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Background: Substance use behaviors and their etiologies are complex and often not amenable 

to traditional statistical analysis. Computational models are an increasingly popular alternative 

approach for investigating substance use. However, cumulative progress has been difficult because of 

a lack of standardization. This study aims to develop and evaluate a simple computational model that 

could serve as a common starting point for future computation-based investigations of substance use.  

Methods: A two-state ("Using" a substance or "Not using" a substance) stochastic model with 

three manipulable parameters is used to reproduce the distributions of past 30-day alcohol, cannabis, 

and tobacco cigarette consumption frequencies (e.g., used on 5 days within the past 30 days) observed 

in the U.S. National Survey on Drug Use and Health (NSDUH) (years 2002-2019 combined). The 

model employs a path-dependent process: during each iteration (i.e., each "day") of the simulation, 

each computational object chooses to use or not use a substance based on probabilities that are 

contingent on choices made in prior iterations. The Lempel-Ziv complexity measure was used to 

examine the resulting sequences of binary decisions (use ordon't use) made by each computational 

object.  

Results: The model accurately reproduces the population-level "U-shaped" distributions of past 

30-day alcohol, cannabis, and cigarette use in the U.S. The path dependence function was required for 

reproducing these distributions. The model also suggests an "arc" of behavioral complexity stages: as 

the frequency of use increases, the complexity of decision sequences increases, peaks, and then 

decreases. However, decision sequence complexity still varied considerably among objects with similar 

frequencies of use. 

Conclusion: A simple computational model that simulates individual-level sequences of 

substance use can reproduce the population-level distributions of substance use observed in national 

survey data. The model also suggests that complexity measures are a potentially helpful tool for 

examining substance use behaviors. 
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INTRODUCTION 

 Substance use behaviors are likely driven by complex, nonlinear processes. Yet researchers 

frequently employ statistical methods that yield limited insight into such processes.1-3  Increasing 

recognition of this issue is pushing substance use research into new conceptual and methodological 

territories4-8 – particularly towards computational methods.6,7,9 

 The term "computational method" is generally considered to encompass a wide variety of primarily 

machine learning and simulation techniques.10-12 These techniques are being used to study substance 

use at many levels – ranging from neuroscientific to epidemiological.13-16 Simulation is a type of 

computational method that encourages explicit operationalization of assumed mechanisms as part of a 

computer program; computer experiments can then be conducted to determine if and how such 

assumptions generate outcomes of interest.3,7,14,17-21  

Researchers are embracing simulation models to generate insights about a range of substance-

related topics (e.g., substance use laws and regulations, social networks, economics).16,22-28 However, 

these models are often highly complex and use many idiosyncratic parameters and assumptions to 

examine specific circumstances. Consequently, the growing subfield of substance use simulation will 

have difficulty collaborating and building cumulative progress. One potential remedy is to develop 

simple yet broadly applicable "building-block" models of substance use to facilitate communication, 

collaboration, and new ways of thinking about the dynamics of substance use behaviors.  

 The first step in building such models is to identify a commonly observed macro-level 

phenomenon to replicate. One candidate phenomenon is the U-shaped distribution frequently observed 

in population substance use data. For example, each year the National Survey on Drug Use and Health 

(NSDUH) asks a random cross-section of the U.S. population questions such as, "During the past 30 

days, on how many days did you use marijuana or hashish?" and "During the past 30 days, on how 

many days did you drink one or more drinks of an alcoholic beverage?". 29 The distribution of responses 

to these questions is almost invariably U-shaped, with many low-frequency consumers at one end, 

many daily consumers at the opposite end, and fewer in between.  

