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Abstract 
Background: Autism spectrum disorder (ASD) is defined behaviorally, but measures that probe 
underlying neural mechanisms may provide clues to biomarker discovery and brain-based patient 
stratification with clinical utility.  Phase-amplitude coupling (PAC) has been posited as a 
measure of the balance between top-down and bottom-up processing in cortex, as well as a 
marker for sensory processing and predictive coding difficulties in ASD. We evaluate 
differences in PAC metrics of resting-state brain dynamics between children with and without 
ASD and relate PAC measures to age and behavioral assessments. 
Methods: We analyzed electroencephalography data collected by the Autism Biomarkers 
Consortium for Clinical Trials, including 225 (192 male) ASD and 116 (81 male) typically-
developing children aged 6-11 years. We evaluated the strength and phase preference of PAC 
and the test-retest reliability of PAC across sessions. 
Results: There was significantly increased alpha-gamma and theta-gamma PAC strength in 
ASD. When considering all participants together, we found significant associations of whole 
brain theta-gamma PAC strength with measures of social communication (Beta = 0.185; p = 
0.006) and repetitive behaviors (Beta = 0.166; p = 0.009) as well as age (Beta = 0.233; p < 
0.0001); however, these associations did not persist when considering the ASD group alone. 
There are also group differences in theta-gamma phase preference. 
Conclusions: This large, rigorously collected sample indicated altered PAC strength and phase 
bias in ASD. These findings suggest opportunities for back-translation into animal models as 
well as clinical potential for stratification of brain-based subgroups in ASD.  

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted September 27, 2022. ; https://doi.org/10.1101/2022.09.25.22279830doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830
https://doi.org/10.1101/2022.09.25.22279830


 2 

Introduction 
 
Autism spectrum disorder (ASD) is characterized by challenges with social communication, 

repetitive behaviors, and sensory processing. A core feature of neural circuit difference in ASD 

appears to be homeostatic imbalance at the level of neural circuits that can occur as a result of 

multiple underlying differences in physiological mechanisms; by various accounts, this has been 

described as an imbalance in feedforward versus feedback processing (1,2), excitation versus 

inhibition (3,4), short-range versus long-range connectivity (5), or signal versus noise (6,7). This 

macroscale circuit activity can be sampled noninvasively using electroencephalography (EEG).  

Many of the most common EEG analyses in ASD have focused on resting-state spectral 

power, with some studies showing increased power in higher frequencies (8–10)  and/or 

decreased power in mid-range frequencies (11,12). Importantly, while these spectral power 

analyses capture the overall strength of oscillations averaged over an entire EEG recording 

session, the process of balancing neural circuit activity is dynamic rather than static (14). Levels 

of excitation and inhibition, for example, do not remain stationary over the course of minutes in 

an active circuit. Instead, they actively adjust, on the order of milliseconds, in response to the 

ongoing activity of the circuit and its neighbors. Therefore, EEG analyses that capture not only 

the amount of activity, but also the timing thereof, may provide further insights into the neural 

circuit activity occurring in ASD. 

Cross-frequency coupling has emerged as a method of analyzing this dynamic, moment-

to-moment interaction between oscillations of different frequencies within EEG signal. 

Specifically, phase-amplitude coupling (PAC) evaluates how the phase of low frequency 

oscillations modulates the amplitude of high frequency activity. Strong coupling acts as a 

clocking mechanism in the brain, creating perceptual windows that integrate and segregate 
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temporally relevant and irrelevant information, respectively (15).  The phase and frequency of 

PAC differs by cortical layer (16,17) and is thus postulated to reflect the direction (bottom-up 

versus top-down) of information flow in the cortex (17–19). The balance between top-down and 

bottom-up processing in cortex may serve as a marker for sensory processing and predictive 

coding (17,20), which are of particular relevance to ASD given theories of sensory prediction 

impairment (21) and disruption of executive function development (20). Importantly, PAC 

findings can be translated from analyses in cortical organoids (22) and animal models 

(16,17,23,24), and from a clinical standpoint, PAC offers potential for measuring treatment 

response via manipulation by medication (25) and neuromodulation (26). 

