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Abstract
As most disease causing pathogens require transmission from an infectious individual to a1

susceptible individual, continued persistence of the pathogen within the population requires2

the replenishment of susceptibles through births, immigration, or waning immunity.3

Consider the introduction of an unknown infectious disease into a fully susceptible population4

where it is not known how long immunity is conferred once an individual recovers from5

infection. If, initially, the prevalence of disease increases (that is, the infection takes off),6

the number of infectives will usually decrease to a low level after the first major outbreak.7

During this post-outbreak period, the disease dynamics may be influenced by stochastic8

effects and there is a non-zero probability that the epidemic will die out. Die out in this9

period following the first major outbreak is known as an epidemic fade-out. If the disease10

does not die out, the susceptible population may be replenished by the waning of immunity,11

and a second wave may start.12

In this study, we investigate if the rate of waning immunity (and other epidemiological13

parameters) can be reliably estimated from multiple outbreak data, in which some outbreaks14

display epidemic fade-out and others do not. We generated synthetic outbreak data from15

independent simulations of stochastic SIRS models in multiple communities. Some outbreaks16

faded-out and some did not. We conducted Bayesian parameter estimation under two17

alternative approaches: independently on each outbreak and under a hierarchical framework.18

When conducting independent estimation, the waning immunity rate was poorly estimated19

and biased towards zero when an epidemic fade-out was observed. However, under a20

hierarchical approach, we obtained more accurate and precise posterior estimates for the21

rate of waning immunity and other epidemiological parameters. The greatest improvement22

in estimates was obtained for those communities in which epidemic fade-out was observed.23

Our findings demonstrate the feasibility and value of adopting a Bayesian hierarchical24

approach for parameter inference for stochastic epidemic models.25

1 Introduction26

Infectious diseases do not always provide life-long or long-term protective immunity after infection (Heffernan27

& Keeling, 2009; Mathews, McCaw, McVernon, McBryde, & McCaw, 2007). Some common examples are28

pertussis (Mooi, Van Der Maas, & De Melker, 2014), seasonal influenza (Camacho & Cazelles, 2013), and29

the A/H3N2 epidemic that occurred on the remote island of Tristan da Cunha in 1971 (Camacho et al.,30

2011). Furthermore, for emerging infectious diseases, sufficient biological evidence to hypothesise that either31

re-infection or life-long immunity is possible is often limited, as was evident during the early stages of the32

recent COVID-19 pandemic (Lavine, Bjornstad, & Antia, 2021; Telenti et al., 2021).33

Mathematical epidemic models rely on compartmentalisation of the population into different states that34

are related to the infectious disease of interest (Camacho & Cazelles, 2013; Heffernan & Keeling, 2009;35

Kermack & McKendrick, 1927). Deterministic epidemic models that allow for replenishment of susceptibles36

via re-infection, births or immigration typically display damped oscillatory behaviour (Keeling & Rohani,37

2011). The simplest model for such a situation is the one that allows for re-infection, the SIRS model. In38

this model, recovered individuals have immunity that wanes resulting in them becoming susceptible again.39
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In contrast to a deterministic model, the number of infectives in a stochastic SIRS model can drop to40

zero. This occurs due to random effects at low disease prevalence levels. Once an outbreak avoids the initial41

fade-out (disease extinction during the start of the epidemic), there exists a trough following the first major42

outbreak (Lloyd, 2004). There is a non-zero probability that disease extinction will occur during this trough43

(Lloyd-Smith et al., 2005). This is known as an epidemic fade-out (Alahakoon, McCaw, & Taylor, 2022;44

Ballard, Bean, & Ross, 2016; Bartlett, 1960; Camacho et al., 2011; Camacho & Cazelles, 2013; Lloyd-Smith45

et al., 2005; Meerson & Sasorov, 2009; van Herwaarden, 1997). If epidemic fade-out does not take place, the46

susceptible fraction will increase due to the waning of immunity, and once the effective reproduction number47

is greater than one, a second wave may be started. The likelihood of the occurrence of epidemic fade-out or48

non-fade-out depends on the model parameters of which the outbreak is modeled Anderson and May (1992).49

