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Abstract

Treatment effect estimation (TEE) refers to the estimation of causal effects, and it
aims to compare the difference among treatment strategies on important outcomes.
Current machine learning based methods are mainly trained on labeled data with
specific treatments or outcomes of interest, which can be sub-optimal if the labeled
data are limited. In this paper, we propose a novel transformer-based pre-training
and fine-tuning framework called CURE for TEE from observational data. CURE
is pre-trained on large-scale unlabeled patient data to learn representative contextual
patient representations, and then fine-tuned on labeled patient data for TEE. We
design a new sequence encoding for longitudinal (or structured) patient data and we
incorporate structure and time into patient embeddings. Evaluated on 4 downstream
TEE tasks, CURE outperforms the state-of-the-art methods in terms of an average
of 3.8% and 6.9% absolute improvement in Area under the ROC Curve (AUC) and
Area under the Precision-Recall Curve (AUPR), and 15.7% absolute improvement
in Influence function-based Precision of Estimating Heterogeneous Effects (IF-
PEHE). We further demonstrate the data scalability of CURE and verify the results
with corresponding randomized clinical trials. Our proposed method provides a
new machine learning paradigm for TEE based on observational data.

1 Introduction

Treatment effect estimation (TEE) is to evaluate the causal effects of treatment strategies on some
important outcomes, which is a crucial problem in many areas such as healthcare [12], education [9]
and economics [20]. Randomized clinical trials (RCTs) are the de-facto gold standard for identifying
causal effects through randomizing the treatment assignment and comparing the responses in different
treatment groups. However, conducting RCTs is time-consuming, expensive and sometimes unethical.
Observational data such as medical claims provide a promising opportunity for treatment effect
estimation when RCTs are expensive or impossible to conduct.

Recently, many works have been proposed to adopt neural networks (NNs) for TEE from observational
data [30, 31, 15, 7, 8, 36, 14]. Compared to classical TEE methods such as regression trees [6] or
random forests [35], NN-based methods achieve better performance in handling the complex and
nonlinear relationships among covariates, treatment and outcome. However, there are still some
common limitations of existing TEE methods: 1) Most model designs are task-specific or data-specific
so it is hard to adapt the model to a more generalized setting. 2) Existing labeled dataset often has
small-scale data size, whereas training neural models requires large and high-quality labeled data for
capturing inherent complex relationships of the input data.

Preprint. Under review.

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.22279776doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2022.09.09.22279776
http://creativecommons.org/licenses/by-nc/4.0/


Large-scale
Structured

Patient Data

Unlabeled Data:

+ Treatment &
Outcome

Unsupervised 
Pre-training 

 

Fine-tuning for
Treatment Effect

Estimation 
 

Downstream Data: 

Section 3.1 Section 3.2 Section 3.3

Downstream 
Data

Transformer
Encoder   

Linear
Head      

Patient
Sequence 

...

Unlabeled
Patient Data

Figure 1: The overall pipeline of CURE. It mainly consists of three parts: 1) data encoding of
longitudinal patient data; 2) unsupervised pre-training on unlabeled data and 3) fine-tuning on
downstream labeled data for treatment effect estimation. In TEE, labels mean the studied treatment α
and outcome y of the patient sequence x.

Recently, Transformer [33] has been widely adopted as a critical and unified building block in the
pre-training and fine-tuning paradigm across data modalities. The pre-trained Transformer-based
models (PTMs) have become the model of choice in many deep learning domains such as natural
language processing (NLP)[10, 26, 27, 3, 23] and computer vision (CV) [4, 11, 24]. The dominant
approach is to pre-train on a large-scale dataset with unsupervised or self-supervised learning and then
fine-tune on a smaller task-specific dataset. Nonetheless, applying this pre-training and fine-tuning
paradigm to treatment effect estimation problems faces the following three major challenges: 1)
encoding structured longitudinal observational patient data into sequence input; 2) lack of well-
curated large-scale pre-training dataset; 3) lack of real-world downstream treatment effect estimation
tasks to benchmark baselines.

