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ABSTRACT 
 
BACKGROUND: Psychiatric diseases are increasingly conceptualized as brain network 
disorders. Hundreds of resting-state functional magnetic resonance imaging (rsfMRI) 
studies have revealed patterns of functional brain dysconnectivity in disorders such as 
major depression disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ). 
Although these disorders have been mostly studied in isolation, there is mounting 
evidence of shared neurobiological alterations across disorders. 
 
METHODS: To uncover the nature of the relatedness between these psychiatric 
disorders, we conducted an innovative meta-analysis of past functional brain 
dysconnectivity findings obtained separately in MDD, BD and SZ. Rather than relying on 
a classical coordinate-based approach at the voxel level, our procedure extracted 
relevant neuroanatomical labels from text data and reported findings at the whole brain 
network level. Data were drawn from 428 rsfMRI studies investigating MDD (158 studies, 
7429 patients / 7414 controls), BD (81 studies, 3330 patients / 4096 patients) and/or SZ 
(223 studies, 11168 patients / 11754 controls). Permutation testing revealed 
commonalities and specificities in hypoconnectivity and hyperconnectivity patterns 
across disorders. 
 
RESULTS: Among 78 connections within or between 12 cortico-subcortical networks, 
hypoconnectivity and hyperconnectivity patterns of higher-order cognitive (default-
mode, fronto-parietal, cingulo-opercular) networks were similarly observed across the 3 
disorders. By contrast, dysconnectivity of lower-order (somatomotor, visual, auditory) 
networks in some cases differed between disorders, notably dissociating SZ from BD 
and MDD.   
  
CONCLUSIONS: Our label-based meta-analytic approach allowed a comprehensive 
inclusion of prior studies. Findings suggest that functional brain dysconnectivity of 
higher-order cognitive networks is largely transdiagnostic in nature while that of lower-
order networks may best discriminate mood and psychotic disorders, thus emphasizing 
the relevance of motor and sensory networks to psychiatric neuroscience. 
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INTRODUCTION 
  
The advent of functional magnetic resonance imaging (fMRI) 3 decades ago has greatly 
facilitated the investigation of neurobiological alterations in major psychiatric disorders 
such as major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia (SZ) 
(1–3). The primary focus of psychiatric fMRI was the localisation of segregated brain 
regions with abnormal activation during performance of various cognitive tasks (4). A 
major development has then been the characterization of aberrant functional brain 
integration in mental disorders, which are now increasingly conceptualized as brain 
network disorders (5–8). This endeavor has been greatly promoted by relying on resting-
state fMRI, with spontaneous slow fluctuations in brain activity defining large-scale 
networks of brain areas with correlated activity (9). Such intrinsic functional brain 
networks recapitulate with good correspondence the repertoire of brain regions co-
activated during various behaviors (10). Current models of functional brain 
dysconnectivity in mental illness most consistently highlight abnormalities within and 
between 3 higher-order functional brain networks - noting their naming varies across 
the literature (11): the default-mode (medial prefrontal cortex, posterior cingulate cortex, 
posterior inferior parietal lobule), fronto-parietal (middle frontal gyrus, anterior inferior 
parietal lobule) and cingulo-opercular (anterior insula and anterior midcingulate cortex) 
networks (5,7,8,12–14). 
 
As is the case for task-based activation studies, most resting-state connectivity research 
in mental illness has relied on case-control designs looking at psychiatric disorders in 
isolation. Consequently, findings from individual studies may attribute undue specificity 
of brain dysfunction patterns to one disorder or another. Indeed, there is growing 
acknowledgment that clinical (15), neurobiological (16) and genetic (17,18) boundaries 
between psychiatric disorders are blurrier than postulated by traditional classifications 
of mental illness such as the DSM-5. For instance, it is now clear that there is a greater 
continuum than once thought between mood and psychotic disorders, encompassing 
MDD, BD and SZ (19–23). Transdiagnostic research is thus needed to uncover the nature 
of the relatedness between psychiatric disorders, explaining their high comorbidity and 
facilitating the discovery of improved treatments (5,16,24,25). From a dimensional 
perspective, a common psychopathological factor shared among disorders has been 
associated with particular functional brain dysconnectivity patterns that transcend 
psychiatric diagnoses (26–30). Alternatively, direct comparative analysis of multiple 
diagnostic categories has allowed to evidence both commonalities and specificities in 
functional brain connectivity alterations (31–37). However, while findings that emerge 
from this burgeoning field of research are promising, original transdiagnostic studies 
are still scarce to date. Hence, there is value in conducting transdiagnostic meta-analyses 
contrasting various psychiatric disorders that were not investigated in the same original 
studies.  
 
To date, transdiagnostic meta-analyses of both task-based (4,38–41) and resting-state 
(13,42,43) fMRI findings in neuropsychiatric disorders have mostly relied on coordinate-
based approaches (44–46). When applied to case-control studies, methods such as 
activation likelihood estimation (ALE, (47)), multilevel kernel density analysis (MKDA, 
(48)) or signed differential mapping (SDM, (49)) quantitatively assess the spatial 
convergence of results from primary studies based on stereotactic coordinates of peak 
statistical differences between patients and controls. While coordinate-based meta-
analysis has proven successful in unravelling consistent patterns across prior findings 
from activation studies, it is not best suited for synthesizing connectivity results. First, 
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stereotactic coordinates are almost universally reported in activation studies (50) but 
much less so in the connectivity literature, among other reasons because analyses are 
often conducted at spatial resolutions other than the voxel level. Second, the 
prerequisite of a similar search coverage across studies (51) is met in most activation 
(most commonly the whole brain) but only few connectivity studies, in which region-of-
interest analyses have long been the rule rather than the exception. Consequently, meta-
analyses have often been restricted to including only studies with seeds falling within a 
few seed networks of interest (12–14,52,53), typically focussing on large, higher-order 
networks such as the default-mode, fronto-parietal, cingulo-opercular networks, and 
thereby ignoring less commonly explored networks (e.g., visual and somatomotor 
lower-order networks). To address these limitations, we conducted an innovative label-
based meta-analysis (45,46,54,55) aimed at revealing commonalities and specificities in 
hypoconnectivity and hyperconnectivity patterns across MDD, BD and SZ. Our meta-
analytical approach first avoids excluding studies that did not report coordinates by 
extracting findings from prior studies based on text data. In addition, it unravels 
consistent dysconnectivity patterns across both lower- and higher-order distributed 
networks covering the whole brain while controlling for unequal search coverage across 
studies.  
 
