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 35 

ABSTRACT 36 

MIS-C is a severe hyperinflammatory condition with involvement of multiple organs that 37 

occurs in children who had COVID-19 infection. Accurate diagnostic tests are needed to guide 38 

management and appropriate treatment and to inform clinical trials of experimental drugs and 39 

vaccines, yet the diagnosis of MIS-C is highly challenging due to overlapping clinical features 40 

with other acute syndromes in hospitalized patients. Here we developed a gene expression-41 

based classifier for MIS-C by RNA-Seq transcriptome profiling and machine learning based 42 

analyses of 195 whole blood RNA and 76 plasma cell-free RNA samples from 191 subjects, 43 

including 95 MIS-C patients, 66 COVID-19 infected patients with moderately severe to severe 44 

disease, and 30 uninfected controls. We divided the group into a training set (70%) and test 45 

set (30%). After selection of the top 300 differentially expressed genes in the training set, we 46 

simultaneously trained 13 classification models to distinguish patients with MIS-C and COVID-47 

19 from controls using five-fold cross-validation and grid search hyperparameter tuning. The 48 

final optimal classifier models had 100% diagnostic accuracy for MIS-C (versus non-MIS-C) 49 

and 85% accuracy for severe COVID-19 (versus mild/asymptomatic COVID-19).  Orthogonal 50 

validation of a random subset of 11 genes from the final models using quantitative RT-PCR 51 

confirmed the differential expression and ability to discriminate MIS-C and COVID-19 from 52 
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controls. These results underscore the utility of a gene expression classifier for diagnosis of 53 

MIS-C and severe COVID-19 as specific and objective biomarkers for these conditions. 54 

 55 

INTRODUCTION  56 

Multisystem inflammatory syndrome in children (MIS-C) is a severe post-infectious 57 

complication of SARS-CoV-2 infection in pediatric patients that is characterized by severe 58 

disease with systemic hyperinflammation and multi-organ involvement1. On average, 59 

symptoms of MIS-C first present two to four weeks after acute COVID-19 illness and can 60 

involve a constellation of respiratory, gastrointestinal, cardiac, renal, dermatologic, and 61 

neurological symptoms that in 60% of cases result in hospitalization and possible ICU stay with 62 

invasive mechanical ventilation required due to inadequate oxygenation2. Diagnosis of MIS-C 63 

is challenging due to overlapping clinical features with other hyperinflammatory illnesses, such 64 

as Kawasaki Disease (KD) and Toxic Shock Syndrome (TSS) 3,4, and the lack of objective 65 

biomarker based diagnostic tests hinders accurate diagnosis and effective management and 66 

treatment for this condition5. As of August 2022, the CDC has reported 8,798 cases of MIS-C 67 

and 71 deaths attributed to MIS-C in children6, defined as individuals under 21 years of age.  68 

Transcriptome analysis by RNA sequencing (RNA-Seq) has been shown to be useful in 69 

the diagnosis of rare genetic diseases7 and infections such as Lyme disease8, influenza9, and 70 

COVID-1910. In a previous study11, analysis of plasma cell-free RNA from patients with MIS-C 71 

or severe COVID-19 yielded distinct signatures of cell injury and death between these two 72 

disease states, including the involvement of unexpected pathways such as endothelial and 73 

neuronal Schwann cell signaling. These signatures were different from those from whole blood 74 

RNA profiling10-13, which showed upregulation of pro-inflammatory signaling pathways in 75 
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COVID-19 but downregulation of T cell-associated pathways in MIS-C.  Given the findings of 76 

distinct signaling pathways11, we hypothesized that whole blood and plasma would be 77 

promising analytes for the development of diagnostic assays for severe COVID-19 and MIS-C.  78 

Here we trained machine learning algorithms to identify panels of differentially 79 

expressed genes that can distinguish MIS-C or severe COVID-19 from uninfected controls 80 