Here, we consider a hypothetical pathogen where there is insufficient evidence to assume that recovered50

individuals remain immune from infection forever. We consider outbreaks of this disease observed in small51

closed communities (sub-populations) during short periods of time where demographic factors may be52

ignored. We assume outbreaks in these sub-populations take place independently, that is, the dynamics in53

one sub-population do not influence those in another. This assumption would be appropriate, for example,54

if the sub-populations were on multiple (geographically and/or temporally separated) islands or aboard55

multiple ships. Due to stochastic effects and variability in the characteristics of the sub-populations, we might56

observe epidemic fade-out in some sub-populations and not in others. In our previous work (Alahakoon et al.,57

2022), we introduced a novel Approximate Bayesian Computation algorithm to estimate the parameters of58

a stochastic epidemic model within a hierarchical framework. We tested the epidemiological applicability59

of this estimation framework only in the case where there is a single unknown parameter in the model. In60

this study, we extend our previous estimation framework to the more realistic situation in which there are61

multiple unknown parameters and evaluate the performance of the algorithm through a study in which the62

transmission rate, infectious duration and rate of waning immunity are all estimated.63

In particular, conditional on an epidemic taking off, we attempt to recover the waning immunity rate when64

epidemic fade-outs are observed. We conduct a simulation-based experiment where multiple outbreaks of65

synthetic data are generated from a stochastic SIRS model. Some outbreaks display fade-outs while others do66

not. We estimate model parameters by considering each outbreak independently as well as under a Bayesian67

hierarchical framework. We further consider two assumptions for the prior distributions under the Bayesian68

framework: one in which zero appears in the support of the prior distribution for the waning immunity rate69

and one where it does not. We demonstrate that when the estimation is conducted independently, the waning70

immunity rate is often poorly estimated, particularly when an epidemic fade-out is observed. We then show71

that the estimates of the waning immunity rate are improved when the estimation is carried out under a72

hierarchical framework. Additionally, we show that, given existing knowledge from a number of previous73

outbreaks, the waning immunity rate for a new and in-progress outbreak may be estimated accurately under74

a hierarchical framework.75

2 Background76

2.1 The Markovian SIRS model in a closed sub-population77

In a well-mixed sub-population of size N , we will denote the number of susceptibles, infectious individuals78

and recovered individuals by S(t), I(t), and R(t) respectively at time t. An SIRS model is parameterised by79

β, the transmission rate, γ, the rate of recovery, and µ, the waning immunity rate. The stochastic SIRS80

system can be formulated as a continuous-time Markov chain with bi-variate states (S(t), I(t)). The model81

structure is illustrated in Figure 1 and the transition rates are presented in Table 1. When µ = 0, the82

dynamics of this model are identical to those of the SIR model.83

In the model as we have formulated it below, in which mixing is assumed to be frequency-dependent, the84

constant β incorporates the rate at which two given individuals meet and, in the case where one is infectious85

and one is susceptible, transmission occurs. Alternative formulations incorporate the N − 1 into the constant86

β and reflect an assumption of density-dependent mixing. Since we are considering our population size to be87

fixed, the two formulations are equivalent in our context (Begon et al., 2002; McCallum, Barlow, & Hone,88

2001).89
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Figure 1: SIRS model structure.

Table 1: Transition rates of an SIRS model
Event Transition Rates

Infection (s, i) → (s− 1, i+ 1) βsi/(N − 1)
Recovery (s, i) → (s, i− 1) γi

Loss of immunity (s, i) → (s+ 1, i) µr, ( r = N − s− i)

2.2 A Bayesian hierarchical modelling framework90

In this study, we consider the estimation of parameters under a hierarchical modeling approach. We91

assume that we are studying outbreaks in K sub-populations and each outbreak can be modeled using a92

continuous-time Markov chain with transition rates defined in Table 1. For k = 1, . . . ,K, we denote the93

parameter set (βk, γk, µk) governing the evolution of the kth sub-population by θk. Under a hierarchical94

framework, we assume that the θk are drawn from a common distribution (Gelman et al., 2013). Applications95

of hierarchical modeling frameworks to epidemiology can be found in studies such as Alahakoon, Taylor, and96

