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Abstract 

Concerns about public health have been heightened by the rapid spread of monkeypox to more than 90 

countries. To contain the spread, AI assisted diagnosis system can play an important role. In this study, 

different deep CNN models with multiple machine learning classifiers are investigated for monkeypox 

disease diagnosis using skin images. For this, bottleneck features of three CNN models i.e. AlexNet, 

GoogleNet and Vgg16Net are exploited with multiple machine learning classifiers such as SVM, KNN, 

Naïve Bayes, Decision Tree and Random Forest. Results shows that with Vgg16Net features, Naïve Bayes 

classifier gives highest accuracy of 91.11%. 

 
 
1. Introduction 
 
The fast spread of monkeypox in more than 40 nations outside of Africa has raised public health concerns. 

Early clinical identification of monkeypox can be difficult because of the disease's similarities to chickenpox 

and measles. Even though 3–6% of people who got monkeypox during the recent outbreak died [1], isolating 

people who have been in contact with them and finding out who they are is important to stop the virus from 

spreading in the community. 

Computer-aided detection of monkeypox lesions could be useful for surveillance and rapid 

identification of suspected cases in areas where confirmatory Polymerase Chain Reaction (PCR) tests are not 

easily accessible. In the case of automated disease diagnosis, deep learning algorithms have proven useful 

[2][3][4][5]. CNN features are also useful in other applications [6][7]. 
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2. Method 

In this study, we explore three deep CNN features and analyze its performance with different 

machine learning classifiers for monkeypox disease diagnosis. The three CNNs are AlexNet [8], GoogleNet 

[9] and Vgg16Net [10]. 

AlexNet : It won first place at the 2012 ILSVRC. It's an 8-layer deep network with 5 convolutional 

layers and 3 fully linked ones [8]. Its convolution kernel sizes are (from largest to smallest) 11×11, 5×5, 

3×3, and 3x3. Its input is of 227×227×3 input. In total, there are 64,000,000 parameters that can be trained. 

The error rate produced by AlexNet (15.3%) was substantially greater. Additionally, it replaces the sigmoid 

activation function with the more effective ReLU activation function. 

Vgg16Net : Unlike AlexNet, this network employs a set of 3×3 kernels [10]. For a given receptive 

field range, the effect of using multiple small convolution kernels is preferred over using a single large 

convolution kernel. This is because the multi-layer nonlinear layer can increase the network depth, allowing 

for the learning of more complex patterns at a reduced computational cost. 

GoogleNet : Compared to alexnet, this CNN is more in-depth, and it adds the idea of an inception 

block; as a result, it placed first in the 2014 ILSVRC [9]. There are several convolutions in each Inception 

module, with kernel sizes of 1×1, 3×3 and 5×5 in use. Interleaving 1×1 convolutional layers accomplishes 

dimensionality reduction in the feature space. There are nine inception modules in total, and they all link to 

one another in order. 

We used 5 machine learning algorithms for classification purpose. These are SVM, KNN, Decision 

Tree, Naïve Bayes and Random Forest. 

For this, Monkeypox-Skin-Lesion-Dataset [11] is used which consists of 228 original RGB images 

(102 monkey pox and 126 others) and 3192 augmented images (1428 monkey pox and 1764 others). We 

tested on Fold 1 of the dataset. 

3. Implementation  

All the experiments are done using Pytorch with Google-Colab. The augmented images are only used during 

training the model. The testing is done using the original images.  
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To evaluate the model's performance, four measurements are selected: accuracy, precision, recall, f1-score, 

which are computed using (1), (2), (3), (4) and (5) respectively. 
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4. Results 

Bottleneck Features Classifiers Class Precision Recall F1 Score Accuracy 

AlexNet 

SVM 
Monkey Pox 78.30% 90.00% 83.70% 

84.44% 
Others 90.90% 80.00% 85.10% 

Naïve Bayes 
Monkey Pox 79.20% 95.00% 86.40% 

86.66% 
Others 95.20% 80.00% 87.00% 

KNN 
Monkey Pox 66.70% 80.00% 72.70% 

73.33% 
Others 81.00% 68.00% 73.90% 

Decision Tree 
Monkey Pox 65.00% 65.00% 65.00% 

68.89% 
Others 72.00% 72.00% 72.00% 

Random Forest 
Monkey Pox 81.00% 85.00% 82.90% 

84.44% 
Others 87.50% 84.00% 85.70% 

GoogleNet 

SVM 
Monkey Pox 35.00% 35.00% 35.00% 

42.22% 
Others 48.00% 48.00% 48.00% 

Naïve Bayes 
Monkey Pox 58.80% 50.00% 54.10% 

62.22% 
Others 64.30% 72.00% 67.90% 

KNN 
Monkey Pox 41.70% 50.00% 45.50% 

46.66% 
Others 52.40% 44.00% 47.80% 

Decision Tree 
Monkey Pox 40.00% 40.00% 40.00% 

46.66% 
Others 52.00% 52.00% 52.00% 

Random Forest 
Monkey Pox 50.00% 40.00% 44.40% 

55.55% 
Others 58.60% 68.00% 63.00% 

Vgg16Net 

SVM 
Monkey Pox 69.60% 80.00% 74.40% 

75.55% 
Others 81.80% 72.00% 76.60% 

Naïve Bayes 
Monkey Pox 90.50% 95.00% 92.70% 

91.11% 
Others 95.70% 91.70% 93.60% 

KNN 
Monkey Pox 84.20% 80.00% 82.10% 

84.44% 
Others 84.60% 88.00% 86.30% 

Decision Tree 
Monkey Pox 78.30% 90.00% 83.70% 

84.44% 
Others 90.90% 80.00% 85.10% 

Random Forest 
Monkey Pox 83.30% 100.00% 90.90% 

91.11% 
Others 100.00% 84.00% 91.30% 
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5. Conclusion 

With AlexNet  features, Naïve Bayes classifier gives highest accuracy of 86.66%. With GoogleNet features, 

Naïve Bayes classifier gives highest accuracy of 62.22%. And, with Vgg16Net features, Naïve Bayes 

classifier gives highest accuracy of 91.11% 

For future works, large scale dataset need to be explored. Also, real time efficient network to be 

explored for mobile based fast diagnosis. Furthermore, self-supervised approaches [12][13][14] are also 

needed to explore in future since labelling at large-scale can be expensive. Video based methods [15] can 

also be investigated for diagnosis in future. 
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