(donors or patients with other inflammatory diseases). We obtained performance accuracies 81 

for the gene panels of 85-100% and confirmed the differential expression of a subset of genes 82 

by qRT-PCR. Our results lay the groundwork for the development and clinical validation of 83 

multiplexed RNA gene expression-based assays for MIS-C and severe COVID-19. 84 

 85 

RESULTS 86 

Transcriptome profiling using RNA-Seq was performed on 195 whole blood RNA 87 

(wbRNA) samples and 76 plasma cell-free RNA (cfRNA) samples from 191 subjects, including 88 

95 MIS-C patients, 66 COVID-19 infected patients, and 30 uninfected controls. A mean of 31 89 

million reads were generated per whole blood sample and a mean of 8.6 million reads were 90 

generated per cell-free sample. No batch effect based on collection center was observed.  91 

We divided the samples into two sets, a training set (70%) and a test set (30%), with 92 

consideration to sample origin and severity of disease (Fig. 1A). Next, we performed feature 93 

selection on the training set. We removed genes with low counts and near zero variance. We 94 

selected the top 300 relevant features selected using differential expression/abundance 95 

analysis in DESeq214 (Benjamini-Hochberg adjusted p-value < 0.05, ranked by fold change).  96 

 97 
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 98 

Figure 1. Sample description. (A) Flowchart of the method used to train and test 99 

machine learning classification algorithms. (B) Number of samples for each group (C) 100 

Overview of comparisons made and the classification algorithms used. 101 

 102 

 103 

Using the top 300 relevant features, we trained 13 machine learning classification 104 

models8 and fit a logistic regression to distinguish wbRNA or cfRNA profiles from patients wi105 

MIS-C, COVID-19, and good health (Fig. 1B-C). We used five-fold cross-validation and grid 106 

search hyperparameter tuning to train the models. To determine classification score thresho107 
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that optimize classifier performance, we used Receiver Operating Characteristic (ROC) 108 

analysis. Next, we applied the trained models to the test set samples, with the classification 109 

score threshold determined from the training step, and we quantified the performance of each 110 

model for both wbRNA and cfRNA biomarkers (Fig. 2A). 111 

We observed high classification performance comparing samples from patients with 112 

MIS-C and COVID-19 for both wbRNA and cfRNA using 9 machine learning algorithms (Fig. 113 

2A, test and train area under the curve (AUC) > 0.95). The generalized linear models with 114 

Ridge and LASSO feature selection performed the best for both wbRNA and cfRNA (Fig. 2B-115 

C, wbRNA: accuracy=0.95, sensitivity=1, specificity=0.83; cfRNA: accuracy=0.93, 116 

sensitivity=0.96, specificity=0.89). We also observed high classification performance 117 

comparing samples from patients with MIS-C and good health for both wbRNA and cfRNA and 118 

for most models, as would be expected. Surprisingly, we observed lower classification 119 

performance comparing samples from patients with COVID-19 and good health, particularly in 120 

the cell-free RNA samples (Fig. 2A). We attribute this to overfitting of the training model, due 121 

to a combination of a small sample size for this comparison and the heterogeneity of the 122 

affected population. For the severe versus mild/asymptomatic COVID-19 comparison using 123 

wbRNA, the best performing algorithms included Random Forest (RF) Extra Trees, Naïve 124 

Bayes (NB), and Classification and Regression Trees (RPART), with all models ddyielding an 125 

accuracy of >85% (Fig. 3A). 126 

Next, we incorporated clinical metadata into our modeling using the Random Forest 127 

Extra Trees algorithm (Fig. 4A-B). We observed high classification performance for both 128 

wbRNA and cfRNA in differentiating between samples from patients with MIS-C and COVID-129 

19. Incorporating the clinical metadata increased the performance of the cfRNA model, but did 130 
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 7 

not impact the performance of the wbRNA model (Fig. 4C). Both models were performing well 131 

to begin with, and we believe that a larger data set would be needed to better measure the 132 

difference incorporating clinical metadata has on classification performance.  133 