In this paper, we propose a new pre-training and fine-tuning framework for CaUsal tReatment Effect
estimation (CURE). As shown in Fig. 1, the large-scale structured patient data are extracted from a
real-world medical claims data (MarketScan Research Databases [18]). We first encode the structured
data as sequential input by chronologically flattening and aligning all observed covariates. We obtain
around 3M processed unlabeled patient sequences for pre-training. And the downstream datasets
with labeled treatment and outcome are created according to specific TEE tasks from established
RCTs. Based on the retrospective study design and domain knowledge, we obtain 4 downstream
tasks and each of them containing 10K-20K patient samples. The task is to evaluate the comparative
effectiveness of two treatment effects in reducing the risk of stroke for patients with coronary artery
disease (CAD). Second, we pre-train a Transformer-based model on the unlabeled data with an
unsupervised learning objective to generate contextualized patient representations. To accommodate
the issues of complex hierarchical structure (i.e., the patient record contains multiple visits and
each visit contains multiple types of medications or diagnoses) and irregularity of the observational
patient data, we propose a comprehensive embedding method to incorporate the structure and time
information. Finally, we fine-tune the pre-trained model on various downstream TEE tasks.

We summarize our main contributions as follows.

• We propose CURE, a novel transformer-based pre-training and fine-tuning framework for TEE.
We present a new patient data encoding method to encode structured observational patient data and
incorporate covariate type and time into patient embeddings.

• We obtain and preprocess large-scale patient data from real-world medical claims data as our
pre-training resource. We derive 4 downstream TEE tasks according to study designs and domain
knowledge from established RCTs for model evaluation.

• We conduct thorough experiments and show that CURE yields superior performance on all
downstream tasks compared to state-of-the-art TEE methods. We achieve, on average, 3.8% and
6.9% absolute improvement in AUC and AUPR respective for outcome prediction, and 15.7%
absolute improvement in IF-PEHE for TEE over the best baseline among 4 tasks. We also verify
the estimated treatment effects with the conclusion of corresponding RCTs.

• We further explore the effectiveness of CURE in several ablation studies including the proposed
patient embedding, the influence of pre-training data size on downstream tasks, and the generaliz-
ability of low-resource fine-tuning data.
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2 Background and Related Work

Treatment effect estimation from observational data. In this paper, we are interested in obser-
vational patient data. Each patient sample consists of pre-treatment covariates x (i.e., historical
co-medication, co-morbidities and demographics) and a treatment a of interest. Following the poten-
tial outcome framework [28], the potential outcome ya is defined as the response to treatment a out
of all available treatment options. Typically, we consider the comparative treatment effects of two
treatments and denote two potential outcomes as y1 and y0 for simplicity.

We aim to estimate the individual-level treatment effect (ITE) as the difference between the potential
outcomes under two treatment arms as y1(x)−y0(x). We are also interested in the average treatment
effect (ATE) which is the average effect among the entire population, denoted as E[y1(x)− y0(x)].
In observational data, only one of the potential outcomes is available and the remaining counterfactual
outcomes are missing in nature, which makes this task more difficult than classical supervised
learning. To guarantee that the treatment effects are identifiable from the observational data, we
follow the standard causal assumptions [21] including consistency, positivity and strong ignorability.
More details of assumptions are illustrated in Appendix A.

Deep learning for treatment effect estimation. Generally, existing NN-based methods formulate the
TEE as several regression tasks (i.e., regression on potential outcomes and treatment) with different
levels of information shared among the nuisance estimation tasks using representation learning.
TARNet [7], for example, learns one shared representations for two potential outcomes, while SNet
[7] learns five different representations on the combinations of treatment and potential outcomes.
Recently, Transformer has been introduced as an encoder block for TEE [36, 14] and yields better
performance compared to the state-of-the-art methods. Despite the promising results, the main
limitation is that the model performance can be diminished if the labeled dataset is limited. The
model trained for one particular problem or data may fail to generalize to other scenarios.

Pre-train and fine-tune of Transformer. Since Transformer is based on a flexible architecture with
few assumptions on the input data structure, it is difficult to directly train the model on small-scale
data. Therefore, various pre-trained Transformer-based models (PTMs) are first pre-trained on the
large-scale unlabeled data and then fine-tuned for labeled tasks at hand. PTMs learn universal and
contextualized representations, which can boost various downstream tasks, and avoid developing
and training a new model from scratch. Among the existing PTMs in NLP, BERT [10] is one of the
most popular models. BERT [10] is pre-trained on large-scale unlabeled corpus via self-supervised
pre-training tasks (i.e., masked language modeling and next sentence prediction) and fine-tuned on
downstream tasks with an additional linear head. Our observational patient data are close to natural
language text as they both contain sequential information. However, patient data have some unique
characteristics that distinguish them from the text. Compared to the text, patient data contain a
more complex hierarchical structure and time information. Therefore, existing BERT pre-training
architecture can not be directly applied to modeling patient data.

