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Abstract 69 

 70 

Post-acute sequelae of COVID-19 (PASC) are long-term consequences of SARS-71 

CoV-2 infection that can substantially impair quality of life. Underlying mechanisms 72 

ranging from persistent virus to innate and adaptive immune dysregulation have been 73 

discussed. Here, we profiled plasma of 181 individuals from the cohort study for digital 74 

health research in Germany (DigiHero) including individuals after mild to moderate 75 

COVID-19 with or without PASC and uninfected controls. We focused on soluble 76 

factors related to monocyte/macrophage biology and on circulating SARS-CoV-2 spike 77 

(S1) protein as potential biomarker for persistent viral reservoirs. At a median time of 78 

eight months after infection, we found pronounced dysregulation in almost all tested 79 

soluble factors including both pro-inflammatory and pro-fibrotic cytokines. These 80 

perturbations were remarkably independent of ongoing symptoms, but further 81 

correlation and regression analyses suggested PASC specific patterns involving 82 

CCL2/MCP-1 and IL-8 as well as long-term persistence of high IL-5 and IL-17F levels. 83 

None of the analyzed factors correlated with the detectability or levels of circulating S1 84 

indicating that this represents an independent subset of patients with PASC. This data 85 

confirms prior evidence of immune dysregulation and persistence of viral protein in 86 

PASC and illustrates its biological heterogeneity that still awaits correlation with 87 

clinically defined PASC subtypes.   88 

 89 

 90 
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Introduction 100 

 101 

The coronavirus disease 2019 (COVID-19) caused by the zoonotic severe acute 102 

respiratory syndrome coronavirus 2 (SARS-CoV-2) is a systemic multi-organ disease 103 

with a broad severity spectrum ranging from asymptomatic to fatal outcomes, 104 

especially in risk groups [1, 2]. While most individuals mount lasting SARS-CoV-2-105 

directed immune responses [3] and the rapid development of effective and safe 106 

vaccines helped to prevent severe disease courses and mitigate the pandemic 107 

progression, it is now clear that a substantial proportion of SARS-CoV-2 infected 108 

individuals does not fully recover but has persisting health impairments beyond four 109 

weeks of symptom onset that can last for months and significantly impact the quality 110 

of life [4, 5]. These post-acute sequelae of COVID-19 (PASC), or post-COVID-19 111 

condition as suggested by the WHO, are reported in 12.7-87% of patients and 112 

encompass a wide range of systemic, respiratory, neuropsychiatric and cardiac 113 

manifestations including fatigue, head and body aches, memory defects, dyspnea, 114 

palpitations as well as sleep and anxiety disorders [4-9]. Preexisting comorbidities like 115 

obesity and diabetes as well as age and severity of acute disease might represent risk 116 

factors, but lasting symptoms are also common among young individuals with mild 117 

disease courses and after vaccination [10, 11]. 118 

While the epidemiological and clinical characterization of PASC is relatively advanced, 119 

mechanistic insights in the pathophysiological underpinnings of this condition are still 120 

limited. A potential trigger of ongoing sequelae are persistent immunogenic viral 121 

reservoirs. SARS-CoV-2 RNA and spike or other proteins that might fuel ongoing and 122 

generate de-novo SARS-CoV-2-specific or superantigenic T cell responses [10, 12-14] 123 

have been detected in the respiratory tract, the gut, the brain, kidney and circulating in 124 

the blood months after acute disease [1, 15-17]. These findings might also mirror 125 

unrepaired virus-induced tissue damage that could account for some of the organ-126 

specific symptoms in PASC [5, 18-20]. Autoimmunity represents another potential 127 

driver of PASC. Adaptive immune responses during acute COVID-19 show imprints of 128 

autoreactivity and are characterized by the production of a variety of different 129 

autoantibodies that are also found in post-acute phases and in the SARS-CoV-2-130 

induced post-infection multisystem inflammatory syndrome in children (MIS-C) [6, 21-131 

