
 
1 

Population Normalization in SARS-CoV-2 Wastewater-Based Epidemiology: Implications 1 
from Statewide Wastewater Monitoring in Missouri 2 

 3 

Chenhui Li1, Mohamed Bayati1, Shu-Yu Hsu1,2, Hsin-Yeh Hsieh1, Wilfing Lindsi1, Anthony 4 

Belenchia3, Sally A. Zemmer4, Jessica Klutts4, Mary Samuelson4, Melissa Reynolds3, Elizabeth 5 

Semkiw3, Hwei-Yiing Johnson3, Trevor Foley5, Chris G. Wieberg4, Jeff Wenzel3, Terri D. 6 

Lyddon6, Mary LePique6, Clayton Rushford6, Braxton Salcedo6, Kara Young6, Madalyn 7 

Graham6, Reinier Suarez6, Anarose Ford6, Dagmara S. Antkiewicz7, Kayley H. Janssen7, Martin 8 

M. Shafer7, Marc C. Johnson6, Chung-Ho Lin1,2*  9 

*Corresponding Author:  10 

Email address: linchu@missouri.edu  11 

 12 

AFFILIATIONS 13 

1 School of Natural Resources, University of Missouri, Columbia, MO 65211, USA.  14 

2 Center for Agroforestry, University of Missouri, Columbia, MO 65211, USA. 15 

3 Bureau of Environmental Epidemiology, Division of Community and Public Health, Missouri 16 
Department of Health and Senior Services, Jefferson City, MO 65109, USA 17 

4 Water Protection Program, Missouri Department of Natural Resources, Jefferson City, MO 18 
65101, USA 19 

5 Missouri Department of Corrections, Jefferson City, MO 65109, USA 20 

6 Department of Molecular Microbiology and Immunology, University of Missouri, School of 21 
Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA. 22 

7Wisconsin State Laboratory of Hygiene, University of Wisconsin Madison, Madison, WI 23 
53718, USA 24 

 25 

 26 

 27 



 
2 

KEYWORDS: wastewater-based epidemiology; normalization biomarkers; real-time 28 
population; caffeine, paraxanthine, pepper mild mottle virus; wastewater SARS-CoV-2 29 
concentration; COVID-19 incidence rate  30 

 31 

ABSTRACT 32 

   33 

The primary objective of this study was to identify a universal wastewater biomarker for 34 
population normalization for SARS-CoV-2 wastewater-based epidemiology (WBE). A total of 35 
2,624 wastewater samples (41 weeks) were collected weekly during May 2021- April 2022 from 36 
64 wastewater facilities across Missouri, U.S. Three wastewater biomarkers, caffeine and its 37 
metabolite, paraxanthine, and pepper mild mottle virus (PMMoV), were compared for the 38 
population normalization effectiveness for wastewater SARS-CoV-2 surveillance. Paraxanthine 39 
had the lowest temporal variation and strongest relationship between population compared to 40 
caffeine and PMMoV. This result was confirmed by data from ten different Wisconsin’s 41 
WWTPs with gradients in population sizes, indicating paraxanthine is a promising biomarker of 42 
the real-time population across a large geographical region. The estimated real-time population 43 
was directly compared against the population patterns with human movement mobility data. Of 44 
the three biomarkers, population normalization by paraxanthine significantly strengthened the 45 
relationship between wastewater SARS-CoV-2 viral load and COVID-19 incidence rate the most 46 
(40 out of 61 sewersheds). Caffeine could be a promising population biomarker for regions 47 
where no significant exogenous caffeine sources (e.g., discharges from food industries) exist. In 48 
contrast, PMMoV showed the highest variability over time, and therefore reduced the strength of 49 
the relationship between sewage SARS-CoV-2 viral load and the COVID-19 incidence rate, as 50 
compared to wastewater data without population normalization and the population normalized by 51 
either recent Census population or the population estimated based on the number of residential 52 
connections and average household size for that municipality from the Census. Overall, the 53 
findings of this long-term surveillance study concluded that the paraxanthine has the best 54 
performance as a biomarker for population normalization for SARS-CoV-2 wastewater-based 55 
epidemiology.  56 

1. INTRODUCTION 57 

Wastewater-based epidemiology (WBE) provides human activity information within 58 
sewershed boundaries by relating concentrations of chemical and biological “waste” materials in 59 
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wastewater influent to population-scale use, consumption of pharmaceuticals, illicit drugs, or 60 
rates of exposure to industrial chemicals.1 Over the last few years, WBE applications have been 61 
emerging in infectious diseases or pathogens and antibiotic resistance, especially since the 62 
COVID-19 pandemic. The WBE is widely recognized as a valuable tool for monitoring 63 
community trends in COVID-19 with the advantages of providing an efficient and representative 64 
population-pooled sample, and complementing community data, especially where timely 65 
COVID-19 clinical testing is underused or unavailable.2 Moreover, WBE reveals the 66 
underestimation of COVID-19 clinical testing because SARS-CoV-2 is shed by people with and 67 
without symptoms.3,4 The WBE can also provide a useful early warning of the emergence or re-68 
emergence of COVID-19 in a community, and afford timely insights for public health 69 
interventions, with previous studies showing that SARS-CoV-2 could be detected in wastewater 70 
up to two weeks before the cases were reported.5 Furthermore, wastewater surveillance can be 71 
implemented in most communities since municipal wastewater collection systems serve nearly 72 
80 percent of U.S. households.6 73 

The utility of WBE for cost-effective surveillance of SARS-CoV-2 levels in communities 74 
was recognized early in the COVID-19 pandemic. However, substantive uncertainty remains in 75 
how best to account for the contributing population and fecal strength.  Robust population 76 
biomarkers are necessary to determine the SARS-CoV-2 load per capita, such that 1) the changes 77 
in wastewater virus concentration due to the dilution (e.g., increased volume resulting from 78 
major rainfall events or receiving additional discharge from industrial or natural resources) and 79 
2) population dynamics, are accounted for. Wastewater viral loads change with the variations in 80 
daily wastewater flow, the proportion of industrial discharge, and the gross proportions of 81 
solids, which can be influenced by the design and condition of the wastewater collection system.7 82 
For example, SARS-CoV-2 concentration is influenced if the WWTP is receiving wastewater 83 
from a combined sewer system that collects domestic wastewater and rainwater runoff in the 84 
same pipe; the weather effects, such as precipitation and infiltration/inflow into the sewers, 85 
impact the human fecal concentration.  In addition, the population size contributing to the 86 
sewershed is expected to change over the surveillance period (due to deaths, births, tourism, 87 
weekday commuters, pandemic lockdown, temporary workers, etc.).1 Therefore, temporal 88 
variation in wastewater volume/strength and population size must be better accounted for to 89 
make results more comparable over time.8 However, population normalization approaches are 90 
still under development, and few studies have compared approaches/biomarkers systematically 91 
for optimization of wastewater SARS-CoV-2 data for predicting the clinical prevalence of 92 
COVID-19.9  93 