 
METHODS AND MATERIALS 
 
Study selection 
 
A literature search was conducted in the PubMed database up to October12, 2021 in 
accordance with the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (http://www.prisma-statement.org) (see flowchart in 
Supplemental Figure S1). The search terms were: (“depression” OR “depressive” OR 
“bipolar” OR “schizophrenia” OR “psychosis”) AND (“functional magnetic resonance 
imaging” OR “fMRI”) AND (“rest” OR “resting”) AND “connectivity”. Original studies 
using resting-state functional magnetic resonance imaging to characterize functional 
brain dysconnectivity in psychiatric patients with an explicit diagnosis of major 
depressive disorder (MDD), bipolar disorder (BD) or schizophrenia (SZ) were eligible for 
inclusion. Noteworthy, studies were included regardless of whether stereotactic 
coordinates reflecting the peak locations of significant group differences were reported. 
Exclusion criteria were as follows: (1) not in English; (2) no direct comparison of patients 
with a healthy control group; (3) functional brain connectivity investigated through 
approaches other than the seed-based voxel-wise (SBVW), seed-to-region (STR), 
network-based connectome-wide (NBCW), independent component analysis (ICA) with 
dual regression, voxel-mirrored homotopic connectivity (VMHC), regional homogeneity 
(ReHo), and amplitude of low-frequency fluctuation (ALFF) methods (Supplemental 
Table S1); (4) no adequate correction for multiple comparisons; (5) entirely overlapping 
sample with identical search coverage reported in another publication.  
  
Data extraction 
 
Label-based meta-analysis. Our meta-analytical method is based on the systematic and 
principled extraction of neuroanatomical terms describing which functional brain 
connections were investigated or were evidenced as significantly impaired in psychiatric 
patients compared to healthy controls. Text from all paper sections (abstract, 
introduction, methods, results, discussion, as well as figure legends and tables) was 
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mined by experts in macroneuroanatomy. Our approach dealt with the following 
confounds: first, there are large variations in search coverage from one paper to another 
- a minority of papers considers pairwise connectivity for all brain regions, most of them 
instead focus on a small part of whole-brain connectivity; second, the spatial granularity 
at which connectivity is explored varies drastically across papers – from voxels to 
regions to networks; third, there is significant variability in the neuroanatomical 
nomenclature used in the literature.  
 
We implemented a two-step procedure that first manually transcribed the gathered 
neuroanatomical information at the original level of description (region, network, whole 
brain), then translated it with reference to a single common network-level framework. 
We separately coded connections that were the object of a statistical test (tested 
connections) and those that showed a statistically significant (p < 0.05 after correction 
for multiple comparison) alteration (impaired connections). In the latter case, we further 
differentiated hypoconnected from hyperconnected connections. We however did not 
distinguish between enhanced and weakened connectivity patterns, as this distinction is 
seldomly made in the literature. Thus, hypoconnectivity may indicate either larger 
negative or reduced positive connectivity while hyperconnectivity may refer to either 
larger positive or reduced negative connectivity.  
 
Two-step extraction. For each paper, we extracted pairs of neuroanatomical terms 
describing functional brain connections. Because distinct terms may refer to similar 
brain areas or networks, we first manually transcribed the terms used in original papers 
with best fits from a limited set of labelling schemes covering the entire spatial 
granularity range. Brain regions were labelled based on the Automated Anatomical Atlas 
(AAL, 116 regions, (56), AAL3 (170 regions, (57)) or Brodmann atlas (48 regions, WFU 
PickAtlas software, (58); distributed brain networks were labelled based on the Cole-
Anticevic Brain Network Partition (CAB-NP, 12 networks, (59)); and larger brain 
components such as lobes or the entire hemisphere were defined using the TD atlas 
(WFU PickAtlas software, (58)). The whole gray matter was defined by a mask including 
all regions from the AAL3 atlas (57). For each type of contrast (MDD vs. HC, BD vs. HC, 
SZ vs. HC) found in a study and each type of connection (tested, hypoconnected, 
hyperconnected), comprehensive transcription of the relevant neuroanatomical 
information was accomplished with as few pairs of labels as possible.  
   
The second step involved translating, in an automated manner, the labels obtained at 
various spatial resolutions into a single common large-scale network space, the 12-
network CAB-NP (59) (see Supplemental Methods for a secondary analysis at the region 
level). This functional brain atlas covers the whole brain, with many networks spanning 
both the cortex, basal ganglia and cerebellum (Figure 1). Higher-order cognitive 
networks (default-mode, frontoparietal, dorsal attentional, cingulo-opercular) are 
dissociated from lower-order networks (primary and secondary visual, somatomotor, 
auditory) as well as from language and ventral (orbito-affective, ventral and posterior 
multimodal) networks. Because the original cortical parcels of the CAB-NP are surface-
based, we created a publicly available volumetric version of the atlas for the whole brain. 
Of note, all networks are not of equal size (Supplemental Table S2), with 3 higher-order 
networks (default-mode, frontoparietal and cingulo-opercular networks) together 
amounting for over 50% of the total atlas volume. Brain regions corresponding to 
manually extracted labels were automatically assigned to the large-scale network with 
which they maximally overlapped, and region labels were translated into the network 
space accordingly. For each study, separately for each type of contrast available (MDD 
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vs. HC, BD vs. HC, SZ vs. HC) and each type of connection (tested, hypoconnected, 
hyperconnected), we then coded the absence (0) or presence (1) of pairs of network 
labels defining each of the 12 within-network and 66 between-network connections.  
 
Data extraction reliability. In addition to the main labels extraction for all 428 studies 
(SG1), separate raters (SP, MD, VP) together independently re-extracted labels for a 
subset of 100 studies. These latter studies were pseudo-randomly selected to ensure 
good representativity of the different types of studies (diagnostic group, connectivity 
method), in proportions similar to those found in the entire set (Figure 2). The similarity 
of the main and confirmatory network labels extractions for this subset of studies was 
computed with Dice similarity coefficients for binary matrices coding for the presence 
or absence of connection being tested or evidenced as impaired, over all studies and 
across all brain network connections defined by the CAB-NP. The similarity of labels 
extractions was quantified separately for the connections being tested and the 
connections being reported as impaired.  
 
Statistical analysis 
 
Permutation tests were conducted on one or more of 9 two-way binary tables indicating 
for each of the 78 connections whether it was tested, hypoconnected, hyperconnected 
(1) or not (0) in each of the studies looking at MDD, BD or SZ, respectively. Permutation 
tests (k = 100,000) investigated effects that were directly tested in original studies 
(hypoconnectivity or hyperconnectivity relative to HC in either of the 3 disorders) or not 
directly tested (hypoconnectivity vs. hyperconnectivity in either of the 3 disorders as well 
as pairwise comparisons between disorders for either hypoconnectivity or 
hyperconnectivity). Mathematical formulations are provided in the Supplemental 
Methods. 
 