 The next step is identifying and testing a micro-level process that plausibly governs the observed 

macro-level phenomenon. One starting place for identifying a relevant micro-level process is the 

Behavioral Science literature. Behavioral Science has established that the consequences (positive and 

negative) of a behavior will alter the probability of re-engaging in that behavior.30 Humans and other 

organisms learn that certain behaviors (e.g., consuming an intoxicating substance) produce reinforcing 

consequences (e.g., pleasurable subjective feeling, social validation, etc.) and subsequently seek to 

repeat the behaviors that produced the reinforcing consequences.31,32 This aspect of human behavior 
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closely parallels the concept of "path dependence" in complex systems.33 Path-dependent systems 

evolve as a function of their own history, meaning that prior events impact future events (e.g., positive 

feedback loop).34 To date, various instantiations of path-dependent processes have been used 

successfully in economic and neurobiological models of substance use behaviors.14 

 The two aims of the present study were to (1) determine whether a simple computational model 

built around the concept of path dependence could reproduce empirical distributions of past 30-day 

frequency of alcohol, cannabis, and cigarette use in the U.S. population; (2) examine the complexity of 

individual-level behavior patterns to identify testable implications of the model. 

 

MATERIALS AND METHODS  

 This study took a pattern-oriented modeling35-37 approach by comparing simulated and empirical 

distributions of past 30-day substance use frequency (e.g., used a substance on 5 out of the past 30 

days). The model is outlined using components of Hammond's PARTE guidelines38 and Grimm et al.'s 

ODD guidelines.37 The study was conducted using Python 3.9 and Stata 17. 

 

Model Overview 

This model uses a two-state, path-dependent, discrete stochastic process to reproduce the distributions 

of past 30-day consumption frequencies of alcohol, cannabis, and tobacco cigarettes observed in the 

National Survey on Drug Use and Health (NSDUH). This model shares conceptual similarities with 

other paradigms (e.g., "Individual-based", "Agent-based", "Multi-state", and "Markov Chain" 

models.9,25,34,37,39,40). Broadly speaking, the model is populated with multiple computational objects. At 

each iteration (i.e., each "day") of the simulation, each object decides whether to use the substance 

(represented by the number 1) or not use the substance (represented by the number 0). The decision 

to use or not use the substance is affected by the object's properties. Specifically, each object has a 

unique probability of transitioning from the "Not using" state to the "Using" state and a unique 

probability of transitioning from the "Using" state to the "Not using" state. The latter probability changes 

based on the object's history of use in previous iterations. To generate different distributions of past 30-

day substance use frequencies, the modeler changes the values of three parameters: (1) Maximum 

Risk Factors Effect, (2) Minimum Protective Factors Effect, (3) Reinforcing Effect (these parameters are 

discussed in greater detail in the section "Initialization, Global Variables, Modeler Input"). 

 

Model Components 
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 Object Properties: "Using" state (U), "Not using" state (N), and transition probabilities 

(Figure 1 and Table 1). For each computational object, the simulation generates a sequence of bina

states – "Not using" state (N) or "Using" state (U) – which represent the object's pattern of substance

use over time. The sequences reflect the object's decisions to either remain in its current state or 

transition to a different state at each iteration for iterations i = 0,1,…n, where n is the total number of 

iterations in the simulation. Each object has a unique, fixed probability of transitioning from N to U 

called Pr(N→U), representing the object's "Risk Factors Effect". Pr(N→N) is the probability of remain

in N and is calculated as 1 − Pr(N→U). Each object also has a unique set of probabilities of 

transitioning from U to N called Pr(U→N), representing the object's "Protective Factors Effect". 

Pr(U→N) is initialized at i=0 and adjusted as the simulation progresses based on the object's recent 

history of substance use. Finally, Pr(U→U) is the probability of remaining in U and is calculated as 1

Pr(U→N). Additional details about these probabilities are provided in subsequent sections. 