Previous resting-state PAC analyses based on MEG source-space data in ASD have 

focused on alpha-gamma coupling with findings of increased parietal-occipital coupling (28) and 

increased central and decreased lateral coupling (29). In addition, PAC has been shown to be 

altered in ASD compared to controls during visual processing tasks (30), including face 

processing (31–33). In individuals with Phelan-McDermid Syndrome (a neurogenetic disorder 

with high prevalence of ASD), the phase bias of alpha-gamma PAC on EEG sensor-space data is 

altered most particularly in posterior electrodes, and the magnitude of PAC is associated with 

restricted and repetitive behaviors (19). In the face of this prior work consisting of EEG and 

MEG brain recordings, resting- and task-related paradigms, and study of ASD of neurogenetic or 

idiopathic etiology, resting-state PAC in idiopathic ASD has yet to be analyzed with EEG. 

The Autism Biomarkers Consortium for Clinical Trials (ABC-CT) provides the 

opportunity to evaluate resting-state EEG PAC in a large, multisite, longitudinal sample with 

rigorously collected data using scalable technologies (34). The ABC-CT was designed to 

facilitate biomarker development by collecting neuroimaging and behavioral data from a large 
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sample of ASD and typically-developing (TD) participants to evaluate individual differences of 

objective measures. The main goal of the present manuscript is to evaluate PAC metrics that are 

characteristic of brain function in children with ASD as a step towards developing clinically 

relevant biomarkers. 

 
 
Methods and Materials 
 
Participants 
 
This study drew from data collected for the ABC-CT (34). Children with genetic or neurologic 

disorders causally related to ASD were excluded from the study, and medication was allowed 

given a stable regimen of at least 8 weeks preceding enrollment. Inclusion criteria included IQ 

between 60 and 150 in the ASD group, or between 80 and 150 in the TD group, as measured by 

the Differential Ability Scales, Second Edition. Data were collected longitudinally from a total 

enrollment of 280 ASD and 119 TD participants aged 6-11 years old across 5 different sites 

(Boston Children’s Hospital; University of California, Los Angeles; University of Washington; 

Duke University; and Yale University). At the first (baseline) timepoint, 211 ASD and 106 TD 

(317 total) participants contributed adequate EEG data for inclusion. At the second time point 

collected 6 weeks later, 215 ASD and 100 TD (315 total) participants provided EEG data. 174 

ASD and 88 TD (262 total) participants contributed data at both timepoints. Demographic 

information for participants who contributed adequate EEG data at either timepoint is included in 

Table 1. 
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A central Institutional Review Board at Yale University approved the study protocols. Written 

informed consent was obtained from a parent or legal guardian and assent was obtained from 

each child before their participation in the study. 

 
 
Paradigm 
 
Participants watched six soundless videos akin to screensavers. Each video played forward for 15 

seconds and then in reverse for 15 seconds. The six videos were played in three blocks of two 

videos each at 30 frames per second. Video display was limited to 7 x 9.3 cm to minimize eye 

movement during task completion. 

 
Data collection 
 
EEG data were collected in full lighting. A behavioral assistant facilitated data collection by 

directing the child participant to pay attention to the screen. Placement of behavioral assistant 

differed across sites (but was standardized within sites). Data were collected with 128-channel 

Hydrocel Geodesic Nets and NetStation software with a sampling rate of 1000 Hz.  

 
EEG data processing 
 
Data were processed using the Batch EEG Automated Processing Platform (BEAPP) (35), which 

allows all EEG files to be processed with the same artifact removal criteria, via the Harvard 

Automated Processing Pipeline for EEG (HAPPE) (36). The data were filtered using a 1 Hz 

digital high-pass filter and 100 Hz low-pass filter and then resampled to 250 Hz. A spatially 

distributed subset of 18 channels (10-20 montage) were selected for further preprocessing via 

HAPPE and analysis. The artifact removal process consisted of 60 Hz electrical noise removal 

via CleanLine’s multitaper method (37), bad channel rejection, and movement, muscle, and eye 
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blink artifact removal with wavelet-enhanced independent component analysis (ICA) and ICA 

with Multiple Artifact Rejection Algorithm (MARA) (38). Bad channels were repopulated using 

spherical interpolation, and data were re-referenced to average. 