To test for hypoconnectivity (or hyperconnectivity) of each pair of networks (connection), 
we used a permutation testing approach whereupon a sample proportion test statistic 
(computed as a ratio of observed reported effects over baseline of whether the pair of 
networks in question was tested or not) was used. These ratios had numerators equal 
to the sum of number of studies that observed a significant level of either 
hypoconnectivity (or hyperconnectivity) for each pair of networks of interest, and had 
denominators equal to the number of studies that tested the pair of networks of interest 
as a baseline. We then sampled from a subset of the permutations applied to the 
observed outcomes of each study to randomize whether each observed connection 
effect was hypoconnected (or hyperconnected), separately for each disorder (6 
contrasts). By accounting for how often a given pair of networks was tested across 
studies, our procedure thus controlled for the increased number of discoveries merely 
explained by the larger size of some networks and/or the bias towards a larger interest 
in some networks in the literature. To test for differences between hypoconnectivity and 
hyperconnectivity proportions within each disorder (3 contrasts), we employed a similar 
permutation testing approach, except with a test statistic equal to the absolute difference 
between the proportions of studies reporting hypoconnectivity and hyperconnectivity 
effects. Differences in the proportion of hypoconnectivity (or hyperconnectivity) 
between pairs of disorders (6 contrasts) were tested in the same way, except with a test 
statistic equal to the absolute difference between the proportion test statistics of 2 
disorders.  
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Permutation testing for 15 contrasts for each of the 78 connections resulted in 1,170 
tests. To control the false discovery rate (FDR) of the tests, we employed an empirical 
Bayes approach that directly modelled the distributions of null and alternative p-values 
(60). This approach accounted for the atypical distributions of discretely supported p-
values generated via Monte-Carlo methods and for the observed positive and negative 
correlations among p-values, which violate the assumptions of the classical Benjamini-
Hocheberg FDR procedure (61). All results reported at the connection level were 
significant at qFDR < 0.1, this threshold being chosen to best balance the risks of false 
positives (type I error) and false negatives (type II error), which are respectively 
problematic for drawing conclusions about disorder-specific and transdiagnostic 
dysconnectivity patterns. 
 
Data and code availability 
 
All data as well as Python and R scripts necessary to reproduce the findings reported 
here are available on Github: https://github.com/pnplab/LBMA. The volumetric version 
of the CAB-NP atlas can be obtained on Figshare: 
https://figshare.com/articles/dataset/CAB-
NP_projected_on_MNI2009a_GM_volumetric_in_NIfTI_format/14200109. 
 
 
RESULTS 
 
Selected studies 
 
There was some disparity in the extent to which the 3 disorders were investigated in the 
literature. Of the 428 studies included in our meta-analysis, 37% of them characterized 
MDD (7,429 patients / 7,414 controls), 19% examined BD (3,330 patients / 4,096 controls) 
and 52% investigated SZ (11,168 patients / 11,754 controls) (Figure 2A). Most studies 
(61%) employed a seed-based approach to characterize functional connectivity of 
regions of interest with the whole brain, at the voxel level (Figure 2B). Critically, a large 
part (40%) of the selected studies did not report stereotactic coordinates (Figure 2B).  
 
General network dysconnectivity patterns 
 
At the level of individual studies, 32% of all within- and between-network connections 
were tested for statistical effects across studies. 25% of those tested connections were 
reported as significantly impaired, being either hypoconnected or hyperconnected. 
Similar proportions were observed in MDD, BD and SZ. The distribution of tested and 
impaired (hypoconnected or hyperconnected) connections across studies was shown to 
be reproducible when contrasting two independent labels extractions, with Dice 
similarity coefficients of 0.93 and 0.81 for tested and impaired connections, respectively. 
 
Not all networks, with 12 connections each, were similarly tested (Supplemental Figure 
S2). The bias towards testing some network connections more than others took a similar 
form across disorders (r = 0.92-0.97, all ps < 0.001) (Figure 3A, Supplemental Figure S3A). 
Overall, the more a network connection was tested, the more there was evidence for its 
impairment while controlling for increased testing of some connections. This was 
observed for both hypoconnectivity (r = 0.73, p < 0.001) and hyperconnectivity (r = 0.71, 
p < 0.001) patterns, similarly in all 3 disorders (r = 0.61-0.72, all ps < 0.001) (Figure 3B, 
Supplemental Figure S3B). The general trend was that the amount of evidence for 
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hypoconnectivity or hyperconnectivity varied across network connections similarly for 
MDD, BD and SZ (r = 0.77-0.86, all ps < 0.001) (Figure 3B, Supplemental Figure S3B).  
Across disorders and connections, there was more evidence for hypoconnectivity than 
hyperconnectivity overall (t = 8.10, p < 0.001). Yet, somewhat paradoxically, connections 
with larger evidence for hypoconnectivity were also those with more demonstration of 
hyperconnectivity (r = 0.88, p < 0.001), again similarly in all 3 disorders (r = 0.69-0.88, all 
ps < 0.001) (Figure 3B, Supplemental Figure S3B). 
 
Network dysconnectivity among higher-order networks 
 
All within- and between-network connections among the FPN, CON and DMN showed 
both significant hypoconnectivity and hyperconnectivity in all 3 disorders (all significant 
results reported hereafter survived a qFDR < 0.1 threshold). While there was a consistent 
trend towards more evidence of hypoconnectivity than hyperconnectivity for all those 
connections across disorders, this effect was only significant for 4 out of 6 connections 
(excluding DMN-DMN and FPN-DMN) in SZ (Figure 4). The consistent trend towards 
more evidence of hypoconnectivity among the FPN, CON and DMN networks in SZ 
compared to MDD and BD was not significant for any within- or between-network 
connection. Direct pairwise comparisons between disorders did not reveal any 
significant difference in the amount of evidence for either hypoconnectivity or 
hyperconnectivity among these higher-order networks (Figure 5). It should however be 
noted that exploratory analysis at the region rather than network level, as reported here, 
suggests that between-disorders differences may emerge once considering 
dysconnectivity between small brain regions rather than large-scale brain networks 
(Supplemental Figure S4). 
 
