Prognostic value of 8q gain in relation to BAP1 and SF3B1 mutated uveal melanoma

Josephine Q.N. Nguyen, MD1,2, Wojtek Drabarek, MD3, Jolanda Vaarwater, BS1,2, Serdar Yavuzigitoglu, MD, PhD1, Robert M. Verdijk, MD, PhD4,5, Dion Paridaens, MD, PhD1,8, Nicole C. Naus, MD, PhD1, Annelies de Klein, PhD2, Enwin Brosens, PhD2,7 and Emine Kılıç, MD, PhD1,7 on behalf of the Rotterdam Ocular Melanoma Study group

1 Department of Ophthalmology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.

2 Department of Clinical Genetics, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.

3 The Rotterdam Eye Hospital, 3011 BH, Rotterdam, The Netherlands.

4 Department of Pathology, Section Ophthalmic Pathology, Erasmus MC Cancer Institute, Erasmus MC Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands.

5 Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands.

6 The Rotterdam Eye Hospital, 3011 BH, Rotterdam, The Netherlands.

7 These authors contributed equally to this work. Correspondence: e.brosens@erasusmc.nl, e.kilic@erasusmc.nl

The Rotterdam Ocular Melanoma Study Group (ROMS) is a collaborative research group with members from the Rotterdam Eye Hospital, Departments of Ophthalmology, Pathology and Clinical Genetics, of the Erasmus MC, Rotterdam, The Netherlands.

Financial support: This study was funded by the Henkes foundation (2021-04), Rotterdam, The Netherlands and the Combined Ophthalmic Research Rotterdam (6.2.0), Rotterdam The Netherlands. The funding organizations had no role in the design or conduct of this research.

Conflict of interest: no conflicting relationship exists for any author.

Address for reprints: Emine Kılıç, Department of Ophthalmology, room Ee1610, Erasmus MC Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Unstructured abstract: Chromosome 8q gain is associated with poor prognosis. Here, we show that the predictive value of chromosome 8q gain depends on the mutation status and is true for BAP1 but not for SF3B1-mutated tumors.
Uveal melanoma (UM) is the most common primary intraocular malignancy in adults [1]. Recurrent mutations in secondary driver genes BAP1, SF3B1, and EIF1AX, as well as characteristic copy number variations (CNV) and gene expression profiles (GEP) are used in prognostication. Previously, gain of chromosome 8q has been associated with poor prognosis, with increased numbers of 8q correlating with shorter survival [2]. Whereas in BAP1-mutated (BAP1MUT) UM, gain of 8q is the result of whole chromosome 8 gain or the formation of isochromosome 8q, in case of SF3B1-mutated (SF3B1MUT) UM structural, often partial gain of 8q is predominant [3]. Some of these SF3B1MUT UM patients develop early-onset metastatic disease [4], prompting to investigate the relationship between survival, gain of 8q and SF3B1MUT UM.

Patients with SF3B1MUT tumors (n=59) from the Rotterdam Ocular Melanoma Study group diagnosed between 1994 and 2022 were included in this study. CNVs were assessed using single nucleotide polymorphism (SNP) array (n=55) or in the past with karyotyping (n=17) and or fluorescence in situ hybridization (FISH, n=28) and when material was available used for transcriptome profiling (n=19) [4]. The summary plot showing the chromosomal patterns of the SNP arrays can be found in the supplementary (available at www.aaojournals.org). Disease-free survival (DFS) was determined using a cut-off of 60 months to identify early-onset metastatic disease in UM patients [4].

Gain of chromosome 8q was present in 48 tumors (81%) (Figure 1a). Cox proportional hazard analysis could not confirm reported independent [2] prognostic value of gain of 8q in general (>2 copies) in SF3B1MUT UM (HR: 1.042 (95%;CI:0.3105-4.733)), nor the number of additional 8q copies (3 copies of 8q, HR: 1.213 (95%;CI:0.3363-5.736); ≥4 copies of 8q, HR: 0.6913 (95%;CI:0.08939-4.264)) in SF3B1MUT tumors. Kaplan-Meier survival analysis also indicated no difference in survival in patients with or without 8q gain (p=0.9854; Figure 1b) nor is there a difference between 2, 3 or ≥4 copies (p=0.6927; Figure 1d). However, since 8q gain is a characteristic of SF3B1MUT as well as BAP1MUT tumors, the prognostic value of 8q gain could also be only attributed to BAP1MUT tumors. Therefore, we assessed the survival of 211 UM patients with immunohistochemically BAP1-negative tumors or tumors with BAP1 mutations. Gain of chromosome 8q was present in 181 tumors (86%) and this was correlated with a worse survival in BAP1MUT UM (p=0.0134; Figure 1c). Three copies of 8q was not associated with decreased survival (HR: 1.667 (95%;CI:0.9755-3.042) but more copies (≥4 copies) had predictive value (HR: 1.907 (95%;CI:1.103-3.507, Figure 1e). Since (partial) gain of 8q can also be accompanied with changes in 8p copy number, 8p status in SF3B1MUT tumors was also assessed in 8q gain tumors (1 copy 8p (2.1%); 2 copies 8p (77.1%); ≥3 copies 8p (20.8%)) (Figure 1a). Next, the survival plot was stratified on 8p status. Patients with a SF3B1MUT tumor and loss or gain of 8p (1 copy 8p, n=1; 3 copies 8q, n=4) in combination with 3 copies of 8q had the shortest survival.
Since \(BAP1^{MUT} \) tumors have recurrent isochromosome 8q, we explored the combination of 8q and 8p status, where 8q gain was accompanied with 1 copy (40%), 2 copies (35%) and ≥3 copies of 8p (25%). However, no difference was found in 8p status between \(SF3B1^{MUT} \) and \(BAP1^{MUT} \) tumors (\(p=0.4149 \)). Nonetheless, many aberrations can be overlooked with single probe detection.