3 CURE: A Pretraining and Fine-tuning Framework for TEE

In this section, we introduce our CURE framework (as shown in Fig. 1) which includes three key
steps: (1) Encoding structured patient data as sequential input by aligning medications and diagnosis
in each visit chronologically (Sec. 3.1), (2) Pre-training on a large-scale unlabeled patient data by
minimizing the unsupervised objective and obtaining the optimized parameters θ∗ (Sec. 3.2), and
(3) Fine-tuning on a small-scale labeled downstream dataset for TEE by jointly optimizing θ∗ and a
linear head parameterized as ϕ (Sec. 3.3).

3.1 Encoding structured patient data

In this work, we focus on longitudinal observational patient data. We first introduce the data for
pre-training and fine-tuning respectively. Then we illustrate how to convert structured patient data
into sequential input for the Transformer encoder.

Pre-train data structure. The pre-training is based on large-scale unlabeled patient data. Here, to
distinguish from downstream data, we denote the pre-train data as unlabeled data (x ∼ X ), while
downstream data with treatment a and outcome y as labeled data ({x, a, y} ∼ Z). The unlabeled
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Figure 2: Illustration of the downstream data
construction with retrospective study design. In-
dex date refers to the first prescription of the tar-
get treatment or the compared treatment, which
should be no prior to the disease initiation date.
The baseline period (a.k.a, wash-out window) is
no less than one year and the follow-up period as
outcome observation is also one year. The treat-
ments of interests and outcomes are obtained at
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Figure 3: Illustration of encoding structured pa-
tient data into sequential input. The raw patient
data are recorded in an hierarchical structure
such that a patient contains multiple visits and
each visit contains multiple medications and di-
agnoses. The structured data are converted into a
sequence by flattening all covariates in each visit
and aligning them chronologically.

patient data consist of: (1) Co-medication m1,m2, ...,m|M| ∈ M, where |M| is the number of
unique medication names. (2) Co-morbidities d1, d2, ..., d|D| ∈ D, where |D| is the number of
unique diagnosis codes. (3) Demographics c: age encoded as categorical value and gender encoded
as binary value. A patient can have multiple visits {v1, . . . , vT }, where each of visit vt contains a
subset of medication and diagnosis codes (vt ∈ M∪D). We denote the unlabeled patient data as
x = {c, {vt}Tt=1}. We build a medical vocabulary from all patient covariates as V = {M,D, c}.

Fine-tune data structure. The fine-tuning is based on a small-scale labeled patient data, which
are not used for pre-training. Besides the co-medication, co-morbidities and demographics, the
labeled patient data contain treatment a ∈ Mtask (i.e., can be either the target treatment or compared
treatment from task-specific medication group Mtask) and outcome ya ∈ {0, 1} under the observed
treatment a. In Figure. 2, we show the retrospective study design of how to construct downstream
data and obtain labels for treatments and outcomes. Specially, we collect patient data from two
different treatment groups for comparison. For each group of patients, all covariates are obtained
from the baseline period as potential confounders, and the outcomes are obtained from the follow-up
period. More illustrations of the study design can be found in Appendix C.

Structured patient data to sequential input. As introduced above, the original patient data are
recorded naturally in a hierarchical structure. Unlike natural language text, which is inherently
encoded as a sequence of words, the patient data need to be preprocessed into a "sequence-like"
format before sending to the Transformer encoder. As shown in Fig. 3, we flatten the structured
patient data by chronologically going through each medication and diagnosis in each visit and aligning
them in one sequence. Each medication or diagnosis is encoded as an individual token, which is
comparable to text tokenization. The token ids are obtained from the medical vocabulary V .