Network dysconnectivity of lower-order networks 
 
Lower-order networks showed impaired connectivity with some of the above higher-
order networks, either transdiagnostically or with significant differences between 
disorders (Figure 4). Regarding the SMN, SMN-CON hypoconnectivity was observed in 
all 3 disorders, yet with SMN-CON hyperconnectivity being also evidenced in SZ. SMN-
FPN hypoconnectivity was seen in MDD and BD, while SMN-FPN hyperconnectivity was 
observed in MDD and SZ. Noteworthy, SMN-FPN hyperconnectivity was more observed 
in SZ than MDD and BD. SMN-DMN hypoconnectivity was only seen in BD. Regarding 
VIS2, VIS2-FPN hyperconnectivity was evidenced in both BD and SZ while VIS2-DMN 
hyperconnectivity was seen in MDD and SZ, yet with VIS2-DMN hypoconnectivity being 
also observed in MDD. Finally, regarding AUD, AUD-DMN hypoconnectivity was 
observed in both BD and SZ, with more evidence of AUD-DMN in SZ than MDD. AUD-
CON, for which hypoconnectivity was more observed than hyperconnectivity in SZ only, 
was more hypoconnected in SZ than MDD. AUD-FPN hyperconnectivity was only seen 
in SZ. 
 
Among lower-order networks, there was evidence of shared SMN-SMN and VIS2-VIS2 
hypoconnectivity in BD and SZ, but not MDD (Figure 4). SMN-VIS2, SMN-AUD and AUD-
AUD hypoconnectivity was only observed in SZ. There was evidence of more 
hypoconnectivity than hyperconnectivity for SMN-SMN, VIS2-VIS2, AUD-AUD and 
SMN-AUD in SZ. Pairwise comparisons between disorders indicated that there is more 
evidence for AUD-AUD hypoconnectivity in SZ compared to both MDD and BD and 
SMN-SMN hypoconnectivity in SZ compared to MDD (Figure 5). 
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DISCUSSION 
  
Meta-analytic findings reveal similar functional brain dysconnectivity within and 
between the FPN, CON and DMN networks across mood and psychotic disorders, 
suggesting higher-order network dysconnectivity is mostly transdiagnostic in nature at 
the large-scale network level. By contrast, dysconnectivity patterns within lower-order 
networks such as the SMN and AUD networks as well as between these lower-order 
networks and higher-order networks were shown to differ between disorders, notably 
differentiating SZ from BD and MDD. Consistent dysconnectivity patterns were not 
evidenced for other networks such as LAN and ORA networks. 
  
Higher-order network dysconnectivity 
 
Highly significant evidence for dysconnectivity patterns shared by all three disorders 
(MDD, BD, SZ) among heteromodal networks implicating the prefrontal cortex (FPN, 
CON, DMN) reflect their key role in current models of psychopathology (5,7,8). The 
various cognitive functions supported by these networks, such as executive control and 
self-referential monitoring (62–65), are indeed impaired across mood and psychotic 
disorders (66–68). Accordingly, both original (31,33,35,69) and meta-analytical (13,42,43) 
transdiagnostic works highlight shared functional brain connectivity abnormalities of 
the FPN, CON and DMN across a wide range of psychiatric disorders or in relation to a 
general psychopathology factor (16,25).  
 
Both increased and decreased abnormal connectivity was evidenced for each 
neurocognitive network, although hypoconnectivity was more frequently reported, 
particularly in SZ. This paradoxical result might not only be explained by inconsistencies 
in the literature but also by our choice to explore dysconnectivity at the large-scale 
network rather than region level. Distinct regions that compose a network are likely to 
be characterized by opposite dysconnectivity patterns. For instance, the DMN has been 
reported to be hypoconnected to the ventral insula but hyperconnected to the dorsal 
insula across several psychiatric disorders (13). This spatial granularity issue may 
similarly account for the lack of significant differences in the dysconnectivity of 
neurocognitive networks between MDD, BD and SZ in this study. Our targeted analysis 
conducted at the region level and some past studies that reported findings at the region 
or voxel level (12,14,31,32,52) lend support to this hypothesis. 
 
Lower-order network dysconnectivity 
 
Strong evidence that the functional brain connectivity of unimodal networks (SMN, VIS, 
AUD) is impaired in both mood and psychotic disorders might seem surprising, given it 
is seldomly the focus of psychiatric brain imaging. The present meta-analytical results 
nonetheless indicate that connectivity alterations within motor and sensory networks as 
well as between them and neurocognitive networks are often reported, hence 
underscoring a lack of emphasis on such findings in the literature. This observation 
echoes recent calls to better promote research centered on motor and sensory systems 
in psychiatric neuroscience, as exemplified by the delayed inclusion of a domain 
dedicated to motor systems (70,71) and the suggestion to add a sensory processing 
domain (72) in the Research Domain Criteria (RDoC) framework (73). Motor 
abnormalities that include neurological soft signs, extrapyramidal symptoms 
(dyskinesia, parkinsonism) and catatonic phenomena, are observed in a wide range of 
disorders (74,75). Similarly, aberrant sensory processing and perceptual signaling are 
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encountered in disorders other than SZ (72,76,77). Accordingly, we observed several 
dysconnectivity patterns of motor (SMN) and sensory (VIS2, AUD) networks being 
shared by at least two disorders, in line with previous studies that reported 
transdiagnostic alterations of unimodal networks using fMRI (26,27,32,33,78). A notable 
result was however that, in some instances, there was more evidence for 
dysconnectivity of these networks (SMN, AUD) in SZ compared to BD and MDD. 
Gradients of impairments in connectivity that scale as a function of illness severity along 
the mood/psychosis continuum have been reported before (35,37,78), and may account 
for more aggravated motor symptoms (74) and the frequent presence of auditory 
hallucinations in SZ (79). 
 
Strengths and limitations 
 
The main strength of the present study lies in the use of text labels rather than 
stereotactic coordinates as the source of information for our meta-analysis (44–46). By 
doing so, a comprehensive inclusion of numerous prior studies that did not report 
coordinates was possible. Moreover, dysconnectivity patterns could be explored for the 
whole brain rather than focussing on a few selected networks of interest. The use of a 
whole-brain cortico-subcortical atlas that includes atypical auditory and language 
networks (59) further represents an improvement over previous meta-analyses. Besides, 
the manual extraction of text labels and subsequent automatic assignment to large-scale 
networks were shown to be reproducible. A future step will be to apply natural language 
processing algorithms to fully automatize the extraction of relevant papers and text 
labels (80,81), making our label-based meta-analytical approach an even more appealing 
alternative to traditional (coordinate-based) meta-analyses of brain imaging findings. 
 