 

 
Figure 1: Visualization of phase-amplitude coupling analysis steps. 

 
Each of the 30-second videos allowed for three non-overlapping, continuous 10-second EEG 

data segments, and a 2-second buffer was included at the beginning and end of each EEG 
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segment as a buffer to avoid edge effects from filters (Figure 1B). Segments were rejected based 

on HAPPE’s amplitude rejection criteria. 

 
EEG rejection criteria 

EEG files that were within three standard deviations of the following HAPPE data quality 

metrics thresholds were included in analysis: retained variance (>7.5), percentage of good 

channels (>78%), percentage of independent components rejected (<80%), and mean and median 

retained artifact probability (<0.23, <0.18, respectively). 66 (16.5%) and 84 (21%) files were 

excluded at the first and second timepoints, respectively. HAPPE data quality metrics for each 

group are listed in Table 2.  

 
Phase-amplitude coupling 
 
The following PAC analysis steps were computed using the pactools Python toolbox (39). First, 

narrowband neural oscillations at low (2-20 Hz in 2 Hz steps) and high (20-100 Hz in 4 Hz steps) 

frequencies were extracted (Figure 1C). PAC was evaluated in each of these 210 low (LF) and 

high (HF) frequency pairs for all 18 channels. LFs were filtered with a 2 Hz bandwidth around 

the target low frequency, and HFs were filtered to 2 Hz below the target frequency with a 

variable upper bandwidth equal to the low frequency of interest. This filtering technique has 

shown to be preferable to static filtering for high frequencies (28). The amplitude of the HF and 

phase of the LF at each sample in time were extracted as described in (38) (Figure 1D). The 

phase of the LF time series was considered in 18 bins of width 20 degrees ranging -180˚ to 180˚. 

and the HF amplitudes were binned according to the corresponding low frequency phase in 

which they occurred (Figure 1E). Then, the amplitude values in each bin were averaged, and the 

entire distribution was normalized by dividing each bin average by the sum of all bin averages. 
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This process was repeated for 6 segments per participant (60 seconds of data total), and the 

resulting phase-amplitude distributions from the segments were averaged within a participant to 

minimize noise. 

 
 
Phase-amplitude coupling strength 
 
 Matlab R2019b was used to compute all PAC metrics and higher-level analyses unless 

otherwise noted. 

Coupling strength, or modulation index (MI), was computed as the Kullback-Leibler 

divergence of the phase-amplitude distribution from a uniform distribution (40) (Figure 1F). To 

isolate the effect of phase-amplitude coupling (from, for example, related factors such as spectral 

power), a surrogate distribution that did not represent real, time-locked effects of PAC was 

generated by offsetting the HF and LF signals by a randomly selected duration between 0.1 to 

1.9 seconds and then repeating the phase-amplitude coupling analysis methods. The surrogate 

distribution was composed of 200 iterations of this null PAC strength calculation process, which 

was then averaged to obtain a surrogate modulation index and used to compute a z-scored PAC 

strength index of the original PAC computation (method proposed in (39)). Regional PAC 

strength was computed by averaging the normalized PAC strength over all frequency pairings of 

interest. 

While the normalized modulation index quantifies the strength of phase-amplitude 

coupling, the phase preference measure represents the phase at which coupling primarily occurs. 

The preferred phase was determined as the phase of the average of vectors with angle of each LF 

phase bin weighted with corresponding HF amplitude (computed using the circ_mean function in 

the Circular Statistics Toolbox (41) (Figure 1F)).  
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PAC Strength: A priori defined regions of interest and canonical wavebands 
 
We primarily evaluated PAC metrics across three brain regions: the anterior (FP1, FP2, F3, F4, 

F7, F8, Fz), posterior (O1, O2, T5, T6, Pz), and whole (all 10-20 channels) brain. These regions 

were chosen based on prior studies showing that PAC often differs in anterior versus posterior 

channels (18,19). PAC was evaluated in three specific frequency range pairs following the 

canonical wavebands: theta (4-6 Hz) and gamma (28-56 Hz), alpha (8-12 Hz) and gamma (28-56 

Hz), and low beta (14-20 Hz) and gamma (44-56 Hz). The lower end of the gamma range was 

increased when paired with low beta to avoid overlap in frequencies included with HF and LF 

signal filtering.  