 

 

 

 

 

 Object Action: Determining current state and deciding to use or not use. At the beginning

the current iteration, each object determines whether it is in the N state or the U state by checking 

whether or not it used the substance in the previous iteration. If the object did not use in the previous

iteration, then it is in the N state at the beginning of the current iteration, and the probability that the 

object will use during the current iteration is the object-specific value of Pr(N→U). If the object used i

the prior iteration, then it is in the U state at the beginning of the current iteration, and the probability 
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that the object will not use during the current iteration is the object- and iteration-specific value of 

Pr(U→N). By the end of the current iteration, the object decides whether or not to use the substance 

during the current iteration. If the object decides to use, it records a 1 in its personal use history; if the 

object decides not to use, it records a 0 in its personal use history. 

  

 Object Action: Updating the value of Pr(U→N). If the object uses during the current iteration, 

then the object's unique probability Pr(U→N) is updated. The updated value – Pr(U→N)i>0 – is used by 

the object in the subsequent iteration when deciding whether or not to use. The value of Pr(U→N)i>0 is 

calculated as:  

 

Pr(U→N)i>0 = Pr(U→N)i=0 * ������������� 
�� ��
 � ����������� �������   (Eq 1) 

 

Where Pr(U→N)i=0 is a value established at initialization, "proportion days used" is a value between 0 

and 1 calculated using the object's personal substance use history results (containing either 0's or 1's) 

from the last 30 iterations. The Reinforcing Effect parameter is a global, fixed value used by all objects 

and is explained in greater detail below. Note that the same, fixed value of Pr(U→N)i=0 is always used 

to calculate each new value of Pr(U→N)i>0. 

 

 Time, Scheduling, and Environment. An iteration is completed after all computational objects 

have determined whether they use or not. Each iteration is considered to be equivalent to one day after 

the model has stabilized. Based on model stability testing results, 2000 iterations were used for 

generating results (see supplemental material). There is no spatial component to the model. 

Additionally, objects do not interact with each other directly or indirectly, which allows them to be 

statistically independent. This feature of the model mimics the statistical independence of NSDUH 

participants who are randomly sampled from across the U.S. and presumably do not know each other. 

 

 Initialization, Global Variables, Modeler Input. To generate different distributions of substance 

use, the modeler changes the values of three parameters: (1) Maximum Risk Factors Effect, (2) 

Minimum Protective Factors Effect, and (3) Reinforcing Effect. The Maximum Risk Factors Effect and 

Minimum Protective Factors Effect are set by the modeler as values between 0 and 1. Each object's 

unique value of Pr(N→U) is determined at model initialization by a random draw from a uniform 

distribution with a lower bound set to zero and an upper bound set to the Maximum Risk Factors Effect. 
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Similarly, each object's unique value of Pr(U→N)i=0 is determined at model initialization by random 

draw from a uniform distribution with a lower bound set to the Minimum Protective Factors Effect and 

an upper bound set to one. The Reinforcing Effect parameter is a fixed value that applies to all objects 

(limitations underlying these concepts and assumptions are addressed in the discussion section).  

 

 

 

Model Evaluation 

 

 National Survey on Drug Use and Health (NSDUH). The National Survey on Drug Use and 

Health (NSDUH) is an annual, cross-sectional, multi-stage probability sample that assesses substance 

use behaviors among Americans age 12 and older with fixed household addresses.41 NSDUH data can 

be used to estimate the proportion of the U.S. population who have engaged in a particular substance 

use behavior. The present analyses used combined NSDUH data (years 2002 to 2019; N=1,005,421) 

to examine past 30-day frequency of alcohol, cannabis, and tobacco cigarette use. Specifically, for 

each substance, the proportion of past 30-day consumers who had used the substance on a given 

number of days was calculated and recorded (e.g., X% of past 30-day alcohol consumers had 

Parameter Description

Value is 
global or 
object-

specific?

When is value 
calculated?

Calculation 

Maximum Risk 
Factors Effect

Maximum possible value 
of Pr(N�U). 