The systematic exploration of whole-brain connectivity comes at a cost. Multiple testing 
over all connections with sufficient statistical power can only be performed for a limited 
number of brain networks, not dozens or hundreds of local brain regions given the 
amount of available published studies. As aforementioned, networks such as the DMN 
or CON merge together distinct brain areas or subnetworks with distinct connectivity 
profiles and functions (64,82), and are thus likely to be differentially impacted by 
psychopathology (12,13). In addition, we adopted a conservative approach where a brain 
area corresponding to a text label could only be assigned to a single network, which it 
maximally overlapped with. The complexity of small regions with multimodal 
integration zones that in fact belong to multiple networks (e.g., the thalamus (83)) was 
thus ignored. For the same reason, the inferior frontal gyrus and amygdala were not 
respectively assigned to the LAN and ORA in our analysis, as one would have expected 
(84,85). This may account for the lack of significant findings in these networks, despite 
past evidence of their roles in language disturbances associated with thought disorder 
and verbal hallucinations in SZ (85,86) or emotional dysregulation across mood and 
psychotic disorders (84,87,88). As additional research in the field accumulates, we are 
hopeful that future label-based meta-analyses will be able to provide finer-grained 
assessments of functional brain dysconnectivity in psychiatric disorders. 
 
Conclusions 
 
Using a novel meta-analytical approach, we explored the relatedness of functional brain 
dysconnectivity patterns across 3 major psychiatric disorders. In line with prevailing 
models of psychopathology, transdiagnostic abnormal connectivity among core higher-
order neurocognitive networks was highlighted. More surprisingly, lower-order (motor, 
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visual, auditory) networks were also affected across disorders, however revealing 
gradients of impairment from mood to psychotic disorders. These findings underscore 
the role that motor and sensory processes play in the etiology of major psychiatric 
disorders and thus call for dedicated research on this topic (71,72). 
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Figure 1. The Cole-Anticevic Brain Network Partition (CAB-NP) (59) was used as a 
reference space to report meta-analytic findings at the large-scale brain network level. 
This functional brain parcellation includes 12 cortico-subcortical distributed networks, 
here displayed on coronal, sagittal and axial views of glass brain representations. VIS1, 
primary visual network; VIS2, secondary visual network; SMN, sensorimotor network; 
AUD, auditory network; LAN, language network; DAN, dorsal attentional network; FPN, 
fronto-parietal network; CON, cingulo-opercular network; DMN, default-mode network; 
PMN, posterior multimodal network; VMN, ventral multimodal network; ORA, orbito-
affective network. 
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Figure 2. Proportions of the 428 studies that reported dysconnectivity effects for each 
psychiatric disorder (left, outer circle) and the respective proportions of patients (lighter 
color) and controls (darker color) for each diagnosis (left, inner circle). MDD, major 
depressive disorder; BP, bipolar disorder; SZ, schizophrenia; HC, healthy controls; P, 
patients. Proportions of the type of methodology used to characterize functional brain 
connectivity (right, outer circle), and the respective proportions of studies that reported 
stereotactic coordinates of peak effects (darker color) and did not (lighter color) for each 
type of methods (right, inner circle). SBVW, seed-based voxel-wise; STR, seed-to-region; 
NBCW, network-based connectome-wide; ICA, independent component analysis; 
VMHC, voxel mirrored homotopic connectivity; ReHo, regional homogeneity; ALFF, 
amplitude of low frequency fluctuations; C, with coordinates; NC, without coordinates. 
See Supplemental Methods for details. 
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Figure 3. General network dysconnectivity patterns across psychiatric disorders are 
depicted in 3D correlations plots. In each psychiatric disorder, there were marked 
positive correlations between how often the 78 connections between pairs of networks 
were tested for a statistical effect across studies, how often there was a report of 
hypoconnectivity among those tested connections, and how often hyperconnectivity 
was shown (upper row). The proportions (%) of how often the 78 connections were 
tested or reported as functionally impaired (hypoconnectivity or hyperconnectivity) were 
strongly positively correlated among psychiatric disorders (lower row). MDD, major 
depressive disorder; BP, bipolar disorder; SZ, schizophrenia.  
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Figure 4. Network dysconnectivity in each psychiatric disorder (MDD, major depressive 
disorder, blue; BP, bipolar disorder, green; SZ, schizophrenia, red) is shown separately 
for hypoconnectivity (down-pointing triangles) and hyperconnectivity (up-pointing 
triangles) effects. Indication of more evidence for hypoconnectivity than 
hyperconnectivity, and conversely, is shown separately. The size of triangles reflects the 
proportion (%) of studies that conducted a statistical test for each of the 78 connections. 
The colors darkness indicates the proportion of studies (%) that reported a statistical 
effect, relative to how often a connection was tested. Thick edges around triangles 
represent dysconnectivity effects that were significant at qFDR < 0.1.   
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Figure 5. Network dysconnectivity differences between psychiatric disorders (MDD, 
major depressive disorder, blue; BP, bipolar disorder, green; SZ, schizophrenia, red) is 
shown separately for greater hypoconnectivity (down-pointing triangles) and greater 
hyperconnectivity (up-pointing triangles) effects in one disorder than another. The size 
of triangles reflects the proportion (%) of studies (averaged between disorders) that 
conducted a statistical test for each of the 78 connections. The colors darkness indicates 
the between-disorders difference in the proportion of studies (%) that reported a 
statistical effect, relative to how often a connection was tested (on average in 2 
disorders). Thick edges around triangles represent differences in dysconnectivity effects 
that were significant at qFDR < 0.1. 
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Label-based meta-analysis of functional brain 
dysconnectivity across mood and psychotic disorders 

 

 

SUPPLEMENTAL INFORMATION 
 
 
SUPPLEMENTAL METHODS 

Description of permutation testing method 

	

For each disorder 𝑘 ∈ 𝒟 = {MDD,BD,SZ}, we define the tested connections via the array 
(𝑏!"

($)*
!∈𝒮,"∈𝒞

, where 𝒮 = {1,… , 𝑆} and 𝒞 = {1,… , 𝐶} are the indices of the investigated 

studies and connections, respectively. Here, 𝑏!"
($) = 1 (= 0) indicates that connection 𝑗 

was investigated (was not investigated) in study 𝑗, with respect to disorder 𝑘. For each 
𝑘, we further define the set of indices for which tested connections were observed: ℬ$ =
4(𝑖, 𝑗) ∈ 𝒮 × 𝒞: 𝑏!"

($) = 1:, and define the array (ℎ!"
↓($)*

(!,")∈ℬ!
, where ℎ!"

↓($) = 1 (= 0) if 

hypoconnectivity was detected (was not detected) in study 𝑖, for connection 𝑗. Similarly, 
we define the array (ℎ!"