24]. In addition, dysbiosis of the microbiome that either results in the persisting 132 
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production of inflammatory mediators like LPS that might promote inflammation or the 133 

long-term depletion of anti-inflammatory modulators is discussed [25, 26]. 134 

We recently reported persisting elevation of a triad of monocyte/macrophage-related 135 

cytokines - IL-1β, IL-6 and TNF 8-10 months after SARS-CoV-2 infection in patients 136 

with PASC [6]. We hypothesized that these cytokines are secreted by tissue-resident 137 

macrophages that engage into a self-sustaining proinflammatory loop that may fuel 138 

PASC. Such macrophage imprinting has been previously reported to be potentially 139 

induced through engulfment of spike protein by tissue-resident macrophage in early 140 

disease phases [27, 28].   141 

In order to obtain a broader picture of the profiles of immune dysregulation, their 142 

variability across patients and their relation to persisting virus or viral antigen, we 143 

designed a refined liquid biomarker panel to be run on biosamples from the DigiHero 144 

study cohort. Our data illustrate the pronounced dysregulation of 145 

monocyte/macrophage-related soluble factors in some individuals with PASC and the 146 

long-term circulation of spike protein in others. Together, this data further refines the 147 

molecular underpinnings of PASC and suggests the existence of different PASC 148 

subtypes. 149 

 150 

Materials and methods 151 

 152 

The population-based cohort study for digital health research in Germany (DigiHero) 153 

 154 

The here analyzed individuals essentially reflect the discovery cohort of the COVID-19 155 

module of the DigiHero study [6]. This subcohort encompasses 181 participants from 156 

the DigiHero discovery cohort who were interviewed with an online questionnaire on 157 

the clinical course of their SARS-CoV-2 infection, its post-infection sequelae and 158 

SARS-CoV-2 vaccination status. Interviews and blood sampling was performed until 159 

9th of October 2021. The study was approved by the institutional review board 160 

(approval numbers 2020-076) and conducted in accordance with the ethical principles 161 

stated by the Declaration of Helsinki. Informed written consent was obtained from all 162 

participants or legal representatives. Plasma samples were isolated by centrifugation 163 

of whole blood for 15 minutes at 2000 x g, followed by centrifugation at 12000 x g for 164 

10 minutes. Samples were stored at - 80°C until further use. 165 

 166 
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Biological samples and data from the biobank of the Halle COVID cohort (HACO) 167 

 168 

Plasma samples from acute COVID-19 (n=15 mild to moderate severity) were used as 169 

control group. Samples were collected between April and December 2020. Informed 170 

written consent was obtained and the study was approved by the institutional review 171 

board (approval number 2020-039) and conducted in accordance with the ethical 172 

principles stated by the Declaration of Helsinki. The collected plasma samples were 173 

isolated as described above. 174 

 175 

Profiling of human plasma for monocyte/macrophage-related soluble factors, anti-176 

SARS-CoV-2 antibodies and circulating SARS-CoV-2 spike protein 177 

 178 

Plasma levels of IL-5, IL-9, IL-17F, IL-18, IL-22, IL-23, IL-33 and CCL2/MCP-1 were 179 

measured using the respective LEGENDplex capture beads and corresponding 180 

detection antibodies from the LEGENDplex Human Inflammation Panel and Human Th 181 

Panel (BioLegend). For quantification of soluble CD206 (MMR), the Human MMR 182 

ELISA (RayBiotech) was used, for quantification of soluble CD163 the Human CD163 183 

Quantikine ELISA Kit (R&D Systems). Profiling of antibodies directed against the spike 184 

(S1) protein and the nucleocapsid protein (NCP) of SARS-CoV-2 was performed using 185 

the anti-SARS-CoV-2-ELISA IgG and anti-SARS-CoV-2-NCP-ELISA kits from 186 

Euroimmun (Lübeck, Germany). Circulating S1 protein was measured using the 187 

RayBio COVID-19 S-Protein (S1RBD) ELISA kit (RayBiotech). All kits were used 188 

according to the manufacturer´s instructions. Read out of the LEGENDplex system 189 

was performed on a BD FACSCelesta, ELISAs were read on a Tecan Spark Microplate 190 

reader. 191 

 192 

Statistical analysis 193 

 194 

All bar/dot plots as well as logistic regression and Spearman rank-order correlation 195 

analysis for plasma levels over time were generated using GraphPad PRISM 8.3.1 196 

