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Abstract 16 

Purposes: To select the summary cognitive index that is best predicted from spatio-temporal gait 17 

features (STGF) extracted from gait patterns. 18 

Methods: 125 participants were recruited, including 40 young and 85 elderly adults. Their 19 

performances in different cognitive domains were evaluated through 12 cognitive measures obtained 20 

from five neuropsychological tests. Four summary cognitive indexes were calculated in each case: 1) 21 

the z-score of Mini-Mental State Examination (MMSE) from a population norm (MMSE z-score); 2) 22 

the sum of the absolute z-scores of the patient’s neuropsychological measures from a population 23 

norm (ZSum); 3) the patient’s scores for the first principal component (PC) of the set of 24 

neuropsychological test scores (PCCog); and 4) the Mahalanobis distance of each patient’s score 25 

from a population norm (MDCog). The gait patterns were recorded while they executed four walking 26 

tasks (normal, fast, easy- and hard-dual tasks). Sixteen STGF were measured using a body-fixed 27 

Inertial Measurement Unit. Dual-task costs were computed. The proportion of variances (R2) that 28 

PCA-STGF scores accounted for the four summary cognitive indexes and for the 12 cognitive 29 

variables across individuals were measured in multiple linear regressions. The confidence intervals 30 

for each R2 were estimated by bootstrapping the regression 1000 times. 31 

Results: The mean values of R2 for the summary cognitive indexes were: 0.0831 for MMSE z-score, 32 

0.0624 for ZSum, 0.0614 for PCCog, and 0.4751 for MDCog. The mean values of R2 for the 12 33 

cognitive values ranged between 0.0566 and 0.1211. The multivariate linear regression was only 34 

statistically significant for MDCog, with the highest value of the R2 estimation. 35 
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Conclusions: Individual cognitive variables and most of the summary cognitive indices showed a 36 

weak association with gait parameters. However, the MDCog index showed a stronger association, 37 

explaining about 50 % of the variance. This suggests that this index can be used to study the 38 

relationship between gait patterns and cognition. 39 

 40 

1 Introduction 41 

The use of wearable sensors, such as Inertial Measurement Units (IMU), makes possible the 42 

recording of gait patterns and the extraction of spatio-temporal gait features (STGF) even outside of 43 

specialized laboratories (Ancillao et al., 2018). This has facilitated studies of the relationship between 44 

gait patterns and cognitive impairment within the community, especially in relation to aging 45 

(Montero-Odasso et al., 2012; Cohen, Verghese and Zwerling, 2016; Demnitz et al., 2016). The 46 

overall finding is that gait quality deteriorates in direct relationship to aging (Mahlknecht et al., 47 

2013), and even more so when there is cognitive impairment (Montero-Odasso et al., 2012); Cohen, 48 

Verghese and Zwerling, 2016; Demnitz et al., 2016). However, the results are not entirely consistent 49 

and are difficult to generalize to new samples of subjects (Demnitz et al., 2016). This could be due to 50 

several problems. 51 

The first problem is which overall summary measure of cognitive status is the most useful. A 52 

summary measure is needed to generate a grading of the subject's cognitive deterioration. There are 53 

clinical tools that offer a fast global evaluation of cognition -e.g. the Mini-Mental State Examination 54 

(MMSE) (Folstein, Folstein and McHugh, 1975) or the Montreal Cognitive Assessment (MoCA) 55 

(Nasreddine et al., 2005)- potentially producing a single score. However, these instruments are semi-56 

quantitative and have been reported to have low specificity and sensitivity (Demnitz et al., 2016; 57 

MacAulay et al., 2017; Carnero-Pardo, 2014). Additionally, the MMSE focuses primarily on the 58 

domains of language and memory, without assessing other cognitive domains potentially important 59 

to gait quality, such as the processing speed (Demnitz et al., 2016). 60 

More quantitative measures can be obtained with many neuropsychological tests. However, each test 61 

usually examines a narrow cognitive domain (Schretlen, Bobholz and Brandt, 1996; Rabin, Barr and 62 

Burton, 2005; Brandt, 1991; Shum, McFarland and Bain, 1990). The idea of combining several 63 

cognitive variables into a single measure has been previously explored (Stijntjes et al., 2015; 64 

MacAulay et al., 2017; Byun et al., 2018; Beauchet et al., 2013), but we are left with a collection of 65 