 134 
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 143 

Figure 2. Comparison of machine learning classification algorithms using RNA-seq 144 

data. (A) Receiver operator curve (ROC) area under the curve (AUC) metrics of 13 machine145 
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 9 

learning algorithms and logistic regression for training and test sets in cfRNA or wbRNA acro146 

comparisons. (B) Train and test performance of a generalized linear model machine learning147 

algorithm using Ridge feature selection in distinguishing MIS-C and Moderate/Severe COVID148 

19 in cfRNA and (C) wbRNA. 149 

 150 

Figure 3. Comparison of machine learning classification algorithms at predicting 151 

COVID-19 severity. (A) Accuracy, sensitivity, and specificity of 13 machine learning 152 

algorithms and logistic regression for training and test sets in wbRNA. (B) Receiver operator153 
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curve (ROC) area under the curve (AUC) plot of wbRNA test set using the RF Extra Trees 154 

algorithm. (C) Violin plot of classifier scores from the RF Extra Trees algorithm on the train a155 

test sets. (D) Confusion matrix of RF Extra Trees algorithm performance on the test set. 156 

 157 

 158 

 159 

Figure 4. A composite model incorporating RNA-seq and clinical metadata in classifyi160 

MIS-C from Moderate/Severe COVID-19 (A) Train and test performance of a Random Fore161 

 and 

 

fying 

orest 

WITHDRAWN

see manuscript DOI for details

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22280395doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.26.22280395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11

Extra Trees classification algorithm in distinguishing MIS-C and Moderate/Severe COVID-19 in 162 

cfRNA and (B) wbRNA utilizing RNA-seq and clinical metadata. (C) Comparison of ROC AUC 163 

metrics between Random Forest Extra Trees classification algorithms utilizing RNA-seq data 164 

with and without the addition of clinical metadata in distinguishing MIS-C and Moderate/Severe 165 

COVID-19 in cfRNA and wbRNA. 166 

 167 

Finally, we evaluated the performance of gene expression from a subset of top differentially 168 

expressed genes (DEGs) in whole blood samples from MIS-C, severe COVID-19 (excluding 169 

MIS-C cases), and uninfected controls. A subset of 12 differentially expressed genes 170 

(FCER1A, ADAMTS2, CD177, LMOD1, KCNA5, OLAH, OTOF, TIFAB, B3GALT2, ITGA7, 171 

PLA267, and IFI27) were randomly selected and tested.  The results, expressed in cycle 172 

threshold (Ct) values, were concordant with the relative differences in expression levels and 173 

direction of gene expression (upregulation or downregulation), as reported in the previous 174 

study11. Differences din expression between MIS-C or severe COVID-19 and uninfected 175 

controls were statistically significant for four genes (ADAMTS2, CD177, OLAH, and TIFAB), 176 

whereas the differences between MIS-C and severe COVID-19 were significant for three 177 

genes (ADAMTS2, CD177, and OLAH). 178 

 179 

 180 
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Figure 5. Confirmation of differential gene expression by quantitative RT-PCR (qRT-181 

PCR). Twelve genes predicted to distinguish MIS-C and severe COVID-19 from uninfected 182 

controls were tested by qRT-PCR with 3 sample replicates and 2 assay replicates per gene.183 

Genes highlighted in red text are downregulated in MIS-C and COVID-19 compared to 184 

controls. The symbols and error bars denote the mean and standard deviation, respectively,185 

for the 3 sample replicates.  186 

 187 

DISCUSSION  188 

 Here we developed classifier models for severe manifestations of COVID-19, includin189 

MIS-C and moderate-to-severe, non-MIS-C COVID-19, consisting mostly of pneumonia case190 

that can result in hospitalization and adverse clinical outcomes such as ICU admission, end191 

organ failure, and death15. Transcriptome profiling by RNA-Seq was performed on 195 wbRN192 

and 76 plasma cfRNA samples from 191 subjects, and sequencing data from 70% of sample193 

assigned to a training set were used to generate models with 100% accuracy in discriminatin194 