The population variation is usually monitored and normalized using human fecal or urine 94 
biomarkers. Suitable human population normalization controls should meet certain criteria.8,10,11 95 
For example, the chemical biomarkers should be specific to human metabolism, excreted into 96 
sewage, exogenous sources are minimal, minimal intra- and inter-individual variance in daily 97 
excretion, and levels in raw sewage well above the method detection limit. Furthermore, the 98 
biomarkers must be stable in the wastewater for a reasonable long time (e.g., during the transport 99 
from the toilet to the sampling point and during sampling, storage, and analysis).12 In addition, 100 
there should be low variance in the per capita daily excretion and not be affected by 101 
environmental variables such as season, weather, or geographic location.8 102 
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Some commonly measured wastewater properties/chemicals, such as chemical and biological 103 
oxygen demand, and total nitrogen and phosphorus, have been explored for wastewater 104 
population indicators.13,14 The disadvantage of these environmental parameters is that they are 105 
highly influenced by wastewater composition (i.e., industrial, domestic, or mixed) since they are 106 
not only shed by humans but also from exogenous sources such as food waste processed by 107 
garbage disposals and fertilizer runoff.8 Ammonium originates from the breakdown of urea 15 108 
and is introduced via toilets and routinely measured by WWTP as a water quality parameter, 109 
which is supposed to be less affected by non-human sources than chemical or biological oxygen 110 
demand and total phosphorous.16 However, Sweetapple et al. found that population 111 
normalization by orthophosphate and ammonium did not result in improvement of correlations 112 
between wastewater SARS-CoV-2 data and indicators of COVID-19 prevalence.14  113 

In addition, a variety of endogenous and exogenous human biomarkers that can be measured 114 
directly in wastewater samples have been evaluated to estimate their human fecal content. These 115 
markers include but are not limited to: (1) bacteria/viruses or molecules that are ubiquitous in 116 
human intestinal tracts, such as cross-assembly phage, human ribonuclease P,17 and Bacteroides 117 
HF183;18 (2) an exogenous substance (or its’ metabolite) after intentional consumption of a 118 
substance (i.e., personal care products, food additives and dietary supplements such as 119 
carbamazepine and gabapentin,19 artificial sweeteners,20 and caffeine and its metabolite 120 
(paraxanthine),10 pepper mild mottle virus (PMMoV);18 and (3) endogenous compounds that are 121 
produced naturally in the body such as creatinine, cholesterol and its metabolite coprostanol, 122 
cortisol, and serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA).11  123 

Pepper mild mottle virus (PMMoV), a virus ingested with pepper-containing food, has been 124 
widely measured and frequently used for normalizing SARS-CoV-2 concentration data. The 125 
PMMoV is one of the widely used normalization biomarkers in wastewater SARS-CoV-2 126 
surveillance because it is believed to be present in high concentrations in wastewater, introduced 127 
into the human body through the diet, and has the potential to serve as an RNA recovery control 128 
since it is a single-stranded RNA virus.21,22 D'Aoust et al. found PMMoV to be superior to 129 
HF183 Bacteroides 16S ribosomal rRNA and eukaryotic 18S rRNA, as PMMoV showed more 130 
reproducibility within and between WWTPs18. Creatinine, the endogenous nitrogenous waste 131 
product, has been used to normalize the concentrations of other urinary excretion products to 132 
account for urine dilution in clinical chemistry and is recommended as a possible biomarker for 133 
estimating the population.23   The serotonin metabolite, 5-HIAA, has also been evaluated as a 134 
wastewater marker, and was reported to be more stable within sewer systems than cortisol and 135 
androstenedione.24  136 

Caffeine (1,3,7-trimethylxanthine) is one of the world's most widely consumed dietary 137 
ingredients, found in many globally popular products, including tea, cola and energy drinks, and 138 
in some medications and nutritional supplements. Still, the most important source of this alkaloid 139 
is coffee.25 The excretion of the metabolite of caffeine, paraxanthine (1,7-dimethylxanthine), was 140 
less affected by the genetic-based variation in pharmacokinetics than the parent compound was, 141 
therefore, suggested as a potential biomarker for dietary caffeine intake.26 Chemicals (e.g., 142 
paraxanthine) involved in endogenous metabolism (products of biosynthesis or catabolism) avoid 143 
xenobiotics' problems for use as proxy measures for population since their association with per 144 
capita activities has higher fidelity.23 Caffeine and paraxanthine are easy to detect due to the high 145 
concentration levels (µg/L) in untreated wastewater,27 and are stable in wastewater samples 146 
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stored at 4°C,28 which makes them ideal biomarkers. However, more research was needed for 147 
caffeine and paraxanthine application in the concept of WBE.  148 

In a previous study, we compared five biomarkers, PMMoV, creatinine, 5-HIAA, caffeine, 149 
and paraxanthine,  based on two weeks' data, for their utility in normalizing SARS-CoV-2 loads 150 
and found caffeine and especially paraxanthine were the most reliable population biomarkers.29 151 
This study extended the investigation to the long-term weekly monitoring of 64 wastewater 152 
treatment plants (WWTPs) across Missouri for more than six months to compare the utility of 153 
caffeine, paraxanthine, and PMMoV as population biomarkers across seasons and distinct 154 
geographical areas with contrasting sewershed sizes.  155 

2. MATERIALS AND METHODS 156 

2.1 Wastewater sampling and clinical COVID-19 case 157 

Triplicates of 50 mL of 24-hr composite influent (before primary treatment) samples were 158 
collected once per week from 64 WWTPs in Missouri (Fig. 1), and a total of 41 weeks from May 159 
2021 to April 2022 (weeks of 05/10/2021, 05/24/2021, 06/28/2021, and consecutively from 160 
weeks of 07/19/2021 to 04/10/2202). A majority of samples were collected as 24-hr time-161 
proportional composites and only 6 WWTPs were collected as 24-hr flow-proportional 162 
composites. Each WWTP collected samples on the same day of the week during the study 163 
period. The first half of the sampling period was dominated by the Delta variant, and the second 164 
half was dominated by the Omicron variant. In total, 2624 wastewater samples were collected.  165 