Global iteration = 0 Set by modeler. Value is a real number between 0 and 1

Minimum Protective 
Factors Effect

Minimum possible value 
of Pr(U�N)

Global iteration = 0 Set by modeler. Value is a real number between 0 and 1

Reinforcing Effect
Theoretical value for a 
particular substance.

Global iteration = 0 Set by modeler. Value is a real number greater than zero.

Pr(N�U)
Probability of transitioning 
from "Not using" state to 
"Using" state

Object-
specific

iteration = 0
Random draw from uniform distribution bounded between 0 and value of 
Maximum Risk Factors Effect

Pr(N�N)
Probability of remaining 
in "Not using" state

Object-
specific

iteration = 0 1 
−
 Pr(N�U) 

Pr(U�N)
Series of probabilities of 
transitioning from "Using" 
state to "Not using" state.

Object-
specific

iteration = 0
&

iteration > 0

Pr(U�N)i=0 is a random draw from uniform distribution bounded 

between value of Minimum Protective Factors Effect and 1.

Pr(U�N)i>0 = Pr(U�N)i=0 * e
(−proportion days used * reinforcing effect)

Pr(U�U) 
Probability of remaining 
in "Using" state

Object-
specific

iteration = 0
&

iteration > 0
1 − Pr(U�N)

Table 1. Model parameters

Notes: (1) "i " = "iteration number"; (2) proportion of days used calculated using 30 as denominator; (3) value of  'Pr(U�N)i>0  is re-calculated during each iteration that object is in the Using state
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consumed alcohol on 9 days within the past 30 days) using the imputation-revised41 variables "iralcfm", 

"irmjfm", and "ircigfm" and appropriate survey weighting procedures.  

Importantly, two modifications were made to the NSDUH data. First, the imputation-revised 

variables contained response values that were logically impossible for a discrete variable (e.g., used on 

3.8 days). Therefore, values were rounded to the nearest integer. Second, empirical distributions of 

self-reported behaviors are often affected by the digit preference bias42,43 (e.g., tendency to estimate 

consumption in denominations of five). Therefore, respondents who reported using on 5, 10, 15, 20, 

and 25 days were randomly assigned with equal probabilities to either their original response value, 

one day greater, or one day less. For example, those who reported using on 15 days in the past 30 

days were randomly re-assigned to either 14, 15, or 16 days.  

 

 Model stability. Before the model could be used to simulate distributions of substance use, it was 

first necessary to determine the number of iterations required to obtain stable results. To determine the 

required number of iterations, simulated distributions were generated using different combinations of 

values of the Reinforcing Effect, Maximum Risk Factors Effect, and Minimum Protective Factors Effect 

parameters. During this process, the values of two of the three parameters were held constant while the 

value of the third parameter was varied. For example, distributions were generated using Reinforcing 

Effect parameter values of 3.0, 3.5, 4.0, 4.5, 5.0 while fixing the values of Maximum Risk Factors Effect 

and Minimum Protective Factors Effect to 0.2 and 0.7, respectively. Each combination of parameter 

values was tested in a simulation using 100,000 objects and 2000 iterations. For each simulation, the 

number of daily (i.e., 30/30 days) consumers was divided by the number of once-per-month consumers 

at the end of each 100-iteration interval (e.g., 400th iteration, 500th iteration, 600th iteration, etc). A 

distribution was considered stable if this ratio was no longer changing substantially (examined 

qualitatively). Sensitivity tests using different starting seeds were conducted (supplemental material). 

 

Effect of the path dependence function. To understand how the path dependence function (see 

Eq 1) impacts resulting distributions of past 30-day substance use, two simulations were conducted: 

one with the path function enabled, and one with the function disabled, with all other parameter values 

held equal across the two conditions.  

 

 Model calibration. For each substance (alcohol, cannabis, tobacco cigarettes), a least-squares 

approach was used to identify the best fit between a simulated distribution of past 30-day use 

proportions and the empirical (NSDUH) distribution of past 30-day use proportions. To sweep the 

parameter space, simulated distributions were generated using combinations of values within given 
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ranges for three parameters: Maximum Risk Factors Effect, Minimum Protective Factors Effect, and 

Reinforcing Effect. More details about the calibration process can be found in the supplemental 

material. 