3.2 Pre-training CURE

As shown in Fig. 4, the pre-training consists of three modules: (1) an embedding layer to convert input
patient data into embedding representations, (2) Transformer encoders to generate contextualized
hidden representations and (3) a final project layer for pre-training objective. More formally, given
the encoded patient sequence x = [x1, . . . , xm, . . . , xT ] as specified in Sec. 3.1, the pre-training
procedure can be decomposed into the following steps:

x
Mask−−→

[
x1, . . . , [MASK]m, . . . , xT

]
Embedding−−−−−→ {ei}Ti=1

fθ−→ {hi}Ti=1
MLM−−−→ LMLM(θ) (1)

We randomly replace 15% of input tokens with special [MASK] tokens, e.g., token xm in the sequence.
ei ∈ RB denotes the embedding representation with embedding dimension B generated by the
comprehensive embedding layer. hi ∈ RH denotes the contextualized representation with hidden
dimension H generated by Transformer encoder fθ. The masked language modeling (MLM) [10]
aims to predict the masked tokens xm from the established vocabulary V using hidden representation
hm. The pre-training loss function of MLM is denoted as LMLM(θ) with optimization parameters θ.

4

 . CC-BY-NC 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 10, 2022. ; https://doi.org/10.1101/2022.09.09.22279776doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.09.22279776
http://creativecommons.org/licenses/by-nc/4.0/


Wrivaroxaban Wmontelukast W[Mask] WosteoarthritisW55-64

Transformer

Tmedication Tmedication T[Mask] TdiagnosisTdemo

Hrivaroxaban Hmontelukast H[Mask] HosteoarthritisH55-64

Input
embedding

Medication 
rivaroxaban

Medication 
montelukast

Diagnosis 
chest pain

Diagnosis 
osteoarthritis

Demo: age 
55-64

Patient data
encoding

Time
embedding 

Type
embedding

chest pain

...

...

...

...Hidden
representation

Medication 
levofloxacin

Diagnosis 
syncope

Demo: age 
45-54 ...

Hlevofloxacin HsyncopeH55-64 ...

Embedding Layer

Pooling Layer

Treatment 
valsartan 

H[SEP]Hvalsartan

Potential Outcome Prediction

Transformer

Pre-training

[SEP]
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Figure 4: Illustration of pre-training and fine-tuning of CURE. The unlabeled structured patient data
are first converted into a sequential input, and processed for the embedding layer and encoder. During
the fine-tuning, the treatments of interest are appended for potential outcome prediction.

Comprehensive embedding layer. The pre-trained language models like BERT [10] have achieved
great success in natural language text demonstrating strong power in modeling sequential data.
Though longitudinal patient data can be deemed as a kind of sequential data when organized by the
chronological order, there exist substantial and unignorable discrepancies between the text and patient
data. It is hard to directly apply the existing pre-trained language model to our unique patient data.
Our ablation study shows that the standard embedding design adopted in NLP (i.e., token embedding
and position embedding) will be sub-optimal in our scenario (see Sec. 4.3 for more details).

Compared to the natural language text, (1) longitudinal patient data contain a more complex hierar-
chical structure than the text data: a patient record contains a number of visits and each visit also
contains a number of different types of medical codes (i.e., medication or diagnosis). (2) The patient
data are irregularly sampled (i.e., the time interval among visits is not regular) while the text data
are regularly organized. As shown in Fig. 3, the visit dates are not regularly distributed along the
time: the first visit happened on day 0, the second visit happened on day 14 and the third one on day
33, etc. On visit 2 (day 33), the patient received two types of codes: montelukas and lisinopril as
medications, and chest pain and paralysis as diagnoses.

To accommodate the above issues of complex hierarchical structure and irregularity of the observa-
tional patient data, we propose a more comprehensive embedding layer than the original BERT [10]
embedding layer by including associated code type information and time information. For each input
token, the patient embedding ei is obtained as:

ei = wtoken + ttype + vvisit + pphysical (2)

where wtoken is the original input token embedding. ttype denotes the type embedding of the input
token. According to our data, there are three types in total: {Demographics, Medication, Diagnosis}.
The visit time embedding vvisit denotes the visit time corresponding to a visit. The physical time
embedding pphysical denotes the physical time associated with the visit. Here, the physical time is
measured by month (i.e., 30-day fixed window). Both visit and physical time are organized relative to
the treatment index date (i.e., the absolute distance between the visit/physical time to the index date).

As an illustration, in Fig. 4, the input is a sequence of patient data containing the type and time
information: rivaroxaban is from Medication type prescribed on visit 1 (day 14) and chest pain is
from the Diagnosis type received on visit 2 (day 33). The input token embedding, time embedding
and type embedding are integrated and used as the input to the Transformer encoder.