Wastewater samples were transported in insulated shippers with ice packs to the University 166 
of Missouri within 24 hr from the collection and then stored at 4°C until extraction. WWTPs 167 
reported their 24-hr flow rates and weekly new COVID-19 cases were provided by the Missouri 168 
Department of Health and Senior Services (DHSS). Weekly clinical COVID-19 cases for each 169 
WWTP service area were obtained by matching clinically confirmed COVID-19 case data 170 
(georeferenced using home address) to WWTPs sewershed boundaries in ArcGIS. Sewershed 171 
boundaries were either provided by the municipality or, in many cases (12 WWTPs), the 172 
municipality did not have geospatial data delineating their sewershed boundaries, so municipal 173 
boundaries were used to approximate a service area. 174 

The 64 WWTPs cover urban, semirural, and rural locations throughout Missouri with the 175 
sewershed population ranging from 900 to 490,000. Sewershed size (metadata population) was 176 
either provided by the WWTP or estimated based on the number of residential connections 177 
reported in a WWTP’s discharge permit and the average household size for that municipality 178 
from the most recent U.S. Census at the time the facility began sampling. Based on the 179 
population served by the 64 WWTPs, there is the potential to monitor 50% of the 6.15 million 180 
Missouri population.30 A summary of each facility, including the population served and the 181 
locations, is provided in Table S1. Additionally, ten wastewater composite samples collected 182 
from WWTPs in Wisconsin during the week of 06/07/2021 were utilized as a data set for model 183 
evaluation and validation.  184 
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2.2 Mobility data 185 

Daily data on mobility (driving and walking) were downloaded for Columbia, MO, 186 
between 01/13/2020 and 04/13/2022 from Apple Mobility Trends Reports31. Apple mobility data 187 
has no demographic information about the users. The original mobility indices were relative 188 
percentages to the reference date on 01/13/20, which were scaled to the maximum observed 189 
during the study period.  190 

2.3. Wastewater concentrations of caffeine and paraxanthine.   191 

2.3.1. Extraction of caffeine and paraxanthine  192 

For all 2,624 wastewater samples, 1.5 ml was centrifuged at 10000 rpm for 10 minutes, and 193 
0.75 ml supernatant was extracted and mixed with 0.75 ml ammonium acetate buffer (10 mM 194 
ammonium acetate and 0.1% formic acid in water). Then, 10 µL of formic acid was added to 195 
precipitate the large molecules in the wastewater, followed by spiking Caffeine-C13 to evaluate 196 
the recovery of endogenous caffeine. For improved sample storage stability, the 0.75 ml 197 
ammonium acetate buffer was replaced by 0.75 ml 100% methanol starting from December 198 
2021. The two preparation methods (ammonium acetate buffer and methanol) were compared, 199 
and no significant difference in caffeine and paraxanthine concentrations was found before the 200 
transition (Table S2). Finally, the mixture was filtered through 0.2 µm PTFE filters (13mm) 201 
(Waters, USA) before the liquid chromatography with tandem mass spectrometry (LC-MS/MS) 202 
analysis.  203 

 2.3.2. Liquid chromatography-tendon mass spectrometry analysis.  204 

The quantification of caffeine and paraxanthine was performed on a Waters Alliance 2695 205 
High Performance Liquid Chromatography (HPLC) system coupled with Waters Acquity TQ 206 
triple quadrupole mass spectrometer (MS/MS). The analytes were separated on a Phenomenex 207 
(Torrance, CA) Kinetex C18 (100mm x 4.6 mm; 2.6 µm particle size) reverse-phase column. 208 
The mobile phase consisted of 10 mM ammonium acetate and 0.1% formic acid in water (A) and 209 
100% acetonitrile (B). The gradient conditions were 0 – 0.3 min, 2% B; 0.3-7.27 min, 2-80% B; 210 
7.27-7.37 min, 80-98% B; 7.37-9.0 min, 98% B; 9-10 min 98-2% B; 10.0 – 15.0 min, 2% B at a 211 
flow rate of 0.5 mL/min. The ion source in the MS/MS system was electrospray ionization (E.I.) 212 
operated in positive ion mode with a capillary voltage of 1.5 kV. The temperature of the 213 
ionization source was 150°C, and that of the desolvation zone, 450°C. The optimized collision 214 
energy, cone voltage, and molecular and product ions of the biomarkers are summarized in Table 215 
1. 216 

2.4.1 Wastewater concentrations of SARS-CoV-2 and PMMoV  217 

2.4.1. RNA extraction  218 

Samples from the weeks of 09/13/2021 to 04/10/2022 were processed for both SARS-CoV-2 219 
and PMMoV quantification. First, 50-ml raw wastewater samples were spun at 2000 ×g for 5 220 
min to remove large particulates, then vacuum filtered through a 0.22 μm filter (Millipore cat# 221 
SCGPOO525). Then, 35.5 mL of filtered wastewater was mixed with 12 mL of 50% (W/V) 222 
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polyethylene glycol (PEG, Research Products International, cat# P48080) and 1.2M NaCl, 223 
followed by equilibration for 2 h at 4°C, all done on the day of sample receipt. Afterwards, 224 
samples were centrifuged at 12,000 x g for 2 h. RNA was extracted from the pellet using the 225 
Qiagen Viral RNA extraction kit following the manufacturer’s instructions after removing the 226 
supernatant. RNA was eluted in a final volume of 56 μL and stored at -80°C if it was not 227 
processed immediately.  228 

2.4.2. RT-qPCR  229 

The extracted RNA was used to perform RT-qPCR quantification of the genetic material of 230 
SARS-CoV-2 and PMMoV, separately. SARS-CoV-2 was quantified using the primer and 231 
control sets described in Robinson et al.,32 and PMMoV was quantified using the primer sets 232 
described in Hsu et al.29 A plasmid carrying a PMMoV gene along with an N gene fragment was 233 
constructed, purified from Escherichia coli, and used as standards for the RT-qPCR assay. Final 234 
RT-qPCR one-step mixtures consisted of 5 µL TaqPath 1-step RT-qPCR Master Mix (Thermo 235 
Fisher), 500 nM of each primer, 125 nM of each TaqMan probes, 5 µl of wastewater RNA 236 
extract, and RNase/DNase-free water to reach a final volume of 20 µL. All RT-qPCR assays 237 
were run in duplicate on a 7500 Fast real-time qPCR instrument (Applied Biosystems). The 238 
reactions were initiated with one cycle of UNG incubation at 25°C for 2 min and then one cycle 239 
of reverse transcription at 50°C for 15 min, followed by one cycle of activation of DNA 240 
polymerase at 95°C for 2 min and then 45 cycles of 95°C for 3 sec for DNA denaturation and 241 
55°C for 30 sec for annealing and extension. The data would be collected at the step of 55°C 242 
extensions. The concentration of SARS-CoV-2 and PMMoV genomes in each sample, 243 
[N1.N2]SARS or [PMMoV] (copies/L), was calculated using Eq. 1.  244 