 

Complexity of use patterns in different simulated populations. Each object in a simulation 

records its history of decisions to use or not use which is represented as a series of ones and zeros. 

For example, an object with a history of 000111 represents three consecutive decisions to not use 

followed by three consecutive decisions to use. The Lempel-Ziv algorithm44 was used to measure 

complexity of these use histories (Table 2). The mean number of Lempel-Ziv sequences was calculated 

for different simulated populations generated by different combinations of values of the three 

manipulable parameters (Reinforcing Effect, Maximum Risk Factors Effect, Minimum Protective Factors 

Effect).  

 

 

 

RESULTS 

 

Model Stability. Producing different distributions of substance use by varying the values of the 

Reinforcing Effect, Maximum Risk Factors Effect, and Minimum Protective Factors Effect parameters 

generally suggested that the ratio of 1/30 day users to 30/30 day users was stable before reaching 

1000 iterations. Given this result, a conservative 2000 iterations was chosen for the model evaluation 

process.  

 

Substance use pattern
 (0 = no use, 1 = use)

Number of Lempel-
Ziv sequences

  0000000000  4 (less complex)

  1111111111  4

  0101010101  5

  0000111110  6 (more complex)

Table 2. Example binary sequences of 
substance use and corresponding number of 
Lempel-Ziv sequences
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Effect of the path dependence function. Figure 2 displays simulated distributions in which the

path dependence function (Eq1) is disabled (left side of Figure 2) and enabled (right side of Figure 2

The results provide evidence that enabling the path dependence function is responsible for generatin

the "U-shaped" distribution of interest.  

 

 

Model Calibration. The right side of Figure 3 displays the simulated distributions produced by 

least squares-optimized parameter values next to the corresponding distribution from the NSDUH da

(left side of Figure 2). Note on the right side of the figure that a greater value of the Reinforcing Effec

parameter (3.0 for alcohol, 3.8 for cannabis, 4.7 for tobacco cigarettes) corresponded to a greater 

proportion of daily (30/30 days) consumers. When comparing alcohol and cannabis, there is a simila

increase in the optimized values of the Maximum Risk Factors Effect (alcohol=0.165 vs. 

cannabis=0.175) and the Minimum Protective Factors Effect (alcohol=0.5 vs. cannabis=0.58). Howev

this trend did not continue for cigarettes. The optimized values of Maximum Risk Factors Effect and 

Minimum Protective Factors Effect for cigarettes were lower than those of alcohol.  
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Proportion of days used vs. complexity of historical use pattern (Figure 4 and Figure 5). 

Figure 4 displays the mean complexity of past 30-iteration use patterns among objects. The objects 

were divided into three groups based on the ratio of total number of use days (i.e., total iterations in 

which the object recorded a 1) to total number of iterations in the simulation (2400). For example, the

line with the circle markers in Figure 4 represents the changes in the mean past 30-iteration complex

of objects that were destined to use on ≥70% of all iterations (i.e., "lifetime high-frequency consumer
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in the simulation. The key dynamics to note are the changes in mean complexity over time and the 

value at which a subgroup's complexity stabilizes. For example, lifetime high-frequency consumer 

objects exhibit a mean complexity trajectory that increases, decreases, and then stabilizes below tha

the "lifetime moderate frequency consumers" subgroup (i.e., below the mean complexity of objects th

used between 20-70% of iterations). 

 

 

 

However, Figure 5 demonstrates that even among objects with the same proportion of iteration

used, there is still variability in complexity scores. Each of the four subgraphs in Figure 5 represents

entire 2000-iteration history of decisions to use and not use for four different computational objects. 

