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Abstract 

Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be 

difficult to manage with potential misinterpretation and downstream costs, including time investment 

by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels 

(MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and 

explore ways to reduce their potentially detrimental impact. We collected data from over 1.5 million 

genetic tests from 19 clinical laboratories across the United States and Canada from during 2020-2021. 

We found a lower rate of inconclusive results due to VUS on ES/GS tests compared to MGPs (22.5% vs. 

32.6%; p<0.001). For MGPs, the rate was positively correlated with the total number of genes. The use 

of trios (patient with parental samples) in ES/GS reduced the inconclusive report rate (18.9% vs 27.6%; 

p<0.001). The reduced rate of VUS in ES/GS testing compared to MGPs is best explained by current 

laboratory reporting practices of comprehensive VUS reporting for MGPs in contrast to clinical 

correlation and strength of pathogenicity evidence to inform which VUS are reported in ES/GS. We 

recommend changes in current practices to reduce the burden of VUS on providers and patients. 

 

 

Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be 

difficult to manage with potential misinterpretation and downstream costs, including time investment 

by clinicians.
1
 We investigated the rate of VUS reported on diagnostic testing via multi-gene panels 

(MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and 

explore ways to reduce their potentially detrimental impact.  

De-identified summary data were collected on diagnostic MGPs and ES/GS tests performed at 19 clinical 

laboratories in North America during 2021-2022 (Supplemental Table 1). The data spanned 1,463,812 

MGPs (96.8%), 42,165 ES tests (2.8%) and 6,329 GS tests (0.4%). MGP results were further subdivided by 

the number of genes per panel. ES/GS tests were categorized by exome versus genome and inclusion of 

family samples (trio versus less-than-trio). The rate of test results with at least one VUS in the absence of 

a causal etiology was significantly lower for ES/GS (22.5%; 10,933/48,494) than the rate from MGPs 

(32.6%; 477,617/1,463,812; p<0.001) (Fig. 1A). For MGPs, the rate of VUS results correlated with the 

number of genes tested, ranging from 6.0% for 287,811 panel tests of 2-10 genes to 76.2% for 84,316 

panel tests >200 genes (Fig. 1B,C). The statistically significant difference in VUS rates between MGPs and 

ES/GS remained even after controlling for the higher positive yield seen among ES/GS versus MGPs 

(details in Supplement). When examining GS versus ES results, the use of trios led to significantly lower 

VUS rates (18.9% vs 27.6%; p<0.001) but there was no difference in the VUS rate between GS and ES 

(22.2% vs 22.6%, ns) (Supplemental Table 2).  
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Figure 1. Comparison of Rates of Inconclusive Results due to VUS by MGP versus ES/GS. Section A shows a 

statistically significant reduction in inconclusive rates due to VUS in ES/GS compared to MGP. Section B shows a 

breakdown in rates by panel size. Section C shows test volume for each panel bin. 

The reason for higher VUS rates in MGPs is not due to technical differences but due to the standard 

practice to report all VUS, allowing follow-up investigations and the ability for patients to get updated 

reports in the future. MGPs have expanded in the range of diseases and gene content per test, thereby 

increasing VUS rates. With ES/GS testing, reporting all VUS is impractical and ineffective, and clinical 

correlation and strength of pathogenicity evidence inform which VUS are reported, leading to a reduced 

rate.
2
 Limiting VUS results may reduce unnecessary follow-up and prevent mismanagement if VUS are 

misinterpreted as causal, particularly by clinicians with less genetics expertise
3
 and may also reduce 

patient distress.
4,5

 However, a subset of VUS, particularly those found in genes well-correlated with a 

patient’s clinical presentation, have a higher chance of being causal, and reporting allows additional 

evidence to be gathered over time. 

The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting 

practices. We propose several approaches to reduce reported VUS rates, while directing clinician 

resources towards important VUS follow-up: 

● Clinicians should supply more clinical information to laboratories when ordering MGP testing to 

enable appropriate clinical correlation during variant classification and reporting; 
+ Clinicians should include parental samples, when possible, for both large panels and ES/GS to 

improve interpretation and classification; 
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L Laboratories should utilize VUS sub-tier classifications (see data in Supplement) to restrict which 

VUS are reported and clinicians should follow-up on only higher tier VUS; 

● Laboratories should structure test reports with supplemental sections for listing variants with 

lower clinical significance to de-emphasize these variants in most testing situations; 
● Laboratories should allow clinicians and patients to opt out of VUS reporting, particularly if there 

is a lower suspicion of a genetic etiology. 

We recommend these changes as well as encourage further infrastructure development to support 

updated genetic test reports in health systems, and emphasize the critical partnership between 

clinicians and laboratories to support genetic and genomic testing. 
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