No difference was found in copies of 8p (\(p=0.2274 \)) and 8q (\(p=0.8237 \)) between DFS<60 months (n=8) and DFS≥60 months (n=51) in \(SF3B1^{MUT} \) tumors (Figure 1a). Distal gains (8q23-8q24.3) were similar in patients with a DFS<60 months and DFS≥60 months (71% vs 78%; \(p=0.7122 \)), more proximal (8q1-8q23) gains were more prominent in DFS<60 months, though this difference was not significant (71% vs 41%; \(p=0.1461 \)). Fifteen patients have metastatic disease (DFS<60 months, n=8 (88% 8q gain); DFS≥60 months, n=7 (71.4% 8q gain)) [4]. When grouping patients based on DFS, the number of 8q copies was not associated with survival (DFS<60, \(p=0.5319 \); DFS≥60, \(p=0.2328 \)) (Figure 1f-g). Interestingly, ≥4 copies of 8q corresponded to the best survival (100%) in patients with DFS≥60 months. Of the patients with DFS≥60 months and ≥4 copies of 8q, 50% had ≥3 copies of 8p, whereas 25% of the patients with DFS<60 months and ≥4 copies of 8q had ≥3 copies of 8p.

Transcriptome profiling and evaluating the genes from the GEP test on \(SF3B1^{MUT} \) (n=12) and \(BAP1^{MUT} \) (n=7) tumors showed no discriminating factor with 8q status (\(p=0.4149 \)). One of the genes distinguishing DFS<60 and DFS≥60, \(TOP1MT \) [4] is located at 8q24.3 and did not cluster to any group (Figure 1h).

\(SF3B1^{MUT} \) and \(BAP1^{MUT} \) tumors often have (partial) 8q gain [3, 5]. Gain of 8q is correlated to prognosis in UM, with increased metastatic risk correlates with increased 8q copy numbers, often a result of isochromosome formation [2, 5]. Here, we show that 8q gain has no discriminating association with survival in early versus late metastasizing \(SF3B1^{MUT} \) tumors. Nevertheless, gain of 8q could still play a role in metastases in \(SF3B1^{MUT} \) tumors, independent of DFS. \(BAP1^{MUT} \) tumors contribute to >50% of all UM and are characterized by gains and losses of entire chromosomes or chromosome arms. Gain of 8q is often accompanied with monosomy 3, and its combination correlates with a worse prognosis [6, 7]. In contrast, \(SF3B1^{MUT} \) UM karyotypes are more complex and CNV often have recurrent distal breakpoints on chromosome 6 and 8. This difference in CNV patterns could indicate a separate tumorigenesis mechanism in both groups. Since 8q gain was correlated with survival in only \(BAP1^{MUT} \) tumors and not \(SF3B1^{MUT} \) tumors, the reported decreased survival in 8q gain is predominantly due to \(BAP1^{MUT} \) tumors.

To conclude, we have evaluated gain of chromosome 8q and its role on DFS in \(SF3B1^{MUT} \) and \(BAP1^{MUT} \) UM. There is no correlation between 8q gain and early-onset metastasis in \(SF3B1^{MUT} \) tumors. Gain of 8q has no additional predictive value in \(SF3B1^{MUT} \) tumors. In contrast, 8q gain is predictive for a worse prognosis in \(BAP1^{MUT} \) tumors. Thus, 8q gain has additional predictive value for \(BAP1^{MUT} \) tumors, but not for \(SF3B1^{MUT} \) tumors.
Figure 1. Frequency of 8p and 8q copies in (a) all SF3B1MUT tumors, 8q gain SF3B1MUT tumors, and early (< 60 months) vs late (≥ 60 months) DFS; chromosome 8q status in (b) SF3B1MUT tumors and (c) BAP1MUT tumors; chromosome 8q copy numbers in (d) SF3B1MUT tumors and (e) BAP1MUT tumors; chromosome 8q copy numbers in (f) early and (g) late DFS SF3B1MUT tumors; (h) heatmap using Z-scores of the GEP test of UM including TOP1MT on SF3B1MUT and BAP1MUT tumors [4]. Samples were clustered based on mutational and 8q status. No BAP1MUT tumors had normal copies of 8q.
References