 
PAC Strength: Data-driven grouping analyses 
 
We also evaluated data-driven tests of PAC by comparing coupling strength between groups in 

frequency- and channel-space regions of significant PAC.  First, we identified regions of 

significant PAC in frequency space within each of 18 channels for the ASD and TD groups 

separately. We employed the clustering procedure detailed in (18). In summary, a t-test was used 

to compare the raw MI values and the surrogate MI values (each an average of 200 iterations) 

from all participants of a diagnostic group. A “frequency grouping” comprised of adjacent 

significant frequency pairs without considering diagonal connections within a channel. To 

determine the significance of frequency groupings, over 1,000 iterations, the raw and surrogate 

MI values were flipped in a randomly selected subset of n participants ranging from 1 to n, and 

the test statistics and frequency grouping sizes were computed. Frequency groupings that were 

smaller than the 95th percentile of this null frequency grouping size distribution were excluded. 

 
Phase preference analyses 
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Phase preference was computed as the vector average of the phase-amplitude distribution. The 

vectors were defined with the middle degree of a phase bin with magnitude of the average HF 

amplitude of the bin and were averaged using the circ_mean Matlab function (42). Group 

differences were statistically evaluated with the Watson-Wheeler test (effectively a t-test adapted 

for circular statistics) using the watson.wheeler.test R function. 

We also evaluated the proportion of participants that expressed the highest HF amplitude 

in each LF phase (referred to as max phase preference). For each participant, at each channel and 

frequency pair of interest, we determined the LF phase bin with maximum HF amplitude. We 

then determined the number of participants that had their maximum HF amplitude in each LF 

phase bin and divided by the total number of participants, thus computing the proportion that 

each LF phase corresponded with the highest HF amplitude within a frequency- and channel-

space region. We used t-tests to statistically compare the max phase bin proportions between 

diagnostic groups, and significant differences were determined after Bonferroni correction for 18 

tests (corresponding to the number of 20˚ phase bins in the 360˚ oscillation cycle). 

 

Behavior assessments and associations with PAC 
 
We evaluated associations of whole brain PAC of theta-gamma, alpha-gamma, and beta-gamma 

activity with IQ via the DAS-2 and two behavioral domains frequently associated with ASD, 

social communication (SC) and restricted interests and repetitive behaviors (RRB), as measured 

by the Social Responsiveness Scale (SRS-2). Because PAC has been shown to change with age 

(18), we also evaluated PAC association with age and subsequently included age as an 

independent variable in regression analyses with SC, RRB, and IQ. Associations were run for the 

full sample (combining ASD and TD groups) and for the ASD group alone. We designated this 
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analysis as an exploratory evaluation of the relationship between PAC and behavior and, 

therefore, do not correct for multiple comparisons. SPSS by IBM (version 27.0.0.0) was used to 

run regression analyses. 

 
Test-retest stability 
 
The above analyses were initially computed on data from timepoint 1 (baseline). Data from 

timepoint 2 were then used in combination with data from timepoint 1 to evaluate consistency of 

PAC measures across EEG recording sessions separated by a 6-week period via intraclass 

correlation coefficients. Only data from participants who participated and contributed good data 

as determined by HAPPE data quality metrics at both visits were included in this analysis (n = 

274), and significance was determined using a two-sided F-test. 

 
Results 
 
PAC strength: A priori defined regions of interest and canonical wavebands 
 
First, we evaluated group differences in PAC strength, represented by the modulation index 

normalized by the surrogate distribution, in frequency pairings corresponding to canonical 

frequency ranges. This consisted of comparisons between groups in alpha-gamma, theta-gamma, 

and beta-gamma coupling in anterior, posterior, and all channels. We found significantly 

increased PAC in ASD when considering theta-gamma coupling over all channels (p < 0.001) 

and anterior channels (p = 0.001), as well as increased alpha-gamma over all channels that did 

not survive Bonferroni correction for 9 comparisons (p = 0.045).   