(GraphPad Software, La Jolla, CA, USA). Differences in plasma cytokine levels were 197 

studied by unpaired t-test with Welch’s correction and Welch´s ANOVA. Correlations 198 

were calculated using the R package corrplot. Ranges of p values are indicated with 199 

asterisks: *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001.  200 
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Results 201 

 202 

Characteristics of post-acute COVID-19 cohort 203 

 204 

To study post-COVID-19 perturbations in monocyte/macrophage-related soluble 205 

factors, we randomly selected 181 individuals from the discovery cohort of DigiHero 206 

[6] for profiling. The subcohort consisted of 91 individuals with ongoing PASC at the 207 

time of blood sampling (65 females, 26 males), 62 individuals who never reported 208 

PASC (26 females, 36 males) and 28 individuals without prior COVID-19 (17 females, 209 

11 males) (Figure 1A). All participants were recruited until October 2021. Median time 210 

from infection to sampling was 8 months for individuals with ongoing PASC (range 1-211 

17 months) and 7.5 months for individuals without PASC (range 4-17 months) (Figure 212 

1B), median age was 51 for both post-COVID-19 groups and 50 for the never COVID-213 

19 group (Figure 1C). Most individuals of the analyzed groups had received at least 214 

one vaccination (73% of individuals without PASC, 77% of individuals with ongoing 215 

PASC, 83% of individuals without prior COVID-19).  216 

 217 

Plasma soluble factors associated with pro-inflammatory and pro-fibrotic macrophages 218 

are increased in post-acute COVID-19 219 

 220 

We selected soluble plasma factors for profiling that are associated with distinct 221 

activation states or phenotypes of monocytes/macrophages in COVID-19. Our panel 222 

included both pro-inflammatory cytokines (e.g., IL-17, IL-18, IL-23) and more pro-223 

fibrotic cytokines (e.g., IL-5, IL-9) [29-31]. We also included the shedded forms of two 224 

characteristic monocyte/macrophage surface molecules, namely the soluble mannose 225 

receptor (sMMR/sCD206/sMRC1) and the soluble haptoglobin-hemoglobin receptor 226 

(sCD163) [32].  227 

We observed markedly increased plasma levels of IL-5, IL-9, IL-17F, IL-18, IL-22, IL-228 

23, IL-33, CCL2/MCP-1 and sCD163 but only marginally increased levels for 229 

sCD206/sMMR in post-COVID-19 disease phases as compared to individuals who 230 

never had COVID-19 (Figure 2). The mean levels of IL-5, IL-9, IL-17F, IL-22, IL-23 and 231 

IL-33 tended towards higher values in individuals with ongoing PASC as compared to 232 

individuals who never reported PASC, while this trend was reversed for IL-18 and 233 

CCL2/MCP-1 (Figure 2).  234 
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To explore potential clusters of dysregulated soluble factors, we performed a large 235 

correlation analysis also including IL-1β, IL-4, IL-6, IL-8, IL-13, IL-17A, TNF, LTA (TNF-236 

β) and IFN-α2 from our previously published report since these factors have been 237 

found increased in post-infection biosamples [6]. This analysis revealed a 238 

characteristic pattern of correlating cytokines in post-COVID-19 samples relatively 239 

independent of PASC (Figure 3A-B), but not in uninfected individuals (Figure 3C). 240 

There were only very few significant correlations that were evident in the PASC setting, 241 

but not in post-COVID-19 patients without PASC. Two factors that were remarkable in 242 

this respect were CCL2/MCP-1 and IL-8. Both showed no specific correlations in 243 

individuals without prior COVID-19 or without PASC, but a clear positive correlation 244 

with each other and additional factors in individuals with PASC (Figure 3A-C). 245 