(sometimes conflicting) measurements.  66 

A second problem is that few studies have used normative data to correct for changes in cognitive 67 

test scores due to age, which is needed to assess the real severity of cognitive impairments (see Byun 68 

et al., 2018 for an exception). This means that the degree of the deviation of a participant’s cognitive 69 

functions from the population mean is generally not reported in studies of gait patterns. Thirdly, 70 

many studies employ a low number of participants, which may impair the reproducibility of the 71 

findings due to the low statistical power used (MacAulay et al., 2017; Montero-Odasso et al., 2009; 72 

Beauchet et al., 2017). 73 

The present study was designed to try to overcome the above difficulties. We measured 12 cognitive 74 

variables obtained from five neuropsychological tests. To address the first problem, we computed 75 

four summary indexes from the battery of neuropsychological tests. The selected indexes reduce the 76 

dimensionality of the cognitive measures but retain quantitative and specific assessments of different 77 

cognitive domains. The indexes were the following: 1) the z-score of the MMSE, calculated from 78 

normative data, which has been used in different studies with older adults albeit not related to gait 79 

(Kondo et al., 2020; Janke et al., 2001) (MMSE z-score); 2) the sum of the z-scores absolute values 80 
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of the deviation of the neuropsychological measures from normative data, previously used in other 81 

studies (Mielke et al., 2013) (ZSum); 3) the scores for the first principal component (PC) of the 12 82 

cognitive variables (PCCog); and 4) the Mahalanobis distance of each patient’s score from a 83 

population norm (MDCog). 84 

Principal Components Analysis (PCA) is frequently used for dimensionality reduction (Holtzer, 85 

Wang and Verghese, 2012). Moreover, the first PC of a set of psychological tasks is often used to 86 

assess Spearman’s G factor of (fluid) intelligence (Duncan, Burgess and Emslie, 1995).  87 

On the other hand, the Mahalanobis distance has been previously used as a statistical measure of the 88 

deviation of a subject’s cognitive profile from the population mean profile (Elfadaly, Garthwaite and 89 

Crawford, 2016). It has been also used in clinical settings, for example: in assessing the cognitive 90 

profile of participants who were recovering from a stroke relative to the non-stroke controls (Tehan et 91 

al., 2018). This approach allows us to retain the quantitative aspect of neuropsychological tests while 92 

combining them into the single index MDCog. It also incorporates the use of deviations from the 93 

normative data while taking into consideration the correlations between features (avoiding spurious 94 

inflation of the estimated distance). 95 

Here we examined the strength of the association, using multiple linear regression, of the four 96 

summary cognitive measures with a set of STGF extracted from the gait patterns. We hypothesized 97 

that the largest explained variance would correspond to the best cognitive indicator. Our results 98 

indicate that MDCog has the strongest association with STGF and thus could be useful for studies of 99 

the aging. 100 

 101 

2 Materials and Methods 102 

2.1 Participants 103 

Around 200 participants from different health institutions in Havana city and from the Cuban Center 104 

for Neuroscience were screened for inclusion in the study, described in detail in Aznielle-Rodríguez 105 

et al., 2022a. The inclusion criteria were the participant’s agreement, young adults aged between 20 106 

and 40 years and older adults ages above 60 years, and a Katz Index of independence ≥ 4, as 107 

evidence of functional independence without the need for supervision or external help in performing 108 

basic activities of daily life (Shelkey and Wallace, 2000; Katz et al., 1963). The participants with an 109 

inability to walk, major neurological disorders, diseases of the musculoskeletal system, or severe 110 

cognitive impairment were excluded. All participants underwent a neurological physical 111 

examination, a questionnaire, and a cognitive assessment previously to execute the walking tasks. 112 

125 participants completed all the requirements and participated in the study. The sample was 113 

divided into 40 young adults (mean age 27.65 ± 4.14, 50 % women) and 85 older adults (mean age: 114 

73.25 ± 6.99, 62.3 % women). Written informed consent was obtained from the participants or 115 

caregivers, and the study was approved by the ethics committee of CNEURO due to its compliance 116 

with the Helsinki declaration. 117 

 118 

2.2 Experiment 119 

Participants covered 40 m (20 m in each direction) in an obstacle-free and flat environment, 120 

executing four walking tasks: 1) walking freely at a comfortable self-chosen speed (NormalW); 2) 121 

walking at a comfortable self-chosen speed while simultaneously counting their steps, an easy 122 

cognitive task (EasyD); 3) walking at a comfortable self-chosen speed while simultaneously counting 123 
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backward from 100, a hard cognitive task (HardD); and 4) walking as fast as possible without 124 

running (FastW).  125 

Their gait patterns were recorded using an IMU (Bitalino RIoT, Plux Wireless Biosignals, Portugal), 126 

attached firmly to a velcro band, and placed near the body's center of mass, on the lower back at the 127 