MIS-C from non-MIS-C, and >85% accuracy in severe COVID-19 versus mild/asymptomatic195 
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COVID-19. We subsequently confirmed differential gene expression among MIS-C, severe 196 

COVID-19, and uninfected controls by orthogonal qRT-PCR of 11 genes taken from the final 197 

model. These findings underscore the potential clinical utility of gene expression-based 198 

classification in the development and validation of diagnostic assays for MIS-C and severe 199 

COVID-19. 200 

A high degree of overlap in symptomatology and clinical presentation between severe 201 

manifestations of COVID-19 and other acute illnesses in hospitalized patients has been 202 

reported3,4. Acute syndromes that can mimic MIS-C include Kawasaki disease3, toxic shock 203 

syndrome3, bacterial or viral sepsis4, and even non-infectious conditions such as congestive 204 

heart failure, whether or not directly related to MIS-C16. In contrast, acute illnesses that can 205 

mimic severe COVID-19 include many infections17-19, including those caused by respiratory 206 

viruses (e.g., influenza virus, parainfluenza virus, adenovirus, etc.), bacterial pneumonia, 207 

including tuberculosis, malaria, and chronic obstructive pulmonary disease exacerbation. 208 

However, whereas molecular or antigen tests for SARS-CoV-2 from nasal swabs can readily 209 

diagnose COVID-19, and diagnostic tests for many other illnesses in the differential diagnosis 210 

are available, specific biomarkers and tests for MIS-C are lacking to date. Such diagnostic 211 

tests for MIS-C would be useful to inform accurate and timely management of patients with 212 

inflammatory diseases that have clinically overlapping presentations. They may also be used 213 

as a “companion diagnostic” to clinical trials of drugs and/or vaccines by providing an objective 214 

measure of the response to and effectiveness of an intervention20. 215 

Similarly, there is an urgent need for diagnostic tests that can establish whether a 216 

patient has severe COVID-19. This is especially important as the widespread availability of 217 

effective vaccines to prevent severe complications of COVID-19 has led to a sharp decline in 218 

WITHDRAWN

see manuscript DOI for details

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.26.22280395doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.26.22280395
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

the number of cases in the United States and worldwide as of September 202221, which may 219 

decrease clinical vigilance for patients at high risk of life-threatening complications or death 220 

from COVID-19. Timely diagnosis can enable patients to promptly receive antiviral therapies 221 

such as ritonavir-boosted nirmatrelvir(Paxlovid)22, the effectiveness of which wanes in patients 222 

with delayed diagnosis and more severe disease, thereby decreasing lengths of stay in the 223 

hospital and reducing utilization of limited health care resources.  224 

Our study employed orthogonal confirmation of transcriptome profiling results by 225 

multiplex qRT-PCR23. This approach not only supports the accuracy of the gene expression-226 

based models, but also highlights how these assays may be introduced into the clinical setting 227 

soon. Clinical multiplex qRT-PCR syndromic panels are now widely available for diagnosis of 228 

multiple infectious diseases24-26, including neurological infections, acute respiratory illness, and 229 

diarrheal disease, or gastroenteritis. These panels have the advantage of moderate to high-230 

throughput, batch testing capability, and low cost, none of which is the case with next-231 

generation sequencing based platforms. Thus, diagnostic assays based on a condensed panel 232 

of 30-50 genes may be more conducive to clinical laboratory workflows than those based on 233 

next-generation sequencing.  234 

Our study has some limitations. First, we had a very limited number of samples from 235 

patients with “MIS-C-like” illnesses – Kawasaki disease, toxic shock syndrome, and/or acute 236 

bacterial sepsis3,4. Comparisons between MIS-C and these aforementioned diseases is 237 

probably more useful than comparisons between MIS-C and COVID-19 or donor controls. 238 

Second, without longitudinal samples, we were unable to ascertain the prognostic utility of 239 

classifier models in predicting clinical outcomes, whether patients will clinically deteriorate and 240 

develop more severe disease over time. Third, although we used a fully independent test set in 241 
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these analyses, the divergence in assay performance between the training and test set data 242 

suggests that the models may be slightly overfit; additional sample sizes are likely needed to 243 

address this problem.  244 

 245 

   246 

METHODS 247 

Ethics Statement. The University of California, San Francisco (UCSF) Institutional Review 248 