CCL2/MCP-1 was strongly correlated with IL-18 and IL-23; IL-8 was correlated with 246 

the shedded macrophage molecules sCD206/MMR and sCD163 as well as IL-17A, 247 

IFN-α2 and IL-33. This pointed at potential PASC subgroups. 248 

 249 

Some perturbations persist longer in patients with PASC compared to individuals 250 

without PASC 251 

 252 

Next, we asked if individuals with PASC showed slower normalization of the strong 253 

perturbations in monocyte/macrophage-related factors than individuals without PASC. 254 

Since no repetitive sampling was performed in the DigiHero cohort, this analysis was 255 

restricted to interpatient comparisons (Figure 1B). In order to close the gap of early 256 

post-infection samples that were unavailable in the DigiHero cohort, we quantified the 257 

set of soluble factors in additional plasma samples from individuals with mild to 258 

moderate acute COVID-19 (nine females, six males; median age 68 [range 23-85]; 259 

median sampling on day 15 after symptom onset [range 1-23]) collected as part of the 260 

independent Halle COVID-19 (HACO) cohort [33]. Linear regression and Spearman 261 

rank-order correlation analysis revealed a relatively clear negative correlation between 262 

sampling time point and plasma levels for many of the dysregulated soluble factors in 263 

individuals without PASC (Figure 4A). In patients with PASC, such over-time 264 

normalization was less evident for some of the measured factors (Figure 4B). While 265 

Spearman correlation analysis showed a quite clear negative time correlation for IL-5 266 

and IL-17F in individuals without PASC, this was not observed in individuals with PASC 267 
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(Figure 4B). This suggested that individuals with PASC may show prolonged 268 

perturbations of the analyzed soluble factors. 269 

 270 

Plasma levels of circulating spike protein are detectable in a substantial proportion of 271 

patients after COVID-19 especially in those with PASC 272 

 273 

Persistent immunogenic viral antigens like the SARS-CoV-2 S1 spike protein are 274 

potential drivers of PASC that might also fuel systemic cytokine and chemokine 275 

perturbations. To study this hypothesis, we profiled our cohort for levels of circulating 276 

S1. Since the S1 antigen has been detected in plasma after vaccination [34, 35], we 277 

restricted this analysis to individuals without prior vaccination. Around 35% of 278 

individuals with prior COVID-19 but no PASC showed measurable levels of circulating 279 

S1 protein (Figure 5A). In the ongoing PASC group, circulating S1 was detected in 280 

around 64% of individuals (Figure 5A). This group also showed numerically higher 281 

circulating S1 levels as compared to individuals without PASC (Figure 5B). However, 282 

the detectability or level of circulating S1 did not show a clear correlation with any of 283 

the soluble factors dysregulated in individuals with ongoing PASC (Figure 5C). 284 

Nevertheless, it should be noted that for three individuals with detectable plasma S1 285 

the levels of TNF, IL-1β, IL-6 and/or IL-8 were in the upper range of values detected in 286 

the ongoing PASC group. Of note, levels of circulating S1 showed a trend towards 287 

positive correlation with S1 and NCP antibody levels suggesting that persistent viral 288 

proteins may sustain the immune response (Figure 5C). 289 

 290 

Discussion 291 

In this work, we provide evidence for the long-term and surprisingly strong 292 

dysregulation of monocyte/macrophage-related cytokines, chemokines and other 293 

soluble factors in individuals with a history of COVID-19. While individuals with PASC 294 

tended to show more dysregulation, the correlation patterns of these factors were 295 

remarkably independent of ongoing symptoms with a few exceptions. We also 296 

observed circulating SARS-CoV-2 S1 spike protein in a substantial proportion of 297 

individuals with a history of COVID-19 even many months after infection – especially 298 

in the subset of individuals with PASC. While the soluble “immune” factors showed 299 

strong correlations with each other, we did not find a strong correlation with the 300 

detectability or level of circulating S1. This was a relevant finding that we interpreted 301 
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as indicative of distinct subgroups of PASC that may result from divergent underlying 302 

mechanisms. Unfortunately, the presumable PASC subsets suggested by our 303 

analyzes – individuals with predominant macrophage dysregulation versus individuals 304 

with persistent viral proteins or reservoirs – were rather small subgroups. Therefore, 305 

no reliable correlation analysis of these molecular patterns with the clinical 306 

characteristics registered in the context of the DigiHero trial could be performed.  307 