McCaw (2023); Cao et al. (2019); Coly, Garrido, Abrial, and Yao (2021); Lawson and Song (2010); Mathews,97

McBryde, McVernon, Pallaghy, and McCaw (2010).98

We construct our hierarchical framework with three levels similar to that of Alahakoon et al. (2022).99

Level I represents the observed prevalence data yk = (Ik(1), Ik(2) . . . , Ik(Tk)) at Tk discrete time points for100

sub-populations k = 1, 2, . . . ,K. Level II represents the structural relationship between the sub-population101

specific parameters θk and the hyper-parameters, Ψ. The θk are independent random variables with common102

densities p(θ|Ψ), which we take to be normal with mean and standard deviation given by Ψ. Finally, Level103

III represents the prior distributions for the hyper-parameters, which are generally known as hyper-prior104

distributions, p(Ψ) (Gelman et al., 2013).105

The joint posterior density for a population consisting of K sub-populations is,

p(θ1,θ2, . . . ,θK ,Ψ|y) = p(y|θ1,θ2, ...,θK ,Ψ)p(θ1,θ2, ...,θK ,Ψ)
p(y) =

[∏K
k=1 p(yk|θk)p(θk|Ψ)

]
p(Ψ)

p(y)

∝

[
K∏

k=1
p(yk|θk)p(θk|Ψ)

]
p(Ψ). (1)

The prior distribution for the model parameters is a multivariate normal distribution with means Ψβ ,Ψγ ,106

and Ψµ, standard deviations σβ , σγ , and σµ, and correlations set to zero.107
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3 Materials and Methods108

3.1 Synthetic data generation109

Using the stochastic SIRS model structure that was introduced in Section 2, we constructed synthetic data110

for 15 sub-populations each consisting of 1000 individuals. We fixed the initial conditions of each outbreak to111

include one infectious person in each sub-population at the start of the outbreak. We independently generated112

transmission, recovery, and waning immunity rates from three truncated normal distributions. We randomly113

generated the transmission rates, βk, for the sub-populations from a normal distribution with a mean of 2.5114

and standard deviation of 0.25, truncated on the interval (1, 10). We generated the recovery rates, γk, from115

a normal distribution with a mean of 1 and a standard deviation of 0.05, truncated on the interval (0, 4).116

We generated the waning immunity rates, µk, from a normal distribution with a mean of 0.06 and standard117

deviation of 0.01, truncated on the interval (0.01, 1). We used the methods of Ballard et al. (2016) to choose118

values for the hyper-parameters so that some of the sub-populations would display a fade-out and others119

would not.120

See Table 2 for summary statistics of the actual values of the parameters that were generated for each121

of the sub-populations. Using these parameters for the SIRS model, we generated sample paths from the122

Doob-Gillespie (Doob, 1945; Gillespie, 1977) algorithm for 35 days and retained the prevalence of infections123

each day. If a sample path produced an initial fade-out, we discarded that sample path and repeatedly124

generated sample paths until an initial outbreak was observed. The criteria we used to identify an outbreak125

were similar to Alahakoon et al. (2022). See Supplementary Material for further details. Figure 2 shows the126

time-series data of the 15 sub-populations. Sub-populations 4, 8, 10, 11, 12, 14, and 15 displayed an epidemic127

fade-out and other sub-populations displayed multiple waves.128

Table 2: Summary statistics of the parameters of the 15 outbreaks
Parameter Mean Standard deviation

β 2.5235 0.3476
γ 1.0198 0.0498
µ 0.0606 0.0073

Figure 2: Synthetic data for fifteen sub-populations over 35 days.
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3.2 Estimation framework129

We implemented two frameworks to estimate the model parameters related to the transmission, recovery,130

and waning immunity rates: 1) estimation by considering each outbreak independently. 2) estimation by131

considering a hierarchical framework. Under each estimation framework, we made two alternative assumptions132

for prior distributions within the Bayesian framework.133

Under the first assumption, zero is included in the support of the prior distribution for the waning immunity134

rate µ while, under the second assumption, the prior constrains µ to be greater than 0.01. The latter choice135

reflects an a priori assumption that immunity following infection wanes, while the first choice admits the136

possibility of life-long immunity following infection. Tables 3 and 4 illustrate our choice of priors for the137

model parameters under both assumptions.138

Table 3: Prior distributions for parameters when the outbreaks are considered independently
Parameter Assumption 1 Assumption 2