 
PAC Strength: Data-driven grouping analyses 
 
We next identified significant frequency groupings using a procedure agnostic to canonical 

frequency ranges typically used in EEG analysis (Figure 2A, 2B). We found significant PAC 
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exclusive to the ASD group in the low frequency phase of around 2-10 Hz signal in frontal 

channels (FP1, FP2, F7, and F8) (Figure 2D). 

Based on the surrogate distribution for each group, the frequency grouping threshold was 

38 and 13 adjacent PAC pairs for ASD and TD, respectively. In order to confirm that size and 

location of frequency groupings was actually related to diagnosis and not group sample size, we 

conducted five additional frequency grouping analyses with a randomly selected subset of ASD 

participants that matched the sample size of the TD group (n=106) (Figure S1). The frequency 

grouping threshold did decrease from 38 to average 22 pairs, but the general spatial location of 

frequency groupings nicely corresponded with those determined using the full ASD group, 

indicating that differences between groups are observed due to participant sample and not size.  

We used these data-driven frequency groupings identified with the clustering procedure 

to further clarify differences between ASD and TD groups. We found that average PAC strength 

in frequency pairings included in ASD groupings not TD groupings (orange regions in Figure 

2D) was stronger in ASD than TD (p < 0.001).   
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Figure 2: Phase-amplitude coupling strength and significant frequency pairings. 
Topoplots visualizing PAC strength and frequency grouping information for all channels included in analysis. All 
subplots within each topoplot share the x- and y-axis of low and high frequency filtered signal, respectively, noted in 
the lower left corner where each (x, y) coordinate on the plot visualizes PAC strength or frequency grouping 
information for PAC between the corresponding LF x and HF y signal. A) ASD participant topoplot with normalized 
PAC strength color-coded using the PAC strength legend increasing from black (low strength) to yellow (high 
strength). ASD frequency groupings noted with a white outline. B) Topolot same as (A) plotted for the TD group. C) 
Topoplot visualizing the channel- and frequency-space differences in PAC strength by subtracting TD PAC strength 
in (B) from ASD PAC strength in (A). Deeper blue frequency pairs correspond to higher PAC strength in TD than 
ASD, brighter red to higher PAC in ASD than TD, and light colors to areas of marginal PAC strength differences. 
D) Significant PAC frequency groupings color-coded for ASD and TD groups. 
 
 
In order to determine whether these group differences were driven by a subset of participants, we 

next plotted normalized PAC strength for each individual in each of the three a priori defined 

region of interest and canonical frequency pair combinations where we identified group 
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differences and in channels FP1 and FP2 in the frequency pairs where PAC strength was higher 

only in the ASD group (Figure 3). Figure 3 show a subset of 14 ASD participants in whom PAC 

strength was greater than that of all TD participants in at least one of these 4 tests. 8 of these 14 

ASD participants consistently showed high PAC strength in 2 or more regions of significant 

group-level differences. Significant PAC strength group differences were not identified in 

overlapping significant FP1 and FP2, anterior, and posterior frequency groupings as well as in 

other canonical frequency pairings. 

 

 
Figure 3: Individual PAC strength 
Each circle represents the normalized PAC strength value for an individual color coded by diagnosis group (orange 
for ASD and blue for TD). Group average is indicated by the horizontal black line. 
 
 
PAC phase preference 
 
After identifying group differences in PAC strength, we next evaluated what phase of the low 

frequency signal component was driving these differences. We found significant differences 

between groups in the theta-gamma phase preference vector averaged for each participant in 

anterior (p = 0.013) and posterior (p = 0.002) electrodes (Figures 4A and 4B, respectively). We 
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did not identify group differences in PAC phase preference in other regions or canonical 

frequency pairings.  

 

Figure 4: Individual and group average theta-gamma phase preference. 
Each triangle represents a vector average of phase preference for each frequency pairing falling in the theta-gamma 
coupling range. Filled circles represent group vector averages of all participants’ average theta-gamma preferences. 
Color corresponds to outcome group (TD in green and ASD in orange). 
 