↑($)*
(!,")∈ℬ!

, where ℎ!"
↑($) = 1 (= 0) if hyperconnectivity was detected 

(was not detected) in study 𝑖, for connection 𝑗.  

	
Using these data, we wish to test three types of hypotheses, for each pair of connection 
and disorder (𝑗, 𝑘) ∈ 𝒞 × 𝒟. Hypotheses of type A1 and A2: For pair (𝑗, 𝑘), is there 
evidence of hypoconnectivity. For pair (𝑗, 𝑘), is there evidence of hyperconnectivity. 
Hypotheses of type B: For pair (𝑗, 𝑘), is there evidence that the proportions of studies 
reporting hyper and hypoconnectivity differ. Lastly, we consider for distinct triples 
(𝑗, 𝑘, 𝑙) ∈ 𝒞 × 𝒟 × 𝒟, the following hypotheses: Hypotheses of type C1 and C2: For triple 
(𝒋, 𝒌, 𝒍), is there evidence that the proportions of studies reporting hypoconnectivity 
differ between disorder 𝒌 and disorder 𝒍. For triple (𝒋, 𝒌, 𝒍), is there evidence that the 
proportions of studies reporting hyperconnectivity differ between disorder 𝒌 and 
disorder 𝒍. 
 
In order to test the hypotheses above, we employ permutation-based tests (Monte Carlo 
tests), via the independence decomposition framework of Zhu (2005) (1). By Definition 
1.2.1 of Zhu (2005) (1), we say that a random vector 𝐱 is independently decomposable if 
𝐱 = 𝐀𝐳, in distribution, where 𝐀 (an operator; e.g. a matrix) and 𝐳 (a vector) are 
independent. 
Suppose that we observe data (𝐱-, … , 𝐱.). Using these data, we can test the hypotheses 
H/: 𝐱 is independently decomposable versus H-: 𝐱 is not independently decomposable. 
To do so, we construct some test statistic 𝑇/ = 𝜏(𝐱-, … , 𝐱.), which equals in distribution 
to 𝑇 = 𝜏(𝐀-𝐳-, … , 𝐀.𝐳.), under the null hypothesis. To assess whether the null 
hypothesis is true, we simulate 𝑀 independent instances of 𝑇, by computing 𝑇0 =
𝜏(𝐀-1 𝐳-, … , 𝐀.1 𝐳.), where (𝐀-1 , … , 𝐀.1 ) has the same distribution as (𝐀-, … , 𝐀.). This 
simulation process can be thought of as a Monte-Carlo simulation. When 𝐀-, … , 𝐀. are 
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functions of randomly sampled permutation matrices, then the test is usually referred 
to as a permutation test. 

The 𝑝-value associated with test statistic 𝑇/ can be computed as 

𝑝̂2,. =
1 + ∑ [𝑇0 ≥ 𝑇/]2

03-

1 +𝑀
. 

By Proposition 1.2.1 of Zhu (2005) (1), we have the fact that for any 𝛼 ∈ (0,1): 

PrH"N𝑝̂2,. ≤ 𝛼P ≤
⌊𝛼(𝑀 + 1)⌋
𝑀 + 1

, 

where ⌊𝑎⌋ is the integer part of 𝑎, and where PrH" is the probability measure under H/. 
See Lehmann and Romano (2005; Sec. 15.2) (2) for additional details. 

 

Hypotheses of type A1 and A2 

For tests of type A1, for disorder 𝑘 and connection 𝑗, we identify 𝐱4 = 𝑥4 = ℎ4"
($)↓, where 

𝑛 ∈ {𝑖: (𝑖, 𝑗) ∈ ℬ$} and 𝑁 = #{𝑖: (𝑖, 𝑗) ∈ ℬ$}. Under the null hypothesis, we assume the 
independent decomposition 𝐱4 = [𝐀4]-•𝐳4, where 𝐀4 is a uniform randomly sampled 
permutation of the set {𝑗1: (𝑛, 𝑗1) ∈ ℬ$}, [𝐀4]-• is the first row of 𝐀4, and 𝐳4 =
(ℎ4"#

($)↓*
"#:74,"#8∈ℬ!

. That is, under the null hypothesis, for each study 𝑛 under which a tested 

connection was observed for connection 𝑗, ℎ4"
($)↓ is assumed to be equal to 1 with 

probability proportional to the number of hypoconnections observed for study 𝑛, as a 
proportion to the number of tested connections observed in study 𝑛. 

We wish to test that there is an increased level of hypoconnectivity for connection 𝑗. To 
do so, we define the observed test statistic 

𝑇/ =
1
𝑁

X 𝑥4
4∈{!:(!,")∈ℬ!}

, 

and simulate 𝑀 statistics 𝑇0 under the null hypothesis, with form 

𝑇0 =
1
𝑁

X [𝐀41 ]-•
4∈{!:(!,")∈ℬ!}

𝐳4, 

where 𝐀41  is uniform randomly generated with the same distribution as 𝐀4. 

The test statistic 𝑇/ is just the proportion of studies that identified that connection 𝑗 was 
hypoconnected, out of the studies for which a tested connection was observed for 𝑗. The 
simulated values 𝑇0 are then simulations of this proportion, under the probability model 
described above. Thus, the obtained 𝑝-value 𝑝̂2,. can be read as the proportion of test 
statistics {𝑇/, … , 𝑇2} that were greater or equal to the observed statistic 𝑇/. That is, the 
proportion of simulations where the number of studies that identified connection 𝑗 as 
being hypoconnected was greater than the observed number of hypoconnected studies. 

For tests of type A2, we may modify the description above by replacing the symbol ↓ by 
↑, and the prefix hypo by hyper. 
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Hypotheses of type B 

For tests of type B, for disorder 𝑘 and connection 𝑗, we start by defining the vector 
concatenation 

𝐳 = (𝑧-, … , 𝑧;.) = \(ℎ!"
($)↑*

!:(!,")∈ℬ!
, (ℎ!"

($)↓*
!:(!,")∈ℬ!

] , 

where 𝐳 is a vector of length 2𝑁 with 𝑁 = #{𝑖: (𝑖, 𝑗) ∈ ℬ$}. We also observe as data 𝐱 = 𝐳. 
Under the null hypothesis, we assume the independent decomposition 𝐱 = 𝐀𝐳, where 𝐀 
is uniform random permutation matrix corresponding to a permutation of the positions 
of 𝐳. That is, under the null hypothesis, the probability of any study (with observed 
tested connection) being observed as hypo or hyperconnected at connection 𝑗 is equal, 
with pooled probability equal to 

1
2𝑁

X 4ℎ!"
($)↓ + ℎ!"