Our screening effort in this well characterized cohort of patients focused strongly on 308 

the monocyte/macrophage compartment and its network of soluble factors. Monocytes 309 

and macrophage represent one of the most important cellular immune subsets that is 310 

associated with the heterogeneous courses and severity of acute COVID-19 [36, 37] 311 

and is also discussed as central for PASC [14, 27, 28, 38-41]. The here reported 312 

cytokine and chemokine data not only corroborates this hypothesis and the importance 313 

of pro-inflammatory and pro-fibrotic monocytes and macrophages [6], it also suggests 314 

a complex role of monocyte/macrophage-centered factors known to regulate the 315 

TH1/TH2 balance in PASC. This is in line with the reported differential activation of 316 

classical and non-classical monocytes in PASC [14, 42]. One of the most emblematic 317 

cytokines in this respect is IL-33, which has been originally described as a pro-318 

inflammatory member of the IL-1 family but can also induce TH2 responses and act as 319 

damage-associated molecular pattern (DAMP). IL-33 was suggested to drive acute 320 

severity of COVID-19 in concert with GM-CSF, to mediate TH2 polarization and induce 321 

chronic pulmonary fibrosis. In addition, it may also mediate differentiation of monocytes 322 

to alternatively activated macrophage that may regenerate damaged bronchial 323 

epithelial tissue [43, 44]. 324 

An evolving body of evidence suggests that the wide spectrum of PASC symptoms 325 

mirrors the existence of different pathological subgroups [42, 45, 46]. In line with this 326 

notion, we identified two PASC-specific correlation patterns consisting of IL-8 and 327 

CCL2/MCP-1 with either sCD162, sCD206/MMR, IFN-α2, IL-17A and IL-33, or IL-18 328 

and IL-23 which might hint towards distinct disease mechanisms. The correlation of IL-329 

17A with IFN-α2 and IL-8 is notable given the importance of type I interferons for 330 

SARS-CoV-2 clearance and the pathogenic role of tissue-resident TH17 cells that 331 

interact with pro-inflammatory and pro-fibrotic macrophages in the lung of SARS-CoV-332 

2-infected individuals leading to IL-8 secretion [47]. In contrast, the correlation of 333 

CCL2/MCP-1, IL-8, IL-18 and IL-23 in a subset of participants might be interpreted as 334 

a transition from pro-inflammatory TH1-like responses in the acute phase towards a 335 
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more pronounced TH2 response in PASC that is associated with macrophage-336 

dependent lung fibrosis potentially driven by an exacerbated reaction to type 2 337 

cytokines. This is also in line with the lower levels of CCL2/MCP-1 and IL-8 in 338 

individuals with ongoing PASC as compared to individuals without PASC after SARS-339 

CoV-2 infection that was also observed by others [40]. CCL2/MCP-1, IL-8, IL-18 and 340 

IL-23 have all been described as pro-fibrotic in lung, liver and/or heart [48-51] and 341 

might indicate ongoing tissue damage in PASC [52, 53]. Interestingly, IL-8 was found 342 

in all PASC-associated cytokine signatures underscoring its importance for long-lasting 343 

sequelae.  344 

Persistent viral antigens, especially the S1 spike and NCP proteins, have been 345 

detected in multiple tissues post-infection and might provide a reservoir sustaining 346 

immune responses [1, 15, 16, 54]. We also observed persisting circulating S1 in post-347 

infection samples with higher frequency of detection and increased levels in individuals 348 

with ongoing PASC. Notably, S1 levels did numerically correlate with SARS-CoV-2 349 

antibody titers but not with any of the analyzed soluble immune factors. Nevertheless, 350 

a few individuals with circulating S1 had relatively high plasma levels of TNF, IL-1β, IL-351 