β Uniform (0.001,10) Uniform (0.001,10)
γ Uniform (0.00001,3) Uniform(0.00001,3)
µ Uniform (0,0.2) Truncated Normal (0.03, 0.12, 0.01, 0.2)

Table 4: Prior distributions for hyper-parameters under the hierarchical framework
Hyper parameter Assumption 1 Assumption 2

Ψβ Uniform (0.001, 10) Uniform (0.001, 10)
σβ Uniform (0, 2.5) Uniform (0, 2.5)
Ψγ Uniform (0.00001, 3) Uniform (0.00001, 3)
σγ Uniform (0, 1) Uniform (0, 1)
Ψµ Uniform (0, 0.2) Uniform (0.01, 0.2)
σµ Uniform (0, 0.15) Uniform (0, 0.15)

We conducted parameter estimation under both assumptions for the prior when outbreaks were considered139

independently with the ABC-SMC algorithm of Toni, Welch, Strelkowa, Ipsen, and Stumpf (2009). See140

Supplementary Material S1.1 for the details of our calibration of the algorithm. We also used the two-step141

algorithm of Alahakoon et al. (2022) to estimate the parameters under a stochastic hierarchical framework.142

See Supplementary Material S2.1 and S2.2 in relation to the calibration and diagnostics of this step. When143

estimating the hyper-parameters of the conditional prior distribution, the estimated correlations of the144

multivariate distribution were not substantial. Therefore, we used independent conditional prior distributions.145

See Supplementary Material S2 for further explanation.146

4 Results147

Figure 3 shows the marginal posterior distributions for the sub-population-specific waning immunity rates148

when parameter estimation was carried out independently for each outbreak. Irrespective of the assumed149

prior, the posterior distributions of the sub-populations that did not fade out had similar shapes. For the150

sub-populations that did fade out, the posterior distributions were strongly skewed and truncated at the151

lower bound (at or close to zero) of the prior distribution. This latter result for sub-populations displaying152

fade-out was expected: there is little if any information in the time-series for these sub-populations to inform153

the estimate for the rate of waning immunity, µ, and a value equal to or close to zero, yielding SIR-like154

dynamics, can provide a sufficient explanation for the observed data, despite the fact that the data were155

generated from an SIRS model with a waning immunity rate above zero. See Supplementary Material S1.2156

for a comparison of posterior median and Highest Posterior Density (HPD) intervals (Chen, Shao, & Ibrahim,157

2012) computed from HDInterval package in R (Meredith & Kruschke, 2020) and for visual diagnostics of158

other parameters.159
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Figure 3: Independent estimation: Posterior distributions for the rate of waning immunity, µ, for the
sub-populations under two assumptions for the prior. Asterisks represent sub-populations that experienced
epidemic fade-out.

As we did not observe a substantial difference between the marginal posterior distributions under the160

different assumptions for the prior, hereafter we focus on the second assumption in which the prior for the161

waning immunity rate excludes zero (see Supplementary Material S2.5 for results under the alternative162

choice of prior). We compared estimates for model parameters under independent and hierarchical inference163

frameworks. Figure 4 illustrates the marginal posterior distributions for the rate of waning immunity, µ (plot164

(A)), and transmission, β (plot (B)). Particularly for sub-populations that displayed epidemic fade-outs, there165

is a striking difference between the posterior distributions for the rate of waning immunity obtained under166

the two frameworks. The shapes of these distributions changed from highly positively skewed and strongly167

biased towards zero (independent analysis) to slightly negatively skewed and with minimal bias (hierarchical168

analysis).169

The right panel of Figure 4 illustrates the extent of improvement of parameter estimates under a hierarchical170

analysis in comparison to an independent analysis. For this, we used the Region of Practical Equivalence171

(ROPE) criterion (J. Kruschke, 2014; J. K. Kruschke, 2013, 2018) and the posterior modes of both µ and β.172

We used the ROPE criterion (see Supplementary Material S2.6) to identify the percentage of the 95% Highest173