[𝑁𝑁1.𝑁𝑁2]𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 or [PMMoV]= N/ (VRT-qPCR × (Vsample / (Vextracted/recovery rate))) (1) 245 

where N (copies/reaction) is the gene copies detected in each RT-qPCR reaction, VRT-qPCR is the 246 
volume of RNA used for RT-qPCR (5 µL), Vsample is the wastewater sample volume initially 247 
used for the concentration step (35.5 mL), and Vextracted is the total volume of nucleic acid 248 
extracted (56 µL).  249 

2.5 Statistical analyses 250 

The statistical analyses included the following three steps: 1) estimation of the real-time 251 
population using the wastewater biomarker mass loads; 2) population normalization for 252 
wastewater SARS-CoV-2 viral load and COVID-19 case to wastewater SARS-CoV-2 viral 253 
concentration (copies/week/10,000 people) and COVID-19 incidence rate (case/week/10,000 254 
people), and 3) comparison of the strength of the relationships between population normalized 255 
wastewater SARS-CoV-2 viral load and COVID-19 incidence rate under different normalization 256 
scenarios. 257 

2.5.1. Real-time population estimation using wastewater biomarker loads 258 

All the data analyses were conducted using the R program.33 To compare biomarkers' 259 
variability and temporal consistency, the coefficient of variation (CV%) of the three biomarkers 260 
across seven months of data at each of the 64 WWTPs was calculated. Only 7-months of data 261 
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(n=1596) between the weeks of 09/13/2021 to 04/10/2022 were included in the analyses to 262 
compare three biomarkers since PMMoV was only measured after 09/13/2021. The relationship 263 
between weekly biomarker load and the population contributing to the wastewater was examined 264 
using linear regression. The biomarker load of biomarker i for j WWTP, Bij, was calculated as  265 

                                   𝐵𝐵𝑖𝑖𝑖𝑖 = [𝐵𝐵]𝑖𝑖𝑖𝑖 ×  𝐹𝐹𝑖𝑖  ×  7 × 3.7841 ×  106                                              (2) 266 

in which [B]ij, the biomarker i concentration in j WWTP wastewater sewershed, was determined 267 
by LC-MSMS or RT-qPCR. 𝐹𝐹𝑖𝑖 is the wastewater daily flow volume (million gallons per day) for 268 
WWTPj. Constants 3.78541 and 7 are applied to convert the imperial unit to metric unit and 269 
daily to weekly biomarker load, respectively.  270 

The linear regression model was conducted as  271 

                                                 𝐵𝐵𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑃𝑃 +∈𝑖𝑖     (3) 272 
Where P is the corresponding population from metadata data. The modeling was based on the 273 
assumption that the mass load entering the treatment plant per day of a chemical is proportional 274 
to the contributing population. Since the actual real-time population was not available, the best 275 
estimation of it was the metadata population. Bi is the biomarker mass load, ∈i the error term, and 276 
βi the estimated parameter for biomarker i. Log transformation was applied to the population and 277 
biomarker load.  278 

In addition, ten wastewater samples (each from different WWTFs) from Wisconsin collected 279 
during the week of 06/07/2021 were used to validate equations (3) using Root Mean Square 280 
Error (RMSE). The RMSE is the standard deviation of the prediction errors. 281 

Then, the real-time population PRT by biomarker i was estimated using all three biomarkers 282 
according to the equation  283 

                                            PRT i = (𝐵𝐵𝑖𝑖 −∈𝑖𝑖)/ 𝛽𝛽𝑖𝑖                                                                 (4) 284 

2.5.2. Population normalization of wastewater SARS-CoV-2 load and COVID-19 incidence 285 
rate. 286 

Wastewater SARS-CoV-2 load was then normalized to population (copies/week/10,000 287 
people) by dividing the SARS-CoV-2 load per week by each of the three estimated population 288 
metrics: 289 

                            Normalized [SARS-CoV-2]i = [𝑁𝑁1.𝑁𝑁2]𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆×� 𝐹𝐹𝑗𝑗×3.7841×106�×7 ×10000
 𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅−𝑡𝑡𝑖𝑖𝑡𝑡𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 𝑃𝑃𝑜𝑜 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

                  (5) 290 

in which [N1.N2]SARS (copies/L), the SARS-CoV-2 concentration in the wastewater sewershed, 291 
was determined by RT-qPCR using equation (1). The COVID-19 incidence rate was defined as: 292 
  293 
                Normalized Covid-19 incidence ratei    =  𝐶𝐶𝑅𝑅𝑖𝑖𝑃𝑃𝑖𝑖𝐶𝐶 𝐶𝐶𝑅𝑅𝑐𝑐𝑅𝑅 𝑃𝑃𝑃𝑃𝑡𝑡𝑛𝑛𝑅𝑅𝑜𝑜×10000

  𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅−𝑡𝑡𝑖𝑖𝑡𝑡𝑅𝑅 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅𝑡𝑡𝑖𝑖𝑃𝑃𝑃𝑃𝑖𝑖 𝑃𝑃𝑜𝑜 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
                 (6) 294 

Population normalization better allows the results to be compared across WWTPs that serve 295 
different size populations.     296 
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2.5.3. Effectiveness of population normalization on the relationships between wastewater 297 
SARS-CoV-2 load and clinical COVID-19 incidence rate.  298 

To compare the outcomes of population normalization of different biomarkers, the strength 299 
of the linear regression models from normalized wastewater SARS-CoV-2 load to normalized 300 
COVID-19 incidence rate were compared across markers, as well as when there was no 301 
population normalization (i.e., the correlation strength of raw viral load per week with total case 302 
number per week). Specifically, the goodness of fit of linear regression models was compared 303 
within each WWTP using the coefficient of determination (R2), the measure of “variance 304 
explained”. Analysis of variance (ANOVA) and pairwise comparisons were conducted on the R2 305 
of four groups (without normalization, metadata population normalization, caffeine estimated 306 
population normalization, paraxanthine estimated population normalization, and PMMoV 307 
estimated population normalization) within each WWTP. Log transformation was applied to both 308 
wastewater SARS-CoV-2 load and the COVID-19 incidence rate. Since there are many “0” 309 
COVID-19 cases, log10 (x+1) was employed for the COVID-19 incidence rate.  310 