L3 spinal level. Data was processed as it was explained in Aznielle-Rodríguez et al., 2022. After 128 

computing the Initial Contact and Final Contact events of the gait cycles, 16 STGF were calculated 129 

for each walking task: 1) step time (StpT); 2) step time variability or step time coefficient of variation 130 

(StpTCoV); 3) stride time (StrT); 4) stride time variability or stride time coefficient of variation 131 

(StrTCoV); 5) cadence (Cd); 6) root mean square amplitude of the vertical acceleration (RMS); 7) 132 

double support duration or double support time (DSD); 8) single support duration or single support 133 

time (SSD); 9) swing duration feed 1 (SwDurF1); 10) swing duration feed 2 (SwDurF2); 11) stance 134 

duration feed 1 (StDurF1); 12) stance duration feed 2 (StDurF2); 13) step duration feed 1 135 

(StepDurF1); 14) step duration feed 2 (StepDurF2); 15) step length (StepLg); and 16) speed (GS). All 136 

STGF were expressed in seconds (s), except Cd (steps/min), RMS (g), StepLg (m) and GS (m/s). 137 

STGF were computed using algorithms described in the literature (Zijlstra, 2004; Del Din, Godfrey 138 

and Rochester, 2016; Montero-Odasso et al., 2011; Yang et al., 2012; Jarchi et al., 2018; Bugané et 139 

al., 2012; Zijlstra and Hof, 2003; Del Din et al., 2016). 140 

Additional to the 64 STGF, dual-task costs (DTC) for the STGF in the two dual-tasks were also 141 

calculated (32 costs). These costs (expressed as percentages) were calculated using (Montero-Odasso 142 

et al., 2017): 143 

𝐷𝑇𝐶 = (
𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑎𝑠𝑘_𝑣𝑎𝑙𝑢𝑒−𝑑𝑢𝑎𝑙_𝑡𝑎𝑠𝑘_𝑣𝑎𝑙𝑢𝑒

𝑠𝑖𝑛𝑔𝑙𝑒_𝑡𝑎𝑠𝑘_𝑣𝑎𝑙𝑢𝑒
) ∗ 100       (1) 144 

Finally, 96 measures (STGF and DTC) were obtained for each walking direction. 145 

 146 

2.3 Cognitive assessment 147 

The cognitive trait of the participants was assessed through five neuropsychological tests: 1) MMSE, 148 

as a global index of cognition (Folstein, Folstein and McHugh, 1975); 2) Attentional Span or Brief 149 

Test of Attention (BTA), as a measure of auditory divided attention (Schretlen, Bobholz and Brandt, 150 

1996); 3) Trail Making Test (TMT), parts A and B, for assessing the attention, visuospatial abilities, 151 

mental flexibility, and executive functions (Rabin, Barr and Burton, 2005); 4) Hopkins Verbal 152 

Learning Test (HLVT) for memory evaluation, including immediate recognition and delayed recall 153 

(Brandt, 1991); and 5) Digit Symbol Substitution Test (DS), for the focused, selective and sustained 154 

attention as well as visual perception (Shum, McFarland and Bain, 1990). Twelve cognitive variables 155 

were extracted from the test results, which are shown in Table 1. 156 

 157 

Table 1. Cognitive variables extracted from the neuropsychological tests. 158 

Test Domain Cognitive variable 

MMSE Global cognition MMSE 

HLVT 
Memory, including immediate 

recognition and delayed recall 

HLVT_T1 

HLVT_T2 

HLVT_T3 
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Test Domain Cognitive variable 