Posterior Density (HPD) intervals of µ and β that were included inside the ROPE. For the waning immunity174

rates of the sub-populations that displayed epidemic fade-outs (plot (C)), the median increase was 38%. The175

corresponding increase for those sub-populations that did not display fade-out (plot (D)) was 20.5%. The176

median of the posterior modes for µ increased by 0.034 (plot (E)) compared to the independent analysis for177

sub-populations that observed fade-outs. However, for those that did not display fade-out, the variability of178

posterior modes diminished (plot (F)). Overall, under a hierarchical analysis, estimates for the rate of waning179

immunity, µ, improved; and the improvement was larger for sub-populations that display epidemic fade-out.180

For the ROPE percentages for β, the results were similar to those for µ. The median increase was 22%181

(plot (G)) and 15% (plot (H)) for sub-populations that did and did not experience fade-out respectively. The182

variability of the posterior modes of sub-populations that did and did not experience fade-out diminished183

(plots (I) and (J)) and we did not observe a shift between the medians of the posterior modes. For the184
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recovery rates, γ, we made similar observations as for the transmission rates. See Supplementary Material185

S2.6.186

Figure 4: Hierarchical vs. independent estimation (assuming a prior that excludes µ = 0):
Left panel : Marginal posterior distributions for waning immunity (plot (A)) and transmission rates (plot
(B)). Asterisks represent sub-populations that experienced epidemic fade-out.
Top right panel : Paired comparison of ROPE percentages (plot (C)) and posterior modes (plot (D))
with independent and hierarchical estimation frameworks for the waning immunity rate when fade-outs and
non fade-outs are observed.
Bottom right panel : Paired comparison of ROPE percentages (plot (E)) and posterior modes (plot
(F)) with independent and hierarchical estimation frameworks for transmission rate when fade-outs and non
fade-outs are observed.
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Overall, in comparison to an independent analysis, a hierarchical framework dramatically improved the187

estimated posterior densities. Supplementary Material S2.5 provides full details for the analyses, including all188

marginal posterior densities under both choices for the prior on the rate of waning immunity.189

Figure 5 shows the posterior distributions of the hyper-parameters under the hierarchical analysis and190

with a prior that excludes µ = 0 (assumption 2). Supplementary Material S2.7 presents estimates under191

the alternative assumption for the prior. Table 5 shows the posterior medians and HPD intervals for the192

hyper-parameters under both assumptions for the prior. The marginal posterior densities of the hyper-193

parameters for transmission rate and recovery rate were well estimated, with the highest posterior density for194

the hyper-mean lying very close to the sample-mean for the sub-population parameters. Estimates for the195

hyper-variances for transmission and recovery rates were also accurate and precise. For the rate of waning196

immunity, both the hyper-mean and hyper-standard deviation were similarly well estimated, with a noticeably197

improved estimate under the prior that excludes µ = 0 (assumption 2).198

Figure 5: Marginal posterior distributions for the hyper-parameters for β (A), γ (B) and µ (C) under the
prior that excludes µ = 0. Blue dashed line : Parameter value. Orange dashed line : Mean of the
sub-population specific parameters.

Table 5: Summary statistics for the posterior distributions of the hyper-parameters

Hyper parameter Assumption 1
(prior admits µ = 0)

Assumption 2
(prior excludes µ = 0)

Posterior median HPD interval Posterior median HPD interval
Ψβ 2.5144 (2.2409, 2.7656) 2.5573 (2.2777, 2.7360)
σβ 0.3956 (0.1333, 0.5983) 0.3888 (0.1483, 0.6043)
Ψγ 1.0198 (0.9280, 1.0957) 1.0302 (0.9412, 1.1088)
σγ 0.0539 (0.0003, 0.1245) 0.0506 (0.0007, 0.1240)
Ψµ 0.0493 (0.0085, 0.0662) 0.0524 (0.0249, 0.07020)
σµ 0.0143 (0.0002, 0.0509) 0.0095 (0.0000, 0.0442)
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4.1 Performance of the estimation framework under different parameter regimes199