Transformer encoder and pre-training objective We use an N-stacked Transformer as our encoding
backbone as it has been a widely adopted architecture. For each single Transformer encoder block, it
consists of a multi-head self-attention layer followed by a fully-connected feed-forward layer [33].
More details of the Transformer architecture are illustrated in Appendix B.

The Transformer encoder fθ takes the comprehensive embedding representations as input and
generates contextualized hidden representations as fθ(e). Given unlabeled patient data X , the pre-
training is to minimize the MLM loss of predicting the masked token with position m ∈ M using the
input token embedding and hidden representation:

LMLM(θ) = Ex∼X

[
−

∑
m∈M

log(P(wm|fθ(x)))
]

(3)
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where P(wm|fθ(x)) is the softmax probability of the masked token over all tokens in the vocabulary.

3.3 Fine-tuning CURE for TEE

Given downstream labeled data {x, a, y} ∼ Z , we fine-tune the model on different downstream
TEE tasks. Here, we are interested in the comparative causal treatment effect of the target treatment
over another compared treatment according to the downstream tasks. For each task, we plug in the
task-specific input and outputs into CURE. We add a linear head fϕ to the hidden representations
learned from the pre-training stage. We fully fine-tune all model parameters end-to-end by jointly
updating θ∗ obtained from optimizing Eq. 3 and a randomized ϕ.

Specially, we append the original input sequence with the index treatment (i.e., target treatment or
compared treatment) which is separated by the special [SEP] token. As shown in Fig. 4, the treatment
"valsartan" is appended to the original inputs to indicate that the patient is from the treatment group
of "valsartan". The model processes the new inputs through the embedding layer and the Transformer
encoder with parameters initialized with θ∗. We use the final hidden vector corresponding to the
first input token ([CLS]) as the pooled representation h[CLS] from the pooling layer. We predict the
potential outcomes under treatment of interest a via the linear head as f

ϕ
◦ fθ∗(h[CLS](a)). The

fine-tuning objective is the binary cross entropy (BCE) of the potential outcome prediction:
LTEE(θ

∗, ϕ) = E{x,a,y}∼Z [BCE(fϕ ◦ fθ∗(h[CLS](a)), y)] (4)

Here, only the factual outcome are used for training loss computation as the counterfactual outcomes
are unavailable in the observational data. After model fine-tuning, we infer the ITE δ and ATE ∆ as
the difference between two predicted potential outcomes under the target and compared treatment:

δ̂ = ŷa=Target − ŷa=Compared; ∆̂ = E[ŷa=Target − ŷa=Compared] (5)

4 Experiments

In this section, we evaluate the proposed CURE from three aspects: 1) Quantitative analysis of the
comparison performance with state-of-the-art TEE methods on 4 downstream tasks; 2) Qualitative
analysis including the validation of the estimated treatment effects with corresponding RCTs, and
self-attention feature weights visualization; 3) Ablation studies including proposed feature embedding,
pre-training data size, and generalizability of low-resource fine-tuning data.

Pre-training data. We extract patient data from MarketScan Commercial Claims and Encounters
(CCAE) [18] from 2012 to 2017, which contains individual-level, de-identified healthcare claims
information from employers, health plans and hospitals. In this paper, we evolve patients who have
ever been diagnosed with coronary artery disease (CAD) as our disease cohort. The definition of
CAD is in Appendix C. After conducting data preprocessing and study design, we obtain 2,955,399
patient sequences for pre-training. We obtain 9,435 medical codes including 282 diagnosis codes (i.e.,
we map the original ICD-9/10 billing codes into Clinical Classifications Software [CCS] [16]) and
9,153 medication codes (i.e., we map medications based on generic names from RED BOOK [19]).

Downstream tasks. As the ground truth treatment effects are not available in observational data, we
use RCTs as the gold standard to verify our results. We focus on CAD-related RCTs which study
the comparative effectiveness of two treatments for reducing the risk of stroke after CAD. We first
collect all available Phase 2 and Phase 3 RCTs with CAD as disease name and stroke as disease
outcome from https://clinicaltrials.gov/. Stroke is selected because it is commonly used
as the primary outcome measurement in various CAD studies and it is well-defined in observational
data. Then we select completed RCTs with published results. Finally, we end up with 4 RCTs that
meet all the above criteria. We derive corresponding downstream tasks from our data based on the
study design as specified in Fig. 2. More details of screening RCTs are in Appendix C.