3. RESULTS  311 

3.1. Temporal variations of biomarkers 312 

The coefficient of variations (CV%) of the three biomarkers across seasons at each of the 313 
64 WWTPs was calculated (Fig. 2). The mean CV% across all the facilities were not different 314 
between caffeine (43%) and paraxanthine (40%), but both significantly lower than the CV% of 315 
PMMoV (mean=67%) (p<0.001). Paraxanthine was the only biomarker with all the CV% lower 316 
than 100% and the smallest range of CV% among 64 WWTPs (caffeine = 263%, paraxanthine = 317 
54%, and PMMoV = 154%). The lower CV% means of caffeine and paraxanthine than PMMoV 318 
indicated that caffeine and paraxanthine changed less over time than PMMoV. No significant 319 
relationship between each biomarker’s CV% and population size was found (data not shown). 320 
Compared to caffeine and PMMoV, the smallest CV% range of paraxanthine among WWTPs 321 
showed paraxanthine is less influenced by population attributes (i.e., population size, the 322 
composition of age, race, and ethnicity, and environmental factors such as season and fecal 323 
strength across geographic regions).  324 

The outlier of CV% of caffeine (280%) was the Sikeston Wastewater Treatment Plant 325 
(SKSTN), which is nearby a global industry factory, Unilever ice cream, manufacturing the 326 
distributed worldwide Magnum chocolate ice cream bar (caffeine concentration in chocolate is 327 
around 420 µg/g). Eleven out of 16 samples with caffeine concentrations over 200 µg/L/week 328 
were from SKSTN. The extreme caffeine concentrations were not likely all shed by humans 329 
from such a small town with a population of 17,000 but rather from industrial waste. After 330 
removing samples from SKSTN, there was a strong linear relationship between caffeine and 331 
paraxanthine concentration (Fig. S1). Therefore, caffeine is still a reliable biomarker for the area 332 
where no such exogenous caffeine sources exist.  333 

3.2. Real-time population prediction by biomarkers 334 

Linear regression models were established for biomarker mass load per week and 335 
population sizes obtained from the metadata for both Missouri. Then, real-time population (PRT) 336 
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was predicted for each WWTP with all available data. The estimated PRT of tourism town 337 
(ANON2) from all three biomarkers was generally higher than the metadata population, which is 338 
reasonable since the metadata population primarily only counts residents. The estimated PRT for 339 
the large metropolitan area, Kansas City Blue River, was almost always lower than the metadata 340 
population (Fig. S3A), probably indicating a population decline in the past two years since the 341 
census survey in 2020. There was a strong relationship between the metadata population and the 342 
total case number during the seven months from 09/13/2021 to 04/10/2022 (Fig. S3B and S3C). 343 
Kansas City Blue River was the “outlier” in Fig S3B, suggesting that the PRT of the Kansas City 344 
Blue River area might be substantially lower than the metadata population. Upon further 345 
investigation, it was learned that KCBLU WWTP was in the process of upgrading and the served 346 
area changed periodically compared to the metadata population that the facility initially provided 347 
(personal communication).  348 

Therefore, models between biomarker mass load and population were revised by 349 
removing KCBLU WWTP in the models for Missouri (Fig. 3A, 3C, 3E) and metadata 350 
normalization data in KCBLU were also removed in the following analyses. Linear regression 351 
models were also established for biomarker mass load per week and population sizes obtained 352 
from the metadata for Wisconsin (Fig. 3B, 3D, 3F). Within Missouri, the model with 353 
paraxanthine had the highest R2 among all three biomarkers. Similar trends were observed in 354 
Wisconsin models, especially the paraxanthine model, which confirmed that the relationship 355 
between biomarkers and population could be applied beyond Missouri. In addition, Wisconsin 356 
samples were used to test Missouri models (Fig. 3A, 3C, 3E) using RMSE, which were 0.24, 357 
0.19, and 0.87 for models of caffeine, paraxanthine, and PMMoV. The lowest RMSE of the 358 
paraxanthine model indicated it is the best predictor of the population too. 359 

The ratios of the estimated real-time population to the metadata population (PRT 360 
/PMETADATA) by paraxanthine had the smallest mean and standard deviation among the 64 361 
WWTPs (Table 2). Among the three biomarkers, caffeine and paraxanthine, in general, are 362 
closer to the metadata populations. In contrast, estimated PRT from PMMoV wavered with time 363 
dramatically. The smaller variations of estimated PRT from caffeine and paraxanthine than 364 
PMMoV are consistent with the low temporal variations of caffeine and paraxanthine relative to 365 
PMMoV. 366 

A case study of validation of biomarker population estimation using the Apple mobility 367 
data was conducted in a college town, Columbia, Missouri. The Apple mobility showed that 368 
demographic migration was influenced by the COVID-19 pandemic and the school events in 369 
Columbia, Missouri (Fig. 4A). For instance, there was a sharp decline of mobility in April 2020 370 
after the Missouri “Stay home” order. Both mobility data and the estimated PRT estimated by 371 
paraxanthine showed the fluctuations of the population with school semesters and holidays (Fig. 372 
4A and B). For instance, Labor Day weekend, Thanksgiving break, and winter break had lower 373 
PRT and mobility than other times since a large group of students traveled back to their 374 
hometowns during these holidays. Also, the week of the University of Missouri Homecoming 375 
event (10/05/2021) had a PRT and mobility increase.  376 
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3.3. Effectiveness of population normalization of different wastewater biomarkers 377 

The strengths of the relationships between the population normalized SARS-CoV-2 RNA 378 
load and COVID-19 incidence rate were compared within each WWTP (Table 3). A total of 59 379 
out of 64 WWTPs showed a significant positive relationship between wastewater SARS-CoV-2 380 
RNA load and clinical COVID-19 incidence rate for all population normalization scenarios. In 381 
addition, models were significant except for the PMMoV estimated population normalization 382 
model for two WWTPs (ANON1 and MACON). Within 57 of 64 WWTPs, biomarker 383 
normalizations strengthened the relationship between SARS-CoV-2 RNA load and normalized 384 
COVID-19 incidence rate (i.e., R2 increased). The mean R2 decreased (α level=0.1) in the order: 385 
paraxanthine estimated real-time population normalization > without population normalization 386 
and metadata population normalization > caffeine estimated real-time population 387 
normalization > PMMoV estimated real-time population normalization, indicating that 388 
paraxanthine is the best population normalization biomarker (Fig. S3).  389 

The regression models of viral loads with clinical incidence after normalization to 390 
paraxanthine estimated population had the highest R2 among all five models for 40 out of 61 391 
WWTPs (Fig. 5). In contrast, the strength of the relationship between wastewater viral load and 392 
clinical incidence after PMMoV and caffeine estimated population normalization became weaker 393 
than without population normalization or with metadata population normalization (Fig. S3). 394 
Therefore, the time series of wastewater viral load and COVID-19 incidence rate with 395 
normalization of paraxanthine estimated population was plotted for each WWTP (Fig. 6). 396 
Weekly wastewater viral copies followed similar patterns with clinical incidence rates for most 397 
WWTPs. Furthermore, the strength of the relationship between wastewater SARS-CoV-2 viral 398 
load and the COVID-19 incidence rate was significantly increased with increasing cases and 399 
metadata population (Fig. 7A and 7B).  400 