Additionally, we evaluated differences in phase bias proportion of theta-gamma coupling in 

anterior and posterior brain regions. We found that the ASD group was more biased towards -

150˚ in anterior channels and 30˚ in posterior channels compared to TD, which corresponded to 

significant differences in groups 180˚ from the direction of shift (30˚ for anterior and -150˚ for 

posterior) (Figure 5). This significance corresponded to TD showing less phase shift than ASD, 

consistent with the finding of stronger PAC in ASD (as strength is directly a result of non-

uniform distribution of amplitude in phase bins). Max phase bias proportion of alpha-gamma and 

beta-gamma coupling did not differ between groups. We are unable to identify outliers using 
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circular statistics given an upper and lower bound for phase preference (e.g., -180˚ to 180˚), 

which does not exist for z-scored PAC strength.  

 

 
 
Figure 5: Group differences of phase bias proportion in theta-gamma coupling. 
Proportion of LF phase bins that contained the maximum HF amplitude for each frequency pairing included in 
analysis averaged within groups. Color corresponds to group as indicated in the legend. Asterisk indicates 
significant difference in groups in phase bin (Bonferroni corrected p-value for 18 tests: *p < 0.0028). 
 
 
PAC strength and behavioral associations 
 
Age was significantly associated with whole brain theta-gamma and alpha-gamma PAC in the 

context of all participants and only ASD participants (Table 3). There was a significant 

association between RRB and SC with theta-gamma PAC as well as SC and IQ with alpha-

gamma PAC in the whole group (ASD and TD), but this relationship disappears when only 

considering ASD participants.  
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PAC strength consistency over recording sessions 

To establish performance characteristics of PAC, we computed intraclass correlation coefficients 

of strength values in participants who contributed data at two sessions separated by 6 weeks 

(Table 4; Figure S2). Notably, all PAC strength correlations computed for waveband pairs were 

significant for the ASD group, though inconsistent in the TD group. We discuss the possible 

impact of ASD outliers on these results in the discussion. There does not seem to be an ICC test 

adapted to circular statistics, so we are unable to properly evaluate the stability of phase 

preference over recording sessions. 

 
 
Discussion 
 
We found significant differences in PAC measures of resting-state brain activity between 

children with ASD and TD children. The ASD group showed significant PAC involving the 

modulation of gamma signal with low frequency (less than 10 Hz) phase in frontal channels and 

significantly stronger theta-gamma coupling in anterior channels (e.g., where occurrence of 

significant PAC was identified only in the ASD group) than the TD control group. Additionally, 

we found shifted phase preference in ASD in both anterior and posterior theta-gamma coupling. 

Given hypotheses that PAC reflects macroscale interaction between neuronal ensembles (43), the 

increased PAC strength and shifted phase preference distributed across the cortex in ASD likely 

reflects altered neural network dynamics. This is of particular importance given the potential for 

PAC to serve as a marker of the balance between bottom-up and top-down activity, and hence 

sensory processing and predictive coding, in ASD (17–21).  In particular, the theta-gamma 

frequencies of PAC altered in ASD suggest a preferential shift towards bottom-up processing in 

this disorder (17). 
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In general, findings of increased PAC strength in the ASD group were largely driven by a 

subset of individuals with ASD. Moreover, measures of test-retest reliability of PAC strength 

suggest that individuals with high PAC strength tend to maintain this high PAC strength across 

visits (Figure S2).  Similarly, individuals with low or medium PAC strength tend to maintain a 

PAC strength that is in the low-medium range across visits, although their PAC can vary within 

this low-medium range. This may explain why test-retest reliability of PAC is lower in the TD 

group (where most individuals have PAC in the low-medium range) than in the ASD group 

(where some individuals have persistently high PAC) (Figure S2). Overall, this suggests that 

there is a robust subset of children with ASD who have high PAC. 

Nonetheless, we were unable to identify a relationship between these high PAC strength 

individuals and behavioral assessment scores. Along similar lines, there was a significant 

positive relationship between RRB, SC, and IQ with PAC strength when considering the entire 

participant sample, but this did not persist when only considering ASD participants. Of note, a 

prior study using magnetoencephalography demonstrated a significant relationship between PAC 

and severity of autism symptoms (44); however, the direction of this relationship varied by brain 

region and thus may be dampened in our study by the lower spatial resolution of EEG. Another 

study showed a significant relationship between RRB and alpha-gamma PAC on EEG in 

children with Phelan McDermid Syndrome, a neurogenetic disorder with high prevalence of 