HLVT_TR 

HLVT_DRCA 

HLVT_DRFP 

BTA Attentional impairment  
AtentL 

AtentN 

DS 
Focused, selective, and sustained 

attention and visual perception 
DigSim 

TMT 

Attention, visuospatial abilities, 

mental flexibility and executive 

function  

TMT_PartA 

TMT_PartB 

MMSE: MMSE score; HLVT_T1: score in trial 1 in HLVT; HLVT_T2: score in trial 2 in HLVT; HLVT_T3: score in trial 3 in HLVT; 159 
HLVT_TR: total recall, the sum of words recalled correctly in the three trials in HLVT; HLVT_DRCA: delayed recall correct answers 160 
in HLVT; HLVT_DRFP: delayed recall false positives in HLVT; AtentL: total score in Form L in BTA; AtentN: total score in Form N 161 
in BTA; DigSim: subject's score in DS, it means the number of correct substitutions made at an interval of 90 seconds; TMT_PartA: 162 
subject's score in TMT Part A, is the time that an individual takes to finish the task in the test; TMT_PartB: subject's score in TMT Part 163 
B, is the time that an individual takes to complete the task in the trial. 164 
The same variables have normative data for the Cuban adult population obtained as part of an 165 

international collaborative study (Rivera et al., 2015; Arango-Lasprilla, Rivera, Aguayo, et al., 2015; 166 

Arango-Lasprilla, Rivera, Garza, et al., 2015; Arango-Lasprilla, Rivera, Rodríguez, et al., 2015). 167 

 168 

2.4 Cognitive indexes 169 

The four cognitive indexes were computed as follows: 170 

1. MMSE z-score: The MMSE score is a value between 0 and 30, used in clinical practice as a global 171 

index of the cognitive trait. This score was transformed into the MMSE z-score using the Equation 2. 172 

𝑧𝑖𝑀𝑀𝑆𝐸 =  (𝑣𝑖𝑀𝑀𝑆𝐸 −  𝜇𝑀𝑀𝑆𝐸) / 𝜎𝑀𝑀𝑆𝐸        (2) 173 

 174 

2. ZSum: This index was defined as the sum of the z-scores for the 12 cognitive variables, and was 175 

calculated using Equation 3.  176 

                                                                      𝑍𝑆𝑢𝑚𝑖 =  ∑ 𝑧𝑖𝑗
12
𝑗=1                          (3)177 

  178 

 179 

Where: 180 

𝑧𝑖𝑗 : is the z-score of the cognitive variable j for the subject i, calculated using the equation: 181 

𝑧𝑖𝑗 =  (𝑣𝑖𝑗 − 𝜇𝑗) / 𝜎𝑗        (4) 182 

𝜇𝑗 : mean value of the cognitive variable j in the population of normal subjects 183 

𝜎𝑗 : standard deviation of cognitive variable j in the population of normal subjects 184 
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These two population parameters were calculated using the normative regression functions of age and 185 

educational level-dependent mean values and standard deviations obtained from 306 normal subjects 186 

with an age ranging between 18 and 90 years, corresponding to the normative data for the Cuban 187 

adult population used in the collaborative study mentioned before (Rivera et al., 2015; Arango-188 

Lasprilla, Rivera, Aguayo, et al., 2015; Arango-Lasprilla, Rivera, Garza, et al., 2015; Arango-189 

Lasprilla, Rivera, Rodríguez, et al., 2015). 190 

 191 

3. PCCog: PC was applied to the z-scores vector of the 12 cognitive variables, and the scores of the 192 

first component (explaining the largest proportion of variance) were retained. 193 

 194 

4. MDCog: To measure the deviations from normative data, taking into consideration the correlations 195 

between the variables, this index was calculated using the Mahalanobis distance for each subject i, 196 

through the Equation 5. 197 

 198 

𝑀𝐷𝐶𝑜𝑔𝑖
2 =  𝑍𝑖 

′ ∑ 𝑍𝑖
−1                                                                                   (5) 199 

 200 

Where: 201 

𝑍𝑖 : vector with the scores of the 12 cognitive variables for the subject i 202 

∑−1 : represents the covariance matrix of the population norm. 203 

 204 

2.5 Analysis 205 

PCA was applied to create a new set of gait features (PCA-STGF) due to the high correlation 206 

between the 96 STGF. The components which explained more than 95 % of the variance were 207 

retained. The correlations between PCA-STG and the summary cognitive indexes were calculated. 208 

The proportion of variance (R2) that PCA-STGF scores could predict the values of summary 209 

cognitive indexes and the zj scores of the 12 cognitive variables across individuals was measured in 210 

multiple linear regression. The confidence intervals for R2 were estimated by bootstrapping the 211 

regression 1000 times. 212 

All data analysis was performed offline using MATLAB® (Mathworks Inc.). 213 

 214 

3 Results 215 

Descriptive statistics of summary cognitive indexes 216 

The histograms of the four summary cognitive indexes are presented in Figure 1. 217 