3.4. Limit of detection of wastewater SARS-CoV-2 surveillance  401 

The linear regression relationship between wastewater SARS-CoV-2 RNA load with clinical 402 
cases was tested for models without population normalization and paraxanthine population 403 
normalization (Fig. S4). According to the paraxanthine population normalization model, the 404 
process limit of detection (PLOD) (entire process from the sampling to the analysis of RT-qPCR) 405 
in the wastewater over should be:  406 

PLOD1 (copy/week) = 1.3×1011                  (7) 407 

A validation calculation was conducted using the PLOD (<3,954 GC/50ml; 95% probability of 408 
detection) of the US CDC N1 RT-dPCR and RT-qPCR assays from a study based on wastewater 409 
SARS-CoV-2 seeding experiment by Ahmed et al.34 (Table 4):  410 

PLOD2 (copy/week) = (3,954 copy/50 ml) × 1000 ml  ×  𝐹𝐹𝑖𝑖  × 3.7841 ×  106          (8) 411 

Although Ahmed et al. used a different adsorption extraction method of virus to evaluate N1 412 
copy instead of average copy of N1 and N2 as in this study, both PLOD1 and PLOD2 showed 413 
that the N1N2 mass load was higher than PLODs for ANON1 (the smallest WWTP) during the 414 
three weeks when the main outbreak occurred. The PLOD1 was likely higher than the actual 415 



 
12 

value since the clinical cases are likely less than the real cases due to the asymptomatic and 416 
underreported cases.  417 

4. DISCUSSION 418 

4.1 Paraxanthine was the optimal population biomarker 419 

The reduced strength of the relationship between the PMMoV-population normalized SARS-420 
CoV-2 load and COVID-19 incidence rate was consistent with previous studies that showed 421 
PMMoV had mixed or adverse effects on the correlation between wastewater measurements of 422 
SARS-CoV-2 and clinical cases.35–37 To the best of our knowledge, there is only one nationwide 423 
study to date (conducted by Biobot Analytics) that is comparable with our study in terms of the 424 
temporal and spatial magnitudes of sampling. That study collected 2,433 samples from 55 425 
WWTPs across the U.S. and found that PMMoV normalization did not always improve the 426 
correlation between wastewater measurement and clinical cases.35 Feng et al. showed that 427 
PMMoV normalizations reduced the correlations between SARS-CoV-2 concentration and 428 
COVID-19 incidence for 8 of 12 WWTPs and suggested that variability’s influence across 429 
measurement for human viral is stronger than that of differences in the fecal loads in the 430 
samples36. For some sewersheds where the normalizations by metadata population and without 431 
population normalization were better than the normalizations by caffeine and PMMoV estimated 432 
population, probably because most WWTPs serve rural areas in Missouri where the population 433 
does not fluctuate with time. However, each WWTP was weighted equally in this analysis 434 
regardless of the population size it serves. Furthermore, many people worked from home during 435 
the pandemic; therefore, the real-time population was expected to be closer than usual to the 436 
metadata population for many regions.  437 

The intensified relationship between wastewater SARS-CoV-2 viral load with clinical 438 
COVID-19 cases by wastewater paraxanthine concentration for 2/3 of the WWTPs and the 439 
consistency of the relationship between wastewater paraxanthine concentration and population 440 
between Missouri and Wisconsin demonstrated that paraxanthine is a reliable population 441 
biomarker across large geographical regions with different sizes of the population. The superior 442 
performance of paraxanthine over PMMoV could be attributed to its 1) much longer half-life, 2) 443 
less exogenous sources and variability of excretion rate intra-individual and inter-individual, 3) 444 
easier and more accurately determined in the wastewater. 445 

4.1.1 Stability 446 

A promising population normalization biomarker should be stable in wastewater. 447 
Caffeine and its metabolites in untreated wastewater were stable during 24 hr storage at 4°C and 448 
20°C and also stable at -20°C for up to four weeks.28 One study showed PMMoV was stable for 449 
21 days at 4ºC, 25ºC, and 37ºC,38 However, it was mostly based on different water types that had 450 
simpler contents than wastewater, such as deionized water and autoclaved wetland water. In 451 
addition, the conclusion that PMMoV has high stability over time was drawn from much shorter 452 
periods of investigations or a small number of samples collected from fewer WWTPs than in our 453 
study4,18,21,22,36. For instance, a highly cited article from Kitajima et al. found that PMMoV did 454 
not change seasonally, but was only based on 48 samples collected from two WWTPs over 12 455 
months.21 Wu et al. only tested PMMoV stability for SARS-CoV-2 fecal biomarker on samples 456 
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collected over one week during March 2020.4 D’Aoust et al. found that PMMoV is a better 457 
normalization biomarker than Bacteroides 16S rRNA or human 18S rRNA, which was also only 458 
based on 23 samples from two WWTPs.18 In contrast, higher stability of paraxanthine than 459 
PMMoV in our study was based on 1569 samples from September 2021 to April 2022, which 460 
covered three months of the Delta variant in 2021 and the major spike of the Omicron variant at 461 
the beginning of 2022. The 64 WWTPs represent 50% of the entire Missouri population, from 462 
metropolitan areas such as St. Louis to small rural towns with only 900 people.  463 

4.1.2. Sources 464 

A reliable population biomarker should primarily be shed by humans and respond to the 465 
population size, not environmental factors.8 A regular and constant consumption is a further 466 
prerequisite for a good marker.39 Loads of caffeine in untreated wastewater reflect not only 467 
consumption, metabolism, and excretion of the compound but also caffeine from beverages, 468 
foods, and pharmacologic that were poured out directly.40 Caffeine is transformed in the human 469 
liver into more than 20 metabolites, primarily dimethylxanthines (paraxanthine, theobromine, 470 
and theophylline), dimethyl- and monomethyluric acids, and uracil derivatives39. Between 0.5% 471 
and 10% of the caffeine in human body is excreted unmetabolized via urine.39 Exogenous 472 
sources from industrial wastewater can influence caffeine if the WWTP is a combined sewer 473 
system, which also has potential pollution issues from the outflow.7 Besides, we also had several 474 
samples that could not detect caffeine and paraxanthine after heavy storms (data removed from 475 
analyses). Therefore, if combined sewer systems are chosen for WWTP, individuals should be 476 
aware that in some circumstances, like high rain events, readings of viral load and other 477 
measurements may need be corrected for dilution.  478 