ASD (19), although we did not replicate this finding in the present study of children with 

idiopathic ASD. Notably, there are qualitative group-level differences of RRBs in Phelan 

McDermid Syndrome compared to idiopathic autism (45).  We do find that whole brain alpha-

gamma PAC strength increases with age, consistent with prior studies (18,19).  
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Taken together, these findings raise the possibility that elevated PAC strength may be 

associated with comorbidities of ASD that were not directly assessed in the present study or may 

be a marker for an underlying biological process that does not directly correlate with a particular 

phenotype. For the purposes of biomarker development, it is worth considering the extent to 

which individuals with high PAC may constitute a biologically if not behaviorally meaningful 

subgroup.  For example, this subgroup might be particularly amenable to neuromodulatory 

treatments that target bottom-up neural circuit activity, which may not manifest in a single 

behavioral score. 

PAC strength findings contrast with phase preference results, which demonstrate a group-

level shift, albeit with substantial overlap between groups, and no discernible subset of 

individuals driving the findings.  Interestingly, the finding of differences in posterior phase 

preference arises in lieu of differences in posterior PAC strength, indicating that while the 

posterior PAC may not be notably stronger in one group, there is a shift in low frequency phase 

peak. Perturbed posterior phase preference is also present in individuals with Phelan-McDermid 

Syndrome (19), although individual-level phase preference findings were stronger in that study.  

Overall, the group-level differences in PAC, particularly in the theta-gamma range, 

demonstrate potential as a stratification biomarker of ASD and may provide insight into the 

circuit-level mechanisms underlying some forms of ASD. Several future studies could be 

considered on the basis of these findings. Back-translation (i.e., examining PAC in animal 

models) may help elucidate biological underpinnings of altered PAC in ASD and hence inform 

potential treatment targets.  Examination of PAC in related neurodevelopmental disorders may 

identify a broader spectrum of individuals with altered PAC, who may differ by specific 

phenotype but share similar circuit function (and thus potentially respond to similar treatments).  
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The present study suggests that PAC may offer clinical utility, and further exploration of this 

measure (in both directions on the bench-to-bedside spectrum) is necessary to realize this 

potential. 
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 ASD (n = 252) TD (n = 116) Statistical test 
Sex (n) 192 M/60 F 81 M/36 F c2(1) = 1.67, p = 

.20 
Age (years) (mean ± std 
(range)) 

8.6 ± 1.6 (5.5) 
 

8.5 ± 1.6 (5.5) 
 

F(1,366) = 0.99, p 
= 0.95 

Race (%)   c2(4) = 9.05, p = 
.06 

Asian 6 1.7  
Black 7.5 3.4  

Mixed race 15.5 12  
White 68.3 82.1  
Other 2.4 0.9  

Ethnicity (Hispanic or 
Latinx) 

17 6 c2(1) = 7.46, p = 
.006 

Behavioral assessments 
(mean ± std (range)) 

   

ADOS Total Scaled Score 14.2 ± 4.7 (18) 2.4 ± 1.8 (9) F(1,366) = 5.25, p 
< .001 

Full Scale IQ 97.6 ± 17.8 (90) 115.3 ± 12.4 (63) F(1,366) = 2.07, p 
< .001 

Table 1: Demographic information by diagnostic group. 
 
 
 
 Timepoint 1 Timepoint 2 
 ASD (n = 211) TD (n = 106) ASD (n = 215) TD (n = 100) 
HAPPE metrics 
(mean ± std (range)) 

    

Independent 
components rejected 

(%) 

33.6 ± 14.3 
(70.9)** 

25.9 ± 11.8 
(50.7) 

0.32 ± 0.1 
(0.61)** 
 

0.25 ± 0.1 (0.5) 
 

Variance retained 
(%) 

68.3 ± 19.7 
(92.1)* 

75.1 ± 17.5 
(87.9) 

70.5 ± 16.7 
(72.2)** 
 

78.4 ± 15.8 
(69.5) 
 

Good channels (%) 96.5 ± 4.8 (16.7) 96.4 ± 5.4 (16.7) 96.4 ± 4.9 (16.7) 96.1 ± 5.1 
(16.7) 