Board (IRB) (#21-33403), San Francisco, CA; Emory University IRB (STUDY00000723), 249 

Atlanta, GA; Childrens National Medical Center (CNMC) IRB (Pro00010632), Washington, DC; 250 

and Cornell University IRB for Human Participants (2012010003), New York, NY each 251 

approved the protocols for this study. All samples and patient information were de-identified for 252 

analysis and sharing with collaboration institutions. At Emory University the IRB approved 253 

protocol was a prospective enrollment study under which parents provided consent and 254 

children assent as appropriate for age. At CNMC and UCSF, the IRB protocols were no 255 

subject contact sample biobanking protocols under which content was not obtained and data 256 

was extracted from medical charts.  257 

 258 

Sample Acquisition UCSF. Samples were acquired from UCSF as previously described11. 259 

Briefly, hospitalized pediatric patients were identified as having COVID-19 by testing positive 260 

with SARS-CoV-2 real-time PCT (RT-PCR). Whole blood samples were collected in EDTA 261 

lavender top tubes and diluted 1:1: in DNA/RNA shield (Zymo Research). Remaining blood 262 

was centrifuged at 2500 rpm for 15 min and the available plasma was retained. All samples 263 

were stored in a -80°C freezer until used. 264 
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 265 

Sample Acquisition Emory and Children’s Healthcare of Atlanta. Samples were acquired 266 

from Emory and Children’s Healthcare of Atlanta as previously described11. Briefly, pediatric 267 

patients were classified as having COVID-19 via SARS-CoV-2 RT-PCR and as having MIS-C if 268 

they met the CDC case definition. Controls were healthy outpatients with no known history of 269 

COVID-19 who volunteered for specimen collection. Whole blood was collected in EDTA 270 

lavender top tubes and aliquoted for plasma extraction via centrifugation at 2500 rpm for 271 

15min. Samples were stored in a -80°C freezer and shipped on dry ice to either UCSF or 272 

Cornell for analysis. 273 

 274 

Sample Acquisition Children’s National. Samples were acquired from Children’s National as 275 

previously described11. Briefly, pediatric patients were classified as having MIS-C if they met 276 

the CDC case definition.  Whole blood samples were collected and centrifuged at 1300g for 5 277 

minutes at room temperature. Plasma was aliquoted into a cryovial and frozen at -80°C. A 278 

DMSO-based cryopreservative (Cryostor CS10) was added in a 1:1 ratio to the cell pellet and 279 

then frozen at -80°C in a controlled rate freezing container (i.e., Mr. Frosty) and then 280 

transferred to liquid nitrogen within 1 week. 281 

Clinical Data. Patients were stratified as previously described11. For the purposes of this 282 

study, patients were classified as having MIS-C by multidisciplinary teams which adjudicated 283 

whether a patient met the CDC case definition of MIS-C. COVID-19 was defined as any patient 284 

with PCR-confirmed SARS-CoV-2 infection within the preceding 14 days who did not also 285 

meet the MIS-C case definition. Clinical data was abstracted from the medical record and 286 

inputted into a shared REDCap database housed at UCSF. 287 
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 288 

Severity. Patients were assigned a severity using the following criteria: 289 

• Asymptomatic: This included patients with evidence of SARS-CoV-2 infection by 290 

nasopharyngeal RT- PCR but no symptoms of COVID-19, regardless of whether 291 

hospitalized for another cause or not hospitalized. 292 

• Mild: This included all outpatient cases (who did not require hospitalization for 293 

COVID-19) or if hospitalized, only upper respiratory symptoms, including fever, sore 294 

throat, cough, rhinorrhea, loss of sense of smell or taste from COVID-19 only. 295 