As a caffeine metabolite, paraxanthine mainly comes from human metabolism.8 Therefore, 479 
paraxanthine relates to the population better than caffeine. Among the metabolites of caffeine, 480 
paraxanthine is the most abundant caffeine metabolite in wastewater.26 In addition, 1-481 
methylxanthine, 7-methylxanthine, and 1,7dimethyluric acid are also metabolites of theophylline 482 
and theobromine respectively, which are present in some foods, drinks, and pharmaceutical 483 
formulations.39 Paraxanthine was believed to be the optimal biomarker of caffeine intake as a 484 
population biomarker.1 The more minor variations of paraxanthine among different WWTPs 485 
were probably due to similar levels of caffeine intake among different groups in the population. 486 
The main factor driving paraxanthine load in the wastewater was the coffee consumption rate, 487 
which can be influenced by the composition of the population age since kids do not drink as 488 
much as adults. In addition, average consumption is 70 mg per person per day but varies in the 489 
different countries due to the different culture.39 However, caffeine is one of the most widely 490 
consumed dietary ingredients worldwide, and thus paraxanthine as its metabolite has the 491 
potential to be used as a population biomarker worldwide. 492 

In comparison, PMMoV is a pepper pathogen virus that often is found in human feces, as 493 
well as peppers and processed pepper products from all over the world, such as dry spices and 494 
sauces.42 Unlike caffeine or tea are widely consumed by people all over the world, the 495 
importance of pepper in cuisine varies depending on the regions. For example, chili pepper is the 496 
defining ingredient of New Mexican food but not for most European cuisine. Therefore, the 497 
population race composition might influence the pepper’s consumption and thus PMMoV 498 
concentration. The detection level of PMMoV in human feces varies greatly from 7% to 95%, 499 
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depending on the study's regions and also between adults and children, even in the same 500 
regions.43  The PMMoV concentration in our study had an average of 1.5 *108 copy/L, which is 501 
consistent with the previous study that showed the PMMoV concentration from raw wastewater 502 
ranged from 108-1010 copy/L,44 but PMMoV in our study largely ranged from 3*104 to 2*109 503 
copy/L. 504 

In addition, SARS-CoV-2 RNA and PMMoV are shed in fecal, but caffeine and paraxanthine 505 
are discharged through urine. Humans urinate much more frequently than bowl movement, likely 506 
contributing to less variance in quantity among individuals than bowel movement, which 507 
possibly is one of the reasons that biomarkers in urine such as caffeine and paraxanthine had less 508 
variations and are more representative of population size.  509 

4.1.3. Quantification  510 

Being easy to be determined with high repeatability is another criterion of a good population 511 
marker. The low variation of caffeine and paraxanthine owes to the high analytical sensitivity of 512 
LC-MSMS system and the consistent and high extraction recovery rate. With the development of 513 
technology, most of LC-MSMS systems have ng/mL to pg/mL level sensitivity. The instrumental 514 
detection limits for caffeine and paraxanthine were reported as 1.4 and 2.4 pg/injected, and 515 
instrumental quantification limits for caffeine and paraxanthine were 3.6 and 6.6 ng/L using 516 
API5500 QqQ equipped with a Turbo Ion Spray source.28 The sensitivity of our HPCL-MSMS 517 
with electrospray ionization is at ng/mL, but it is sufficient for wastewater caffeine and 518 
paraxanthine quantification. The caffeine concentration in wastewater influent water was 519 
reported from 20-300 µg/L (Canada), 20 µg/L (U.S.), and 147±76 µg/L (Germany).28 In our 520 
study, the average caffeine and paraxanthine concentrations were 71 ug/L and 17.5 ug/L, 521 
respectively. The recoveries of caffeine and paraxanthine from untreated wastewater were 88% 522 
and 76% during the similar storage temperature and extraction method to our study.28 Our 523 
previous study showed that the recovery rates of caffeine and paraxanthine during injection are 524 
101±7% and 92±3%.29 In addition, the repeatability for caffeine and paraxanthine was quite high 525 
(CV%: 12% and 5%).28  526 

Unlike the simple chemical analysis on LC-MSMS, PMMoV measurement has a very 527 
complex workflow. First, wastewater samples require the application of concentration steps 528 
before extraction of the RNA fragments. Then, highly-sensitive molecular assays using RT-529 
qPCR or RT-dPCR (digital PCR) will be applied to quantify the PMMoV concentration.34 530 
Consequently, there are many factors that may contribute to the large variation, such as the 531 
efficiency of primary concentration, loss through nucleic acid extraction, and inhibition of 532 
reverse transcription or PCR amplification. PMMoV’s recovery rates reported in previous studies 533 
varied but were generally lower than caffeine and paraxanthine (e.g., 45±26% using direct 534 
extraction and only >10% using electronegative (H.A.) filters).36,45 The recovery rate of PMMoV 535 
in this study was not tested directly, but the virus concentration methods (PEG concentration) in 536 
this study preserved SARS-CoV-2 N1N2 at approximately 62% signal on average and 2.7 times 537 
higher for Puro.32 The PMMoV’s process limits of quantification and detection were evaluated in 538 
diluted wastewater in the coastal water,46 which is different from PMMoV in raw wastewater.  539 



 
15 

4.2 Normalization approach recommendation for SARS-CoV-2 wastewater-based 540 
epidemiology  541 

A previous study showed that outbreaks could be detected in buildings with as many as 1,000 542 
occupants.47 This study showed that the wastewater could also detect community-level outbreaks 543 
with a small population size, which revealed that the process limit of detection for wastewater 544 
surveillance (e.g., the fewest infections in a community that can be reliably detected in 545 
wastewater) is quite low (~0.1% of the population, 1-2 cases in 900) (Table 4). However, the 546 
PLOD could be overestimated since the actual cases could be higher than just 1 or 2 cases. The 547 
smallest WWTP, ANON1, still showed a significant relationship between the wastewater viral 548 
copies and the COVID-19 incidence rate, except when using the normalization of PMMoV 549 
estimated population (Table 3). Our previous study found that approximately 20% of the tested 550 
WWTPs in Missouri, U.S., receive some input from industries, possibly discharging some 551 
chemicals that suppress the viral signals in wastewater.48 MACON WWTP was one of the 552 
examples.48 However, positive relationship between the wastewater viral load and the COVID-553 
19 incidence rate for MACON except for PMMoV estimated population normalization (Table 3). 554 
Therefore, WBE is a feasible approach for population-level monitoring of COVID-19 disease. 555 
PMMoV, however, is not an ideal population biomarker, especially for small towns due to its 556 
large temporal variation. 557 