 218 
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 219 

Figure 1. Histograms of the four summary cognitive indexes. 220 

 221 

Reducing dimensionality and redundancy in STGF 222 

The new set of features PCA-STGF was obtained with orthogonal and independent components 223 

using a PCA. The first seven components explained over 95 % of the variance (highlighted with red 224 

dots in Figure 2), and were retained for further analyses. This result corroborated the high suspected 225 

redundancy between the STGF. 226 

 227 

Figure 2. The cumulative sum of the variance accounted for the first 40 PCA-STGF components. 228 

 229 
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As shown in Figure 3, the contribution of each STGF to the first PCA component is similar in the 230 

four tasks. The features related to the description of the gait cycle had coefficients around 0.1, while 231 

Cd, RMS value, StepLg, and GS had coefficients around -0.1. The coefficients corresponding to gait 232 

variability features had values in the range between 0.07 and 0.1. The behavior of the features in the 233 

four tasks joined to the fact that the first PCA component explained the 68.79 % of the variance, 234 

suggesting that some walking conditions could be eliminated in the experiment without losing much 235 

information, thus shortening the total examination time. 236 

 237 

 238 

Figure 3. Contribution of the 16 STGF in each task to the first PCA component. 239 

 240 

PCA in cognitive variables 241 

PCA was applied to the z-scores vector of the 12 cognitive variables. The cumulative sum of the new 242 

12 components (PCA-CogVar) is shown in Figure 4. The first seven components explained over 95 243 

% of the variance (highlighted in Figure 4 with red dots), and the first one explained the 40.98 % of 244 

variance. The score of the first component was retained as PCCog summary index. 245 

 246 

Figure 4. The cumulative sum of the variance accounted for the 12 PCA components. 247 
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 248 

Relationship between cognitive variables and PCA-STGF 249 

Multivariate linear regression with bootstrapping was applied to compare the predictability of the 250 

summary cognitive indexes using the first seven components of the PCA-STGF set. The results are 251 

shown in Table 2. 252 

Table 2. Prediction of the summary cognitive indexes from PCA-STGF set. 253 

Variable R2 F p-Value CI 

Summary indexes 

MMSE z-score 0.0831 1.5569 0.3098 [0.0273-0.1625] 

ZSum 0.0624 1.1389 0.4592 [0.0195-0.1328] 

PCCog 0.0614 1.1128 0.4524 [0.0219-0.1102] 

MDCog 0.4751 15.7781 0.0000* [0.3610-0.6028] 

* Statistically significant 254 

The multivariate linear regression was only statistically significant for MDCog, with the highest 255 

value of the R2 estimation. The confidence intervals for R2, estimated by bootstrapping the regression 256 

1000 times, are also shown in the table. PCA-STGF reliably predicted much more of the variance for 257 

MDCog than the other summary cognitive indexes. 258 

A new multivariate linear regression with bootstrapping was applied to compare the predictability of 259 

the best summary cognitive index (MDCog) regarding the z-scores of the individual cognitive 260 

variables, using the same set of gait variables. The results are shown in Table 3. 261 

 262 

Table 3. Prediction of the z-scores of cognitive variables from PCA-STGF using a multivariate linear 263 

prediction with bootstrapping. 264 

Variable R2 F p-Value CI 

HLVT_T1 0.0966 1.8222 0.1970 [0.0408-0.1697] 

HLVT_T2 0.1193 2.3133 0.1112 [0.0519-0.2010] 

HLVT_T3 0.1168 2.2541 0.1079 [0.0572-0.1970] 

HLVT_TR 0.0901 1.6923 0.2422 [0.0356-0.1663] 

HLVT_DRCA 0.0903 1.6966 0.2475 [0.0323-0.1602] 

HLVT_DRFP 0.0566 1.0157 0.4862 [0.0216-0.1033] 

AtentL 0.1031 1.9724 0.1903 [0.0366-0.1874] 

AtentN 0.1211 2.3588 0.1141 [0.0510-0.2108] 

DigSim 0.0872 1.6347 0.2689 [0.0312-0.1619] 

TMT_PartA 0.0733 1.3457 0.3423 [0.0302-0.1362] 