Every gold "spike" is a cumulative count of a consecutive series of ones (i.e., consecutive series of 

decisions to use); every gray "spike" is a cumulative count of a consecutive series of zeros (i.e., 

consecutive series of decisions to not use). The central point conveyed by Figure 5 can be gleaned b

comparing the use history of object one (top left subgraph) to the use history of object two (top right 

subgraph). Both objects used ~79% of iterations, and yet the use pattern in the top left graph is less

that of 
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complex (L.Z. Complexity = 141) than the use pattern in the top right graph (L.Z. Complexity = 173).

Comparing the object histories in the bottom left and bottom right subgraphs yields a similar conclus

These results demonstrate that, in principle, the same proportion of days used (a common metric us

for studying substance use behaviors) can yield different complexities of use.  

 

 

 

DISCUSSION 

This study outlined a model that simulates individual-level sequences of substance use to 

reproduce population-level distributions of substance use observed in national survey data for three 

substances. The model uses a two-state, path-dependent, discrete stochastic process and requires 

only three inputs from the modeler. This model's simplicity and flexibility could make it a useful "build

block" for other computational models of substance use. This model could potentially also be modifie

to study various social, geographic, or economic dynamics that underpin substance use initiation, 

maintenance, and cessation. 

The concept of path dependence plays a central mechanical and theoretical role in this model. 

From a mechanical perspective, path-dependent dynamics arise because an object's current probab

of a behavior was programmed to be contingent on the object's prior behaviors. The results suggest 

that this mechanism is critical for producing the "U-shaped" distributions of population behaviors 
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observed in the NSDUH data. From a theoretical perspective, the contingency between current and 

prior behavior represents the notion that consuming a "highly addictive" substance many times in the 

recent past is associated with a high probability of continuing to use that substance in the present. The 

plausibility of this conceptual leap is discussed in greater detail below. However, to drive the theoretical 

point further, consider the following hypothetical scenario. Imagine that a "maximally addictive" drug 

(i.e., maximally path-dependent drug) existed and that a person was guaranteed to become a daily 

consumer of this drug after trying it just once. Such a drug could only produce an essentially binary 

distribution of past 30-day consumption frequencies: X% of the population having never used the drug 

(i.e., 0/30 days of use) at one end of the distribution, and nearly 100-X% of the population with 30/30 

days of use at the opposite end of the distribution (the exceptions in the middle of the distribution being 

those who began using the drug for the first time within the past 30 days). This example represents the 

technical (albeit highly unlikely) upper boundary of what we can expect empirical distributions of past 

30-day substance use to look like in a population. 

This study also used the Lempel-Ziv procedure to summarize the complexity of binary (Use or No 

Use) sequences of behavior. The simulated results suggest that several phenomena are, in principle, 

observable in empirical substance use data: (1) For a given combination of risk and protective factor 

distributions (i.e., a given combination of Pr(N→U) and Pr(U→N)), we expect that a peak mean 

complexity of population substance use histories exists at a particular reinforcing effect value (i.e., 

particular "addictiveness"); (2) Longitudinally, individuals who are destined to become daily consumers 

pass through three "phases" of consumption pattern complexity: low complexity pattern, high 

complexity pattern, and then low complexity pattern again; (3) Similarly, the cross-sectional complexity 

of substance use histories in a population may have a concave relationship with the cross-sectional 

frequency of substance use: on average, low-frequency and high-frequency consumers have lower-

complexity histories of use, whereas moderate consumers have higher-complexity histories; (4) 

However, among objects with similar frequencies of use, the complexity of individual substance use 

histories can vary substantially (e.g., two individuals who both used on 10 days in the past 30 days can 

have different complexity scores). This last point raises an intriguing possibility: complexity measures 

(e.g., Lempel Ziv, Approximate Entropy, Permutation Entropy) may have clinical utility if they improve 

our ability to discriminate future outcomes among seemingly homogenous groups of substance 

consumers.  