Baselines. We compare CURE with 8 neural network models for TEE, including state-of-the-art
methods. For models designed for continuous outcomes with mean square error (MSE) as a training
objective, we change the objective function to binary cross entropy for consistency. All the baselines
are only trained on downstream data and are summarized below:
• TARNet [30] is the first model proposed for TEE via neural networks. The model predicts the
potential outcomes based on balanced representations among treated and controlled groups.
• DragonNet [31] jointly optimizes treatment prediction and potential outcome prediction. The model
first learns shared representations given the input data and then does prediction tasks via a three-head
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neural network: one for treatment prediction and two for potential outcomes.
• DR-CFR [15] learns disentangled representations for counterfactual regression. The assumption is
that the observed covariates can be disentangled into three components: only contributing to treatment
selection, only contributing to outcome predication, and both.
• TNet [7] is a neural network based T-learner (Two-learner) [22]. T-learner is a kind of meta-learners
that decomposes the TEE into two sub-regression problems. TNet fits two neural models as base
learners to estimate the outcome under treatment and control.
• SNet [7] is based on DR-CFR [15] and assumes that the observed covariates can be disentangled
into five components by considering two potential outcomes separately.
• FlexTENet [8] incorporates the idea of inductive bias for shared structure of two potential outcomes
into TEE. The model adaptively learns what to share between the potential outcome functions.
• TransTEE [36] is a recently proposed Transformer-based TEE model. The covariates and treatments
are encoded via a Transformer and aggregated for outcome prediction via a cross-attention layer.
• Base Model directly trains on the downstream datasets using the same architecture as CURE.

Metrics. We evaluate the factual prediction performance using the standard classification metrics:
Area under the ROC Curve (AUC) and Area under the Precision-Recall Curve (AUPR). We evaluate
the counterfactual prediction performance using the influence function-based precision of estimating
heterogeneous effects (IF-PEHE) [1], which helps to benchmark TEE methods when the ground truth
effects are not available. Compared to the widely adopted precision of estimating heterogeneous
effects (PEHE) that measures the mean squared error between estimated treatment effects and true
treatment effects, IF-PEHE measures the mean squared error between estimated treatment effects and
approximated true treatment effects. The output of the IF-PEHE metric is a numeric value and the
lower the better. More details of this metric are in Appendix C.

Implementation details. Our pre-training uses the BERTbase architecture [10] with 768 hidden size,
12 attention heads, 12 layer Transformer and 3072 intermediate size. The maximum input sequence
length is 256. The pre-training is conducted on 3 NVIDIA GeForce RTX 2080 Ti 11GB GPUs with a
batch size of 96. We train our model using the adaptive moment estimation (Adam) optimizer, with
an initial learning rate of 1e − 4 and learning rate warmup in the first 10% training steps. During
the fine-tuning, the learning rate is 5e − 5 without learning rate warmup. We fine-tune the model
on each task for 2 epochs. The downstream data are randomly split into training, validation and test
sets with percentages of 90%, 5%, 5% respectively. All results are reported on the test sets. More
implementation details are mentioned in Appendix C. The code of our proposed CURE is available
in Supplementary material.

4.1 Quantitative analysis

Comparison with state-of-the-art methods. Table 1 shows the performance of factual outcome
prediction (measured by AUC and AUPR) and TEE (measured by IF-PEHE) on four different
downstream tasks. We compare CURE with the state-of-the-art TEE methods and report the results
under 20 random runs. We observe that the proposed CURE has more than 3.8%, 6.9% and 15.7%
respective average AUC, AUPR and IF-PEHE improvement over the best baseline on these tasks.
The results illustrate the promise and effectiveness of our proposed pre-training and fine-tuning
methodology for TEE. Among all baselines, SNet [7] and TransTEE [36] generally perform better
than others. Notably, even without pre-training, the base model of CURE attains similar performance
as the best baseline, which suggests the effectiveness of our architecture and data encoding designs.