($)↑:
!:(!,")∈ℬ!

. 

We wish to test that the hypo and hyperconnectivity proportions for connection 𝑗 are 
different. To do so, we define the observed test statistic 

𝑇/ = _
1
𝑁
X𝑥4

.

43-

−
1
𝑁

X 𝑥4

;.

43.<-

_ , 

and simulate 𝑀 statistics 𝑇0 under the null hypothesis, with form 

𝑇0 = _
1
𝑁
X[𝐀1𝐳]4

.

43-

−
1
𝑁

X [𝐀1𝐳]4

;.

43.<-

_ , 

where 𝐀1 is uniform randomly generated with the same distribution as 𝐀, and [𝐀1𝐳]4 is 
the 𝑛th element of the vector 𝐀1𝐳. 

The test statistic 𝑇/ is just the absolute difference between the proportions of studies 
that identified that connection 𝑗 was hypoconnected versus hyperconnected, out of the 
studies for which a tested connection was observed for 𝑗. The simulated values 𝑇0 are 
then simulations of this difference in proportion, under the probability model described 
above. The 𝑝-value 𝑝̂.,2 can then be interpreted as the proportion of simulations where 
the difference between hypo and hyperconnected studies for connection 𝑗 was greater 
than the observed difference in proportion. 

 

Hypotheses of type C1 and C2 

For tests of type C1, for disorder 𝑘 and 𝑙, and connection 𝑗, we start by defining the 
vector concatenation 

𝐳 = N𝑧-, … , 𝑧.!<.$P = \(ℎ!"
($)↓*

!:(!,")∈ℬ!
, (ℎ!"

(=)↓*
!:(!,")∈ℬ$

] , 
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where 𝐳 is a vector of length 𝑁$ +𝑁= with 𝑁$ = #{𝑖: (𝑖, 𝑗) ∈ ℬ$} and 𝑁= = #{𝑖: (𝑖, 𝑗) ∈ ℬ=}. We 
also observe as data 𝐱 = 𝐳. Under the null hypothesis, we assume the independent 
decomposition 𝐱 = 𝐀𝐳, where 𝐀 is uniform random permutation matrix corresponding 
to a permutation of the positions of 𝐳. That is, under the null hypothesis, the probability 
of any study across both disorders (with observed tested connection) being observed 
as hypoconnected at connection 𝑗 is equal, with pooled probability equal to 

1
𝑁$ +𝑁=

a X ℎ!"
($)↓

!:(!,")∈ℬ!

+ X ℎ!"
(=)↓

!:(!,")∈ℬ$

b . 

We wish to test that the proportions of hypoconnected studies for connection 𝑗 are 
different between disorders 𝑘 and 𝑙. To do so, we define the observed test statistic 

𝑇/ = c
1
𝑁$

X𝑥4

.!

43-

−
1
𝑁=

X 𝑥4

.!<.$

43.!<-

c , 

and simulate 𝑀 statistics 𝑇0 under the null hypothesis, with form 

𝑇0 = c
1
𝑁$

X[𝐀1𝐳]4

.!

43-

−
1
𝑁=

X [𝐀1𝐳]4

.!<.$

43.!<-

c , 

where 𝐀1 is uniform randomly generated with the same distribution as 𝐀. 

The test statistic 𝑇/ is the absolute difference between the proportions of studies that 
identified that connection 𝑗 was hypoconnected for disorders 𝑘 and 𝑙. The simulated 
values 𝑇0 are then simulations of this difference in proportion, under the probability 
model described above. The 𝑝-value 𝑝̂.,2 can then be interpreted as the proportion of 
simulations where the difference between proportions of studies that identified 
hypoconnectivity for connection 𝑗 for disorders 𝑘 and 𝑙 was greater than the observed 
difference in proportion. 

For tests of type C2, we may modify the description above by replacing the symbol ↓ by 
↑, and the prefix hypo by hyper. 

False discovery rate control 

Assume that we observe 𝑁 𝑝-values 𝑝-, … , 𝑝. in (0,1). We then convert the 𝑝-values via 
the probit transformation to obtain 𝑧-values: 

𝑍4 = 𝛷>-(1 − 𝑝4), 

where 𝛷>- is the inverse cumulative distribution function of the standard normal 
distribution, and 𝑛 ∈ {1,… ,𝑁}. The empirical Bayes of McLachlan et al. (2006) (3) and 
Efron (2010) (4) assumes that, marginally, 𝑧4 has mixture distribution defined by the 
density function 

𝑓(𝑧) = 𝜋/𝜙(𝑧; 𝜇/, 𝜎/;) + 𝜋-𝜙(𝑧; 𝜇-, 𝜎-;), 

where 𝜋/, 𝜋- ∈ (0,1) with 𝜋/ + 𝜋- = 1, and where 𝜙(⋅; 𝜇, 𝜎;) is the normal density function 
with mean 𝜇 and variance 𝜎;. Here, 𝜋/ can be interpreted as the marginal probability 
that a 𝑧-value corresponds a test that for which the null hypothesis is true. Densities 
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𝜙(𝑧; 𝜇/, 𝜎/;) and 𝜙(𝑧; 𝜇-, 𝜎-;) are thus the densities of the 𝑧-values, conditional on the null 
hypothesis of the underlying test being true or false, respectively. Since we would 
assume that smaller 𝑝-values provide evidence of false null hypotheses, it is assumed 
that 𝜇- > 𝜇/. 

Notice that under the typical theory of well-specified tests, 𝑝4 ∼ Uniform(0,1) if 𝑝4 the 
null hypothesis is true, and thus 𝑝4 ∼ Normal(0,1). Efron (2010) (4) provides compelling 
argument that Uniform(0,1) is often not the distribution of true null 𝑝-values in practice, 
when tests may be misspecified or are non-standard, and argues for the use of the so-
called empirical null density 𝜙(𝑧; 𝜇/, 𝜎/;), where 𝜇/ ≈ 0 and 𝜎/; ≈ 1. We will also make use 
of this flexibility, since it is clear that our own 𝑝-values are non-standard, due to the use 
of permutation testing. 