• Moderate: The patient must have been hospitalized due to COVID-19 respiratory 296 

disease and/or any systemic/non-respiratory symptoms attributed to COVID-19 (e.g., 297 

neonatal fever, dehydration, new diagnosis diabetes, acute appendicitis, necrosis of 298 

extremities, diarrhea, encephalopathy, renal insufficiency, mild coagulation 299 

abnormalities, etc.) and/or MIS-C. 300 

• Severe: The patient must have been hospitalized for COVID-19 or MIS-C with either 301 

high-flow oxygen requirement (high-flow nasal cannula, bilevel positive airway 302 

pressure (BIPAP), intubation with mechanical ventilation, or extracorporeal 303 

membrane oxygenation (ECMO) and/or evidence of end-organ failure (acute renal 304 

failure requiring dialysis, coagulation abnormalities resulting in bleeding or stroke, 305 

diabetic ketoacidosis, hemodynamic instability requiring vasopressors) and/or dying 306 

from COVID-19 or MIS-C. These patients were almost always admitted to the ICU. 307 

 308 

Sample processing and sequencing. Samples were processed as described previously11. 309 

Briefly, samples were received on dry ice, RNA was extracted, libraries prepared, and 310 
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sequenced on a NextSeq or NovaSeq Illumina sequencer. Sequencing data was processed 311 

using a custom bioinformatics pipeline which included quality filtering and trimming, alignment 312 

to the human GRCh38 reference genome, and counting of gene features. 313 

 314 

Gene expression analyses. Whole blood samples from three different categories (MIS-C, 315 

severe COVID-19, and healthy controls) were extracted as previously described and eluted in 316 

200 ul. RT-PCR was performed using 5 ul of TaqMan Fast Advanced Master Mix (Applied 317 

Biosystems 4369514), 1 ul of probe (predesigned TaqMan Probes, Thermo Fisher), 6 ul of 318 

nuclease-free water, and 8 ul of extracted material. All reactions were performed in a 319 

QuantStudio Real-Time PCR (Thermo Fisher) following this thermal-cycling conditions: 320 

incubation at 50°C for 2 minutes, enzyme activation 95°C for 20 seconds, and 40 cycles of 321 

denature step at 95°C for 3 seconds and anneal/extend 60°C for 30 seconds. Results were 322 

analyzed using the QuantStudio software.  323 

 324 

Machine learning. Machine learning and model training was done using R (v4.1.1) with 325 

packages Caret (v6.0.90), tidyverse (v1.3.1), pROC (v1.18.0), PRROC (v1.3.1), DESeq2 326 

(v1.34.0), and data.table (v1.14.2). Sample metadata and count matrices were loaded as 327 

dataframes, and split 70/30 into a training set and a test set. Hospital of origin and severity of 328 

disease were considered while splitting the data to minimize differences in the training and test 329 

sets. Relevant features for model training were selected by filtering and differential 330 

expression/abundance analysis. First, genes with low counts (sum counts per million across 331 

samples < 15) and near zero variance (R caret package nearZeroVar function) were removed. 332 

Next, the top 300 genes were selected using differential expression/abundance analysis using 333 
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DESeq214 as ranked by absolute log2 fold change (adjusted p.value < 0.05, basemean > 5). 334 

Machine learning algorithms were trained using the subset meta data using 5-fold cross 335 

validation and grid search hyperparameter tuning. Next, class predictions were predicted for 336 

the training set.  Accuracy, sensitivity, specificity, and ROC AUC were used to measure test 337 

performance. The classification models used are generalized linear models with Ridge and 338 

LASSO feature selection (GLMNETRidge and GLMNETLasso), support vector machines with 339 

linear and radial basis function kernels (SVMLin and SVMRAD), random forest (RF), random 340 

forest ExtraTrees (EXTRATREES), neural networks (NNET), linear discriminant analysis 341 

(LDA), nearest shrunken centroids (PAM), C5.0 (C5), k-nearest neighbors (KNN), naive bayes 342 

(NB), CART (RPART), and logistic regression (GLM).  343 
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