To evaluate the robustness of the inference framework, we generated three additional datasets of 15200

sub-populations from different regions of parameter space. Given the epidemiological importance of the basic201

reproduction number, R0, we chose values for R0 at the hyperparametric level of 1.5, 4, and 8 to evaluate the202

method. Furthermore, we chose values for the hyper-parameters ψβ , ψγ , and ψµ such that the probability of203

epidemic fade-out was approximately 0.5. Each of the three new datasets consisted of 15 outbreaks. Table 6204

summarises the results from application of an independent and hierarchical inference approach, including205

those for the primary dataset in which R0 = 2.5. Full details of these additional analyses can be found in206

the Supplementary Material. Across all four simulation studies, the hierarchical analysis provided improved207

estimates for parameters at both the population (hyper-parameter) and sub-population (parameter) levels.208

In particular, estimates for the rate of waning immunity for those sub-populations in which fade-out was209

observed were notably improved, with the bias (towards an estimate of no waning) either greatly reduced or210

removed entirely.211

Table 6: Performance of the hierarchical estimation method in comparison to independent estimation for four
alternative epidemiological scenarios (governed by R0), using a prior that allows for µ = 0 (assumption 1)

R0
at the

hyperparametric
level

Number of
fade-outs
out of 15
outbreaks

Median increase in ROPE percentage
(from independent to hierarchical

estimation)

Fade-outs Non fade-outs Overall increase
1.5 9 21 38 29
2.5 7 36 20 34
4 7 21 8.5 27
8 8 35 20 34

4.2 Parameter estimates under incomplete time-series data212

We draw the reader’s attention to the disease dynamics of sub-population 6 of our first dataset (R0 = 2.5213

at the hyper-parametric level, Figure 2). This outbreak had not experienced an epidemic fade-out in 35 days214

(as the prevalence had not reached zero), nor had it displayed a distinct second wave. This was reflected in215

the posterior distribution of the waning immunity when estimated under the independent (non-hierarchical)216

framework, whereby the shape of the distribution was positively skewed and strongly biased towards µ = 0217

(Figure 3). That is, SIR-like dynamics were not excluded. This observation motivated us to study whether218

a hierarchical framework, already informed by observed dynamics from other outbreaks, is able to identify219

the presence of waning immunity within a sub-population when only a part of the time-series (for that220

sub-population) is observed.221

Accordingly, we drew two additional parameter sets from the same probability distributions that were222

used to generate the synthetic data for the 15 existing sub-populations. For each of these parameter sets223

we generated a new outbreak (henceforth labelled sub-populations 16 and 17). The sampled transmission224

rates for the two sub-populations were 2.6355 and 2.0364, the recovery rates were 1.0169 and 0.9352, and the225

waning immunity rates were 0.0642 and 0.0443 respectively. We first generated sample paths up to 35 days,226

ensuring that one of the sub-populations displayed a second wave and the other, an epidemic fade-out. We227

then produced an incomplete time-series data set for each sub-population by taking only the first 15 days of228

data. Plot (A) of Figure 6 displays the observed incomplete time-series (black solid line) and the complete229

time-series (black dashed line).230

Under our scenario, an investigation of the first 15 sub-populations has already been conducted, from231

which clear evidence for waning immunity has been established, so parameter estimation for the two new232

sub-populations was conducted assuming a prior that excludes µ = 0 (that is, assumption 2 in preceding233

analyses). We first estimated the parameters by considering the outbreaks independently and then conducted234

inference under a hierarchical framework. We carried out the latter analyses by considering data from all 17235

outbreaks; that is, 15 existing sub-populations with 35-day time-series data and 2 new sub-populations with236

15-day time-series data.237
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Plots (B) and (C) of Figure 6 illustrate the posterior distributions under the two estimation frameworks for238

the two new outbreaks with partial data for µ and β respectively. Furthermore, for comparison, we have also239

plotted the posterior distributions under the hierarchical framework if complete data for all 17 populations240

were available. The parameter estimates for both sub-populations under the hierarchical analysis improved241

in comparison to those from the independent analysis, with a notable improvement in the estimate for the242

waning immunity rate for sub-population 17 where the strong bias towards µ = 0 present in the independent243

analysis was removed. Marginal posterior densities under the hierarchical framework with incomplete data244

showed only minor differences to those with complete data.245

Using the methods of Ballard et al. (2016), we also calculated the epidemic fade-out probabilities, 0.3003246

and 0.7199, given the true parameters for sub-populations 16 and 17 respectively. Plot (D) of Figure 6247

illustrates the estimated distributions of the probability of epidemic fade-out for the two sub-populations248

when partial (up-to 15 days) and complete (up-to 35 days) time-series data are considered (see Supplementary249