There are a variety of limitations, assumptions, and caveats to consider. This model was 

programmed so that the probability of current substance use is contingent on historical patterns of 

substance use because "Substance use behaviors are an example of a psychological system that 

exhibits feedback: the use of substances and the circumstances in which it takes place can impact 
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one's life in both the short-term and long-term, creating environments that are reinforcing thereby 

impacting the amount of substance use"45. However, this model oversimplifies the complex 

pharmacological, genetic, and environmental interactions that drive substance use behaviors in the real 

world.46,47  For example, the model employs a "Reinforcing Effect" parameter even though it is 

technically incorrect to say that a substance has intrinsic reinforcing "properties", or that one substance 

(e.g., nicotine) is "more addictive" than another (e.g., alcohol).31,48 Nonetheless, the use of a reinforcing 

effect parameter seems justified given that, in aggregate, the conditional probability of developing a 

substance use disorder varies across pharmacologically distinct substances.49,50   

An additional limitation concerns the two unique probabilities – Pr(N→U) and Pr(U→N)i=0 – 

assigned to each object in the model. These probabilities are meant to summarize the object's unique 

combination of biopsychosocial risk and protective factors that drive the object's binary decisions. This 

is an extremely strong assumption, and many valid arguments could be made for alternative conceptual 

frameworks. However, the approach taken in this study is not entirely out of step with modern research 

practice. Researchers routinely assign individual outcome probabilities by modeling linear combinations 

of relevant risk and protective factors in statistical models. Furthermore, there is a long precedent of 

using stochastic and state-based models to model the probability of binary outcomes.51,52  A related 

issue is that the model also assumes Pr(N→U) and Pr(U→N)i=0 are uniformly distributed in the 

population. We conducted sensitivity tests using non-uniform beta distributions and found that the 

model produces the same results and only requires different initialization values for the three modifiable 

parameters (Maximum Risk Factors Effect, Minimum Protective Factors Effect, Reinforcing Effect; see 

supplemental material). Therefore, it may be more important to determine the interpretation of the 

Pr(N→U) and Pr(U→N)i=0  probabilities rather than the distribution from which these probabilities are 

drawn.  

Limitations concerning the concept of time in this model also warrant discussion. This simulation 

was designed to produce longitudinal data that could be analyzed cross-sectionally and compared to 

cross-sectional NSDUH data. In this study, one iteration of a simulation was considered equivalent to 

one day in the post-stabilization phase of the simulation (i.e., after the first 1000-2000 iterations). 

However, during the pre-stabilization phase of the simulation, the unit of time represented by an 

iteration is less clear. For example, in the real world, some individuals may rapidly escalate to daily use 

within three months of initiation; others may vacillate over several years with periods of infrequent use 

and periods of frequent use before finally settling into a stable pattern of daily use. Objects in the 

simulation also exhibited various use trajectory shapes during the pre-stabilization phase. However, 
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because of a lack of empirical data, it is unknown whether treating each pre-stabilization iteration as a 

single day would make the simulated trajectories temporally consistent with real-world trajectories.       

It is also important to consider that different models can reproduce the same data53, and it may be 

difficult to discern which models exhibit the greatest fidelity to real-world mechanisms and processes. 

Moving forward, it is essential that theoretically-oriented models such as the one presented here remain 

tethered to reality through ongoing comparison to empirical data.47,54,55  Overall, simulation models of 

substance use, such as the one presented here, are perhaps best viewed as one of several 

complementary epidemiological approaches that can be used to triangulate answers to questions of 

interest.2,7,56,57   

 

Conclusions. In sum, this study illustrates that a simple computational model can be used to 

accurately approximate empirical distributions of population substance use. Incorporating path 

dependence functions and complexity measures into simulation models could generate new insights 

into the links between individual- and population-level patterns of substance use, as well as produce 

results with testable clinical and public health implications.  
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