ≥1 mosquito) for a range of different 491 
sampling efforts (number of consecutive months sampled and number of sampling days in 492 
each month) in a setting with an annual biting rate of 20 bites per person. These results were 493 
generated for 3 different sampling strategies: i) with sampling starting at a random month in 494 
the year (left hand panel, subsequently averaged over all possible sampling start months in 495 
the year); ii) with sampling starting in the month of peak rainfall (centre panel); or iii) with 496 
sampling starting in the month of peak vector density (right hand panel). (C) For setting with 497 
an annual biting rate of 20 and a sampling effort of 3 days per month, the cumulative 498 
probability of An. stephensi detection as a function of the number of consecutive months 499 
sampled for each individual time-series, stratified by sampling strategy (starting at peak 500 
vector abundance=orange, at peak rainfall=blue) and Cluster. In both panels, pale, thin lines 501 
indicate the cumulative probability curve for a specific temporal profile, and thicker lines 502 
indicate the average for the specific sampling strategy. 503 

  504 
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 505 

 506 

Figure 4: Modelling the Public-Health Impact of Indoor Residual Spraying and the 507 
Influence of Anopheles stephensi Seasonality. (A) Probability of mosquitoes dying upon 508 
exposure to each IRS compound in the time-period following spraying42 – pink indicates 509 
bendiocarb, turquoise indicates pirimiphos methyl. (B) For each temporal profile, the public 510 
health impact of annual IRS campaign with each insecticide according to the timing of the 511 
campaign. Points in grey correspond to the average reduction in incidence occurring from 512 
picking a random month to conduct the IRS campaign for each An. stephensi temporal 513 
profile, coloured points indicate the reduction in incidence arising from optimally timing the 514 
IRS campaign relative to the vector density peak for each An. stephensi temporal profile 515 
(and coloured arrows indicate the difference). The arrows and coloured points are coloured 516 
according to i) the insecticide used and ii) the degree of An. stephensi seasonality in each 517 
temporal profile (defined as the proportion of total annual abundance in any consecutive 4-518 
month period). (C) For pirimithos methyl and for each An. stephensi temporal profile 519 
(coloured points) the percentage reduction in malaria incidence achieved if the IRS 520 
campaign is timed randomly, timed to start when rainfall is at its peak, or optimally timed 521 
based on peak vector density. Points correspond to specific An. stephensi temporal profiles 522 
and are coloured according to their degree of seasonality. Boxplot shows the minimum, first 523 
quartile, third quartile and maximum for the different individual projections. (D) As for (C), but 524 
for the insecticide bendiocarb.   525 
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