TMT_PartB 0.0683 1.2510 0.3982 [0.0229-0.1302] 
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HLVT_T1: score in trial 1 in HLVT; HLVT_T2: score in trial 2 in HLVT; HLVT_T3: score in trial 3 in HLVT; HLVT_TR: total 265 
recall, the sum of words recalled correctly in the three trials in HLVT; HLVT_DRCA: delayed recall correct answers in HLVT; 266 
HLVT_DRFP: delayed recall false positives in HLVT; AtentL: total score in Form L in BTA; AtentN: total score in Form N in BTA; 267 
DigSim: subject's score in DS, it means the number of correct substitutions made at an interval of 90 seconds; TMT_PartA: subject's 268 
score in TMT Part A, is the time that an individual takes to finish the task in the test; TMT_PartB: subject's score in TMT Part B, is the 269 
time that an individual takes to complete the task in the trial. 270 

 271 

Non-cognitive variable was statistically significant, as can be seen in Table 3.  272 

 273 

4 Discussion 274 

Here we explored four summary cognitive indexes to find which was best predicted by STGF. Since 275 

PCA revealed a significant redundancy between the STGF of different tasks, we used the seven 276 

components that explained 95 % of the variance. MDCog showed the closest relationship with gait 277 

features, since gait parameters explained more variance for MDCog than for the other summary 278 

indexes or any individual cognitive scores.  279 

There are two possible explanations for this advantage of MDCog. First, combining indicators of 280 

ability in multiple areas into a global measure can help compensate for measurement noise in each 281 

test and provides an overall index of the subject's cognitive function (Harvey, 2012). Second, it has 282 

been long known from factor analysis of multiple psychological tests that a general latent variable 283 

(Spearman's G factor) explains a large proportion of the variance between individuals (Kane and 284 

Brand, 2003; Hoogendam et al., 2014). This G factor has been related to fluid intelligence (Duncan, 285 

Burgess and Emslie, 1995), effectiveness in executive function tasks (Crinella and Jen, 1999), and 286 

has been shown to decline with aging (Hoogendam et al., 2014). Our MDCog could use information 287 

related to this factor that taps essential processes needed to coordinate specific behaviors and manage 288 

multitasking. At the same time, it retains information about specific processes such as memory 289 

attention etc. 290 

The lower performance of the other summary cognitive indexes could be due to several causes. 291 

Although the MMSE is a widely used global cognition index, its use has been criticized since its 292 

scores depend on the educational level of the subjects and on whether they are illiterate or not 293 

(Carnero-Pardo, 2014). Moreover, its sensitivity in discriminating MCI patients from those with 294 

normal cognitive aging is inadequate (MacAulay et al., 2017; Carnero-Pardo, 2014; Baek et al., 295 

2016). On the other hand, the sum of the z-scores does not take into account the sign of the score of 296 

each variable or the correlation between them. Thus, a large pathological deviation on one variable 297 

will be added to a better than average performance, overestimating the real deterioration, and 298 

summing the z values of the highly correlated variables will also exaggerate scored anomaly.  299 

Related to PCA, we used, as customary in the estimation of fluid intelligence, only the first 300 

component. In our case, it explained only 40.98 % of the variance in the cognitive variables, leaving 301 

59.02 % unexplained. Thus, it discards much information, what is a disadvantage of this index 302 

compared to MDCog. This Spearman’s factor G by itself does not have a strong association with gait. 303 

MDCog takes into consideration the correlation between the results in each neuropsychological test 304 

and the distance of each subject from normative data. These factors, together with those stated above, 305 

probably explain the better results obtained with this index. 306 

Many of the STGF used in this study describe the gait cycle, so there was a high correlation between 307 

them. This fact caused redundancy in the data, which has been pointed out by other authors as a 308 

problem in gait analysis (Olney et al., 1995). We used the same solution stated in many studies, 309 

which has been based on PCA (Olney et al., 1995; Mansour, Gorce and Rezzoug, 2017; Ren et al., 310 
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2017), for expecting that few components explained a reasonable amount of data. This statistical 311 

procedure converts the correlated characteristics into a smaller set of linearly uncorrelated 312 

components (Khera and Kumar, 2020). We found that the seven first PCA components explained 313 

most of the variance (95 %).  314 

The limitations of this study are that the sample of older adults with cognitive impairment is smaller 315 

than the healthy one and both samples were not completely paired by sex and age. In future studies, it 316 

is recommended to delve into the relationship between the STGF domains and the cognitive domains, 317 

perhaps performing canonical correlation. 318 

 319 

5 Conclusions 320 

The usefulness of MDCog as a summary and quantitative cognitive index status was proved. This 321 

new index is based on the Mahalanobis distance from each subject’s cognitive measure to the 322 

population norm and the interaction among these factors. MDCog can be used as an objective index 323 

instead the set of cognitive variables or other summary cognitive indexes explored in this study.  324 
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