Mean remaining 
artifact probability 

0.07 ± 0.04 
(0.19) 

0.07 ± 0.04 (0.2) 0.08 ± 0.04 
(0.19)* 

0.07 ± 0.04 
(0.15) 

Table 2: HAPPE data quality metrics by diagnostic group. **Student’s t-test p < 0.001; * 
Student’s t-test p < .005 (ASD vs. TD) 
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WHOLE 
GROUP 

Brain region 
& 
Frequencies 

Measure Beta p value 

Whole brain theta-gamma Age 0.115 0.042* 
 RRB 0.166 0.003* 

SC 0.185 0.001* 
IQ -0.042 0.458 

Whole brain alpha-gamma Age 0.223 <0.001* 
 RRB 0.058 0.058 

SC 0.125 0.024* 
IQ -0.119 0.031* 

Whole brain beta-gamma Age 0.037 0.515 
 RRB 0.015 0.797 

SC 0.040 0.486 
IQ -0.190 0.732 

ASD 
ONLY 

Brain region 
& 
Frequencies 

Measure Beta p value 

Whole brain theta-gamma Age 0.143 0.038* 
 RRB 0.021 0.761 

SC 0.067 0.336 
IQ 0.043 0.536 

Whole brain alpha-gamma Age 0.239 <0.001* 
 RRB 0.031 0.649 

SC 0.063 0.360 
IQ -0.088 0.191 

Whole brain beta-gamma Age -0.018 0.795 
 RRB -0.025 0.724 

SC 0.065 0.352 
IQ -0.040 0.565 

Table 3: Linear regression results for three canonical frequency pairs and age, repetitive behavior 
and restricted interests (RRB), social communication (SC), and full-scale IQ (IQ). Age was 
included as a control variable for the RRB, SC, and IQ tests. * indicates significance (p < 0.05).  
 
 
Region Waveband pair ASD ICC [UB LB] TD ICC [UB LB] 
Whole Theta-Gamma 0.47 [0.34, 0.58] ** 0.26 [0.06, 0.44] 
Whole Alpha-Gamma 0.47 [0.34, 0.58] ** 0.49 [0.31, 0.63] ** 
Whole Beta-Gamma 0.40 [0.27, 0.52] ** 0.23 [0.02, 0.42] 
Anterior Theta-Gamma 0.50 [0.38, 0.6] ** 0.13 [-0.09, 0.33] 
Anterior Alpha-Gamma 0.53 [0.41, 0.63] ** 0.46 [0.28, 0.61] ** 
Anterior Beta-Gamma 0.31 [0.17, 0.44] * 0.47 [0.29, 0.62] ** 
Posterior Theta-Gamma 0.40 [0.26, 0.52] ** 0.28 [0.08, 0.46] * 



 27 

Posterior Alpha-Gamma 0.31 [0.17, 0.44] ** 0.30 [0.09, 0.47] * 
Posterior Beta-Gamma 0.22 [0.08, 0.36] * 0.23 [0.03, 0.42] 

Table 4: ICC statistics for PAC strength in regions and averaged over frequency bands. 
Values include only participants who participated at T1 and T2 timepoints (n = 174 ASD; n = 88 TD). Bonferroni 
corrected p-values: * corrected p < 0.05 (raw p < 0.0042); ** corrected p < 0.001 (raw p < 0.000083). 
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Supplemental materials 
 
 

 
Figure S1: Frequency groupings in smaller sample size of ASD participants. 
Topoplots visualizing five iterations of significant frequency groupings that arise when 106 ASD 
participants (to match sample size of TD group) are randomly selected (TD group fully excluded 
from this analysis). The x- and y-axis noted in the bottom left corner applies to each individual 
channel plot, and the topoplot in the bottom left corner presents the original frequency groupings 
for the full ASD group and TD group (same as Figure 2D). Color legend applies to all frequency 
groupings, where a specific coordinate being colored means that PAC between the corresponding 
HF and LF frequency belongs to a significant frequency grouping. 
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Figure S2: PAC strength consistency across EEG visits. 
Each plot shows the average PAC strength within the frequency range noted on the y-axis and 
brain region on the x-axis for each individual participant. Color coded by diagnostic group as 
indicated by the legend.  
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