Material S2.8 for details). However, neither technique (independent nor hierarchical) gave a reasonable250

estimate for the fade-out probability.251

These additional analyses demonstrate that a hierarchical approach may support real-time analyses (where252

a ‘new’ outbreak is active in a new sub-population) as well as retrospective epidemiological analyses, although253

estimates for epidemiological parameters are likely more reliable than estimates for quantities such as the254

probability of epidemic fade-out.255
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Figure 6: Plot (A): Data observed (in black line) and not yet observed (in grey dashed) for sub-populations
16 and 17.
Plot (B): Posterior distributions for µ for the sub-populations 16 and 17 under parameter estimation
independently and under a hierarchical framework.
Plot (C): Posterior distributions for β for the sub-populations 16 and 17 under parameter estimation
independently and under a hierarchical framework.
Plot (D) : Probability of epidemic fade-out distributions from the estimated parameters. The horizontal line
represents the probability fade-out calculated with the true parameter values using the methods by Ballard
et al. (2016).

5 Discussion256

We have studied a hypothetical infectious disease that has a non-zero waning immunity rate. We have257

shown that when multiple outbreaks take place in multiple communities, parameter estimates can be expected258

to improve when estimation is carried out under a hierarchical framework in comparison to when the outbreaks259

are studied independently. Application of the parameter estimation framework introduced by Alahakoon et260

al. (2022) yielded improved estimates.261

Epidemic fade-out is a combined result of characteristics of the sub-populations and stochastic effects at262

low prevalence levels. Therefore, it is possible to observe epidemic fade-out or multiple waves in different263

sub-populations. We have shown that when an epidemic fade-out is observed in a sub-population where264

multiple waves are possible, the parameter(s) that indicate the possibility of re-infection/ multiple waves can265

be incorrectly estimated when the outbreak is studied independently. On the other hand, when a hierarchical266

framework is used to study multiple outbreaks, information is shared among all the sub-populations which267
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aids in improving the estimates for re-infection (and other model parameters) even when an epidemic fade-out268

is observed.269

Furthermore, we have shown that even when there is incomplete data for some sub-populations, the waning270

immunity rate can be estimated when a hierarchical framework is used.271

Another possible application occurs within surveillance frameworks where data accumulation is expected.272

As an example, when only some of the first few outbreaks of an emerging infection display epidemic fade-out,273

using a hierarchical framework can aid in identifying the rate of waning immunity among those communities274

that observed fade-outs.275

Conditional on their parameter values, we have assumed that the outbreaks evolve independently. An276

example of such a setting includes the outbreaks that occurred on board Australian ships during the influenza277

pandemic of 1918 (Alahakoon et al., 2023; Cumpston, 1919).278

This work and that of Alahakoon et al. (2022) considered using hierarchical frameworks within an SIRS279

model structure. Here, we have extended the framework of Alahakoon et al. (2022) to estimate multiple280

parameters. We believe that this demonstration of the statistical validity of our inference method and its281

applicability to a foundational model in mathematical epidemiology (SIRS dynamics) provides a robust282

platform for the method to be applied to actual data. We are now applying our estimation framework to283

such data, including an analysis of outbreaks of pandemic influenza aboard troop ships returning to Australia284

in 1918 (Alahakoon et al., 2023).285

The estimation framework is applicable for any process that can be described using a compartmental286

stochastic model, including those in infectious disease epidemiology and other areas such as within-host287

dynamics. For example, in clinical trial settings where pharmaco-kinetic pharmaco-dynamic models are used288

routinely (Cao et al., 2019; Sun, McCaw, & Cao, 2022) in combination with Bayesian hierarchical methods,289

there is clear evidence that stochastic effects are present and multi-wave behaviour (e.g., recrudescence of290

malaria within the host), as well as extinction, may be observed.291
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