For known parameters 𝛉 = (𝜋/, 𝜋-, 𝜇/, 𝜇-, 𝜎/;, 𝜎-;), suppose that we reject hypothesis 𝑛 if 
𝜏4(𝛉) ≤ 𝜅 and 𝑧4 > 𝜇/. for some 𝜅 ∈ [0,1], where 

𝜏4(𝛉) =
𝜋/𝜙(𝑧4; 𝜇/, 𝜎/;)

𝜋/𝜙(𝑧4; 𝜇/, 𝜎/;) + 𝜋-𝜙(𝑧4; 𝜇-, 𝜎-;)
 

is the a posteriori probability that hypothesis 𝑛 has a true null, conditioned on 
observation of its 𝑧-value 𝑧4. If we use the aforementioned rejection rule across all 𝑁 
hypotheses, then we can estimate the false discovery rate (FDR) due to this rule via the 
expression 

FDRr(𝜅) =
∑ 𝜏4.
43- (𝛉)[𝜏4(𝛉) ≤ 𝜅][𝑧4 > 𝜇/]
∑ [𝜏4(𝛉) ≤ 𝜅].
43- [𝑧4 > 𝜇/]

, 

which is a consistent estimate of the FDR under so-called 𝑀-dependence (cf. Nguyen et 
al. 2014 (5), Thm. 1). We define the 𝑞-value (FDR adjusted 𝑝-value) 𝑞4 for each hypothesis 
𝑛 as the estimated FDR given that 𝜅 = 𝜏4(𝛉): 

𝑞4 = FDRrN𝜏4(𝛉)P. 

In practical applications, we must estimate 𝛉 by some 𝛉t., which is obtained via the 
procedure described in Nguyen et al. (2019) (6). 

 
 
Secondary analysis at the region level within high-order networks 
 
A secondary analysis was conducted at the region level, focussing only on regions that 
maximally overlapped with either the fronto-parietal (FPN), cingulo-opercular (CON) or 
default-mode (DMN) network from the Cole-Anticevic Brain Network Partition (CAB-NP) 
atlas (1). Translation of the labels manually extracted at various spatial resolutions into 
the AAL3 space (7) and coding the presence or absence of tested, hypoconnected or 
hyperconnected connections were accomplished using the same procedure as described 
for the main analyses. Hemispheric dissociation was ignored, thus leading to investigate 
48 brain regions. Of the 48 within-region and 1128 between-region connections, only the 
top 3 connections with the larger between-disorder dysconnectivity effects (either hypo 
or hyperconnectivity) were reported for each of the 6 within and between-network 
connections among higher-order networks (Supplemental Figure S4). 
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SUPPLEMENTAL TABLES 
 
 
Table S1: Brief definitions of the methodological approaches included in the meta-
analysis. 
 

Method Definition 
Nature of 

connectivity 
Seed-based voxel-wise 
(SBVW) 

Correlation between a seed and 
every voxel of the brain. 

 

Distant 

Seed-to-region (STR) Correlation between a seed and a 
specific brain region or network. 

 

Distant 

Network-based 
connectome-wide (NBCW) 

Pairwise correlations between every 
brain network. 

 
 

Distant 

Independent component 
analysis (ICA) 

Temporally correlated voxels 
grouped into multiple independent 

networks. 
 

Distant 

Voxel-mirrored homotopic 
connectivity (VMHC) 

Correlation between pairs of 
symmetric inter-hemispheric voxels. 

 

Inter-hemispheric 

Regional homogeneity 
(ReHo) 

Correlation of a voxel’s timeseries 
with its neighboring voxels. 

 

Local 

Amplitude of low-
frequency fluctuation 
(ALFF) 

Total power of the BOLD signal 
within the low frequencies range 

(0.01 and 0.1 Hz). 
 

Local 
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Table S2: Network sizes defined by their proportions (%) of the total volume of the Cole-
Anticevic Brain Network Partition (CAB-NP) atlas (1). 

Network name size 

Primary visual network (VIS1) 4.54 % 

Secondary visual network (VIS2) 11.99 % 

Somatomotor network (SMN) 13.03 % 

Auditory network (AUD) 2.06 % 

Language network (LAN) 5.25 % 

Dorsal attentional network (DAN) 5.82 % 

Frontoparietal network (FPN) 17.53 % 

Cingulo-opercular network (CON) 14.13 % 

Default-mode network (DMN) 21.01 % 

Posterior-multimodal network (PMN) 1.76 % 

Ventral-multimodal network (VMN) 1.87 % 

Orbito-affective network (ORA) 1.02 % 

 

VIS1, primary visual network; VIS2, secondary visual network; SMN, sensorimotor 
network; AUD, auditory network; LAN, language network; DAN, dorsal attentional 
network; FPN, fronto-parietal network; CON, cingulo-opercular network; DMN, default-
mode network; PMN, posterior multimodal network; VMN, ventral multimodal network; 
ORA, orbito-affective network. 
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SUPPLEMENTAL FIGURES 
 

 
 
Figure S1: Selection process of the 428 studies included in the meta-analysis is 
presented in a flowchart according to the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) guidelines. MA: meta-analysis; rsfmri: resting-
state functional magnetic resonance imaging. 
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Figure S2: Distribution of the number of studies that conducted a statistical test by 
connections across psychiatric disorders is shown separately for each network. The 12 
connections between a specific network and all the CAB-NP atlas networks are depicted 
in each violin plot. VIS1, primary visual network; VIS2, secondary visual network; SMN, 
sensorimotor network; AUD, auditory network; LAN, language network; DAN, dorsal 
attentional network; FPN, fronto-parietal network; CON, cingulo-opercular network; 
DMN, default-mode network; PMN, posterior multimodal network; VMN, ventral 
multimodal network; ORA, orbito-affective network. 
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Figure S3: Network dysconnectivity patterns in each psychiatric disorder are depicted in 
correlations plots. The proportions (%) of how often the 78 connections were tested, 
how often there was a report of hypoconnectivity and hyperconnectivity among those 
tested connections were similarly positively correlated in each disorder (MDD, major 
depressive disorder; BP, bipolar disorder; SZ, schizophrenia). The proportions (%) of 
how often the 78 connections were tested, hypoconnected or hyperconnected between 
disorders are shown by pairwise correlations. 
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Figure S4: Higher-order networks (FPN, fronto-parietal network; CON, cingulo-opercular 
network; DMN, default-mode network) hypoconnectivity (down-pointing triangles) and 
hyperconnectivity (up-pointing triangles) for each psychiatric disorders (MDD, major 
depressive disorder, blue; BP, bipolar disorder, green; SZ, schizophrenia, red) are shown 
in the first column. The 3 regional connections with the with the largest between 
disorder dysconnectivity (either hypoconnectivity or hyperconnectivity) are shown in 
the row of the corresponding network connection. The size of triangles reflects the 
proportion (%) of studies that conducted a statistical test for the specified connections. 
Sup, superior; mid, middle; inf, inferior; ant, anterior; med, median; post, posterior; 
supp, supplementary. 
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