4.2 Qualitative analysis

Validate with RCT conclusion. As the ground truth treatment effects are not available in obser-
vational data, we further evaluate the estimated treatment effects with corresponding ground truth
RCTs. In Table 4.2, we show the confidence intervals of estimated effects under 20 runs and RCT
conclusions of each downstream task.

We use the direct difference to estimate the treatment effects [17]. The results can be interpreted as
two potential conclusions: 1) The target treatment is significantly more effective than the compared
treatment in reducing the risk of the outcome if the upper bound of the confidence interval is lower
than zero. (2) The target is not significantly more effective than the compared treatment if the
confidence interval covers zero (i.e., no significant difference) or the lower bound is higher than
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Table 1: Comparison with state-of-the-art methods on four downstream datasets. The results are the
average and standard deviation over 20 runs.

Method
Rivaroxaban v.s. Aspirin Valsartan v.s. Ramipril

AUC ↑ AUPR ↑ IF-PEHE ↓ AUC ↑ AUPR ↑ IF-PEHE ↓

TARNet [30] 0.719± 0.015 0.327± 0.023 0.546± 0.044 0.683± 0.028 0.263± 0.029 0.545± 0.061

DragonNet [31] 0.757± 0.013 0.381± 0.023 0.715± 0.082 0.683± 0.026 0.263± 0.027 0.533± 0.109

DR-CFR [15] 0.759± 0.015 0.381± 0.026 0.653± 0.118 0.751± 0.019 0.333± 0.032 0.642± 0.135

TNet [7] 0.715± 0.016 0.318± 0.028 0.500± 0.059 0.673± 0.021 0.256± 0.024 0.494± 0.065

SNet [7] 0.756± 0.014 0.380± 0.028 0.247± 0.054 0.752± 0.022 0.333± 0.033 0.526± 0.097

FlexTENet [8] 0.717± 0.014 0.319± 0.022 0.565± 0.054 0.662± 0.028 0.241± 0.027 0.602± 0.088

TransTEE [36] 0.717± 0.011 0.299± 0.021 0.557± 0.042 0.773± 0.013 0.380± 0.025 0.427± 0.089

Base Model 0.758± 0.029 0.406± 0.037 0.180± 0.038 0.780± 0.050 0.365± 0.066 0.190± 0.065

CURE 0.803± 0.011 0.469± 0.023 0.173± 0.038 0.811± 0.018 0.428± 0.041 0.158± 0.062

Method
Ticagrelor v.s. Aspirin Apixaban v.s. Warfarin

AUC ↑ AUPR ↑ IF-PEHE ↓ AUC ↑ AUPR ↑ IF-PEHE ↓

TARNet [30] 0.714± 0.008 0.359± 0.016 0.520± 0.048 0.748± 0.012 0.447± 0.030 0.535± 0.043

DragonNet [31] 0.741± 0.009 0.397± 0.020 0.433± 0.096 0.792± 0.018 0.519± 0.035 0.461± 0.095

DR-CFR [15] 0.745± 0.007 0.403± 0.021 0.580± 0.108 0.798± 0.015 0.531± 0.032 0.503± 0.073

TNet [7] 0.709± 0.009 0.360± 0.020 0.490± 0.061 0.741± 0.015 0.432± 0.032 0.519± 0.039

SNet [7] 0.742± 0.008 0.400± 0.020 0.298± 0.053 0.795± 0.014 0.525± 0.034 0.414± 0.054

FlexTENet [8] 0.710± 0.010 0.351± 0.015 0.487± 0.046 0.735± 0.012 0.413± 0.033 0.578± 0.030

TransTEE [36] 0.747± 0.022 0.385± 0.015 0.387± 0.021 0.799± 0.011 0.517± 0.031 0.409± 0.059

Base Model 0.751± 0.025 0.425± 0.04 0.206± 0.031 0.791± 0.029 0.539± 0.039 0.251± 0.045

CURE 0.793± 0.008 0.489± 0.024 0.198± 0.068 0.826± 0.014 0.588± 0.024 0.224± 0.066

Table 2: Comparison of the estimated treatment effects with corresponding ground truth RCT. The
estimated effects are shown in 95% confidence intervals (CI) under 20 bootstrap runs. The RCT
conclusions are obtained from published articles.