6 and/or IL-8 supporting the superantigenic features of the spike protein [13]. In line 352 

with a recent publication analyzing 31 PASC patients [17], this data suggests that 353 

individuals with PASC that have circulating S1 represent a different disease subset 354 

independent of monocyte/macrophage reprogramming. In addition, there are 355 

individuals with circulating S1 post-infection who do not develop PASC. Given the small 356 

number of involved samples in both data sets, the pathological relevance of circulating 357 

S1 needs further validation in larger cohorts.  358 

Overall, these data are indicative of a variety of molecular subtypes in PASC that need 359 

to be dissected in future studies with a clear theragnostic aim.  360 
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Figure 1. Clinical and epidemiological characteristics of the post-COVID-19 384 

cohort.  385 

(A) Sex distribution in the analyzed cohort comprising individuals with ongoing PASC 386 

(n=91), individuals with prior COVID-19 who never reported PASC (n=62) and 387 

individuals without prior COVID-19 (n=28).  388 

(B) Violin plot of median blood sampling time point (continuous line) relative to positive 389 

PCR or antigen test for the post-COVID-19 groups. Dotted lines separate quartiles. 390 

(C) Median age of indicated groups. 391 

 392 

Figure 2. Profiling of plasma monocyte/macrophage-related soluble factors from 393 

individuals with ongoing PASC, without PASC and without SARS-COV-2 394 

infection. 395 

Mean plasma cytokine/chemokine/soluble factor levels of individuals with no prior 396 

COVID-19 (n=28), individuals who never reported PASC post-infection (n = 62) or with 397 

ongoing PASC (n = 91). Error bars indicate ± SD. Statistical analysis: Welch´s ANOVA 398 

for comparison of all three groups and two-sided Welch corrected t-test for comparison 399 

of the no prior COVID-19 vs never PASC, no prior COVID-19 vs ongoing PASC and 400 

never PASC vs ongoing PASC groups. 401 

 402 

Figure 3. Correlation analysis of plasma soluble factors. 403 

(A)-(C) Correlation matrix of all analyzed soluble factors for individuals with ongoing 404 

PASC (n = 91) (A), individuals who never reported PASC post-infection (n = 62) (B) or 405 

individuals with no prior COVID-19 (n=28) (C). 406 

 407 

Figure 4. Association of plasma soluble factors with sampling time point post-408 

infection. 409 

(A)-(B) Linear regression of plasma cytokine levels and sampling time point post-410 

infection in individuals without PASC (n =62) (A) and with ongoing PASC (n=91) (B). 411 

Both cohorts also comprise cytokine data from individuals with mild/moderate acute 412 

COVID-19 (n=15). Dotted red lines indicate mean plasma level determined in 413 

individuals without prior COVID-19 (n=28). Correlation coefficient R2, Spearman 414 

correlation coefficients (rS) and p values are indicated. 415 

 416 

 417 
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Figure 5. Persistence of circulating S1 protein and correlation with 418 

monocyte/macrophage-related soluble factors and SARS-CoV-2-directed 419 

antibodies in unvaccinated individuals with ongoing PASC. 420 

(A) Proportion of individuals with detectable levels of circulating S1 (cS1) protein in 421 

unvaccinated individuals with prior COVID-19 who never experienced PASC (n=17) 422 

and with ongoing PASC (n=22). 423 

(B) Mean plasma levels of circulating SARS-CoV-2 spike (S1) protein in unvaccinated 424 

individuals with ongoing PASC (n=22), individuals with prior COVID-19 who never 425 

reported PASC (n=17) and individuals without prior COVID-19 (n=2). Error bars 426 

indicate ± SD. Statistical analysis: one-sided Welch corrected t-test. 427 

(C) Correlation matrix of indicated soluble factors with levels of circulating S1 and 428 

S1/NCP antibodies in unvaccinated individuals with ongoing PASC. 429 

 430 
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