Target v.s. Compared Estimated Effect (CI) P value Generated Hypothesis RCT Conclusion

Rivaroxaban v.s. Aspirin [-0.009, 0.006] 0.452 No significant difference No significant difference [2]
Valsartan v.s. Ramipril [-0.003, 0.014] 0.103 No significant difference No significant difference [25]
Ticagrelor v.s. Aspirin [0.022, 0.040] 6e-14 T. is less effective than A. No significant difference [29]
Apixaban v.s. Warfarin [-0.039, -0.002] 4e-4 A. is more effective than W. A. is more effective than W. [13]

zero (i.e., the compared treatment is more effective than the target treatment). As we can see, our
estimated treatment effects are mostly consistent with each corresponding RCT conclusion. Though
the generated hypothesis and RCT conclusion are not exactly the same for the third pair (Ticagrelor
v.s. Aspirin), they both indicate that there is no significant reduced treatment effect of the target
treatment over the compared treatment. The results demonstrate that our proposed CURE successfully
identifies correct treatment effects using only observational patient data.

Self-attention visualization. The self-attention mechanism of the Transformer enables the explo-
ration of interaction among input covariates and provides a potential interpretation of the prediction
results. We use a Transformer visualization tool called bertviz [34] to help visualize learned attention
weights. We show the visualization results of some patient samples in Appendix D.

4.3 Ablation studies

Effect of embedding layer. We evaluate the effect of proposed time embedding (visit time and
physical time) and type embedding respectively. As shown in Fig. 5, the model with both time
and type embedding generally performs better than the other two embedding ablations. Especially,
incorporating time embedding yields larger performance improvement than the type embedding. This
indicates that the proposed embedding method is better than the standard embedding method and
time information plays a more important role in TEE than the type information.

Effect of downstream data size. We demonstrate the model’s effectiveness on the low resource
of downstream data in Fig. 6. The plots show the model performance with different fractions
of labeled downstream data. Generally, given only 5% 10% labeled data, the CURE achieves
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Figure 5: The effect of different embedding layer designs on four downstream tasks.

comparable performance to the Base Model which is trained on the fully labeled data. Specifically,
the performance gains are large when given a small fraction of labeled data (1%-5%) and the curve
tends to gently increase after the fraction is larger than 10%. With increased data size, the performance
gradually achieves the upper bound of fine-tuning on fully labeled data. The results demonstrate that
unsupervised pre-training benefits low-resource downstream tasks even when only a limited number
of labeled data are available for fine-tuning. More results of other metrics are in Appendix D.
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Figure 6: The effect of low resource in fine-tuning datasets on four downstream tasks with different
fractions of labeled training set (x-axes). The results are the average of 20 runs.

Effect of pre-training data size. We further explore the effect of pre-training data volume on the
performance of downstream tasks. In Fig. 7, we show the AUC given different fractions of pre-
training data. Here, 0% training set size denotes the Base Model, which is trained on the downstream
data from scratch. Generally, the performance improves with the increase of pre-train data. The
results indicate that pre-training is beneficial for downstream tasks by learning contextualized patient
representations from large-scale unlabeled patient data. Other metrics are show in Appendix D.
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Figure 7: The effect of pre-training data volume on four downstream tasks (average of 20 runs).

5 Conclusion

In this paper, we study the problem of TEE from observational data. We propose a new transformer-
based TEE framework called CURE, which adopts the pre-training and fine-tuning paradigm. CURE
is pre-trained on a large-scale unlabeled patient data and then fine-tuned on labeled patient data for
TEE. We convert the structured patient data into sequence and design a new sequence encoding method
to encode the structure and time into a comprehensive patient embedding. Thorough experiments
show that pre-training significantly boosts the TEE performance on 4 downstream tasks compared
to state-of-the-art methods. We further demonstrate the data scalability of CURE and verify the
results with corresponding published RCTs. One promising application of our model is to help
generate useful hypotheses of treatment effects and serve as a complementary tool to standard RCTs,
e.g., exploring the new uses of existing drugs. Future works could be done to improve the model
performance by engaging more patient data from diverse disease cohorts as pre-training data.

Ethical consideration. The observational data used in the paper are from IBM MarketScan Research
Database, which is fully HIPAA-compliant de-identified, have very minimal risk of the potential for
loss of privacy. Moreover, Per the DUAs with MarketScan, all users to access the data will need to
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take full research, ethics, and compliance training courses and be covered by IRBs. Thus, potential
privacy and security risk would be eliminated and/or mitigated.
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