Many wastewater SARS-CoV-2 surveillance studies have been conducted across the U.S. 558 
during the last two years35, which provided an excellent network for the effective and long-term 559 
monitoring of SARS-CoV-2 and possibly other diseases in the future. Thus far, however, the 560 
normalization applied to the SARS-CoV-2 wastewater surveillance does not have a standardized 561 
approach. There are three main types of normalization: 1) normalized to WWTP flow (e.g., 562 
copies/week, to give viral load), 2) normalized to WWTP human fecal biomarker estimated 563 
population (e.g., copies/10K people/week), and 3) directly normalized to WWTP human fecal 564 
biomarker loads (e.g., copies/copy of PMMoV/week).  565 

Wastewater flow normalization converts the measured viral concentration to viral load, 566 
accounting for variations in flow between days due to precipitation, snowmelt, or groundwater 567 
inflow. Established on the flow normalization, the normalization to biomarker estimated 568 
population evaluated in this study aims to account for the variations caused by wastewater 569 
volume and population size that contribute to the waste. The third normalization is used often 570 
because it does not involve wastewater volume and population information. However, it is based 571 
on the assumption that the measured wastewater biomarker concentration perfectly reflects the 572 
population dynamics. Many previous studies used PMMoV as SARS-CoV-2 internal control to 573 
normalize SARS-CoV-2 concentration to SARS-CoV-2 copies per copy of PMMoV.4,18,49 574 
However, our study showed that the relationship between PMMoV and population is not as 575 
stable over time as caffeine and paraxanthine. In addition, our previous study confirmed that 576 
direct normalization effects of SARS-CoV-2 concentration using biomarker concentrations were 577 
always less ideal than indirect normalization, which involved the wastewater volume.29 578 

Our findings suggest that for long-term wastewater SARS-CoV-2 surveillance, normalizing 579 
SARS-CoV-2 wastewater concentrations with a reliable population marker prior to calculating 580 
trends is highly recommended to account for changes in wastewater dilution and differences in 581 
relative human waste input over time due to tourism, weekday commuters, temporary workers, 582 



 
16 

and pandemic lockdowns, etc. This approach is particularly critical for the sewershed with 583 
dynamic population changes, such as colleges, tourist towns, and metropolitan areas, where a 584 
large number of commuters who used to travel to cities daily transitioned to fully or partially 585 
remote workers after the pandemic. The relation between 1) size of the population, and 2) 586 
strength of the relationship between wastewater SARS-CoV-2 viral concentration and the 587 
COVID-19 clinical incidence rate was first demonstrated in this study. This would provide an 588 
excellent selection criterion for site selection, surveillance planning and data interpretation for 589 
the SARS-CoV-2 and even other wastewater-based epidemiology. 590 

5. CONCLUSIONS 591 

This study compared the effectiveness of three wastewater biomarkers for population 592 
normalization in the SARS-CoV-2 wastewater-based epidemiology with a large number of 593 
wastewater facilities across Missouri and long-term sampling over seven months. We found that 594 
PMMoV, one of the widely used population biomarkers for SARS-CoV-2 wastewater-based 595 
epidemiology, is not an ideal population biomarker since it reduced the strength of wastewater 596 
SARS-CoV-2 viral load and the COVID-19 incidence rate compared to the metadata population 597 
and without population normalization. Instead, paraxanthine, with many benefits, such as high 598 
stability, low exogenous sources than its precursor (caffeine), higher recovery rate, and low 599 
quantification variation, is very promising for predicting the real-time population and population 600 
normalization in the wastewater SARS-CoV-2 surveillance study, no matter the size of the 601 
population. The utility of this promising biomarkers was validated by data from ten different 602 
Wisconsin’s WWTPs with gradients in population sizes. The estimated real-time population 603 
using this biomarker was directly compared against the population patterns with human 604 
movement mobility data. Of the three biomarkers, population normalization by paraxanthine 605 
significantly strengthened the relationship between wastewater SARS-CoV-2 viral load and 606 
COVID-19 incidence rate the most (40 out of 61 sewersheds). Our findings suggest that 607 
paraxanthine has the potential to be serve as real-time population biomarker in other scenarios 608 
beyond SARS-CoV-2 wastewater-based epidemiology and not limited within Missouri 609 
geographical boundary.  610 
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Table 1. Summary of the optimized LC-MSMS Parameters for chemical population biomarkers.  776 

No. Compound RT ES MS1 MS2 
Cone 

Voltage 
Collision 
Energy 

1 Caffeine 6.273 ES+ 195.05 138.12 45 22 
2 Caffeine-13C3 6.167 ES+ 198.04 140.07 45 22 
3 Paraxanthine 5.715 ES+ 181.06 124.11 45 22 

777 
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Table 2. Summary of ratios between estimated real-time population by three biomarkers to the 778 
Metadata population.  779 

Ratios Mean Max Min SD 
Caffeine-population/metadata population 1.248 79.669 0.008 1.862 

Paraxanthine-population/metadata population 1.137 12.053 0.008 0.741 
PMMoV-population/metadata population 1.471 75.203 0.00008 2.26 

780 
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Table 3. Coefficient of determinations (R2) of the linear regression models between log-781 
transformed wastewater SARS-CoV-2 RNA load (copies/week/10K person) and clinical 782 
COVID-19 incidence rate (case number/week/10K person) within each WWTP without and with 783 
population normalization by metadata population, and the real-time populations estimated from 784 
caffeine, paraxanthine, and PMMoV. The bold and underlined values are the highest R2 for each 785 
WWTP among five models. “N.S.” indicates the not significant models.   “N.A. indicated not 786 
available information.  787 

Facility ID Popula
tion 
Served 

Total 
cases 

Without 
population 
normalizatio
n  

Metadata 
population 
normalization  

Caffeine 
estimated 
real-time 
population 
normalizatio
n  

Paraxanthine 
estimated 
real-time 
population 
normalizatio
n  

PMMoV 
estimated 
real-time 
population 
normalizatio
n  

ANON1  900 13 0.229 0.223 0.220 0.257 N.S. 
ALBNY  1730 178 0.781 0.802 0.799 0.827 0.786 
MEMPH 1822 24 0.206 0.197 0.214 0.232 0.196 
MILAN  1960 83 0.470 0.478 0.401 0.473 0.287 
WLOSP  2100 82 N.S. N.S. N.S. N.S. N.S. 
TRYSE  2934 1015 0.761 0.683 0.569 0.763 0.741 
WARSW  2976 127 0.136 0.160 0.215 0.254 0.242 
CASVL  3300 155 0.399 0.368 0.337 0.406 0.280 
CAROL  3784 285 0.539 0.542 0.593 0.644 0.561 
CHARL  4000 102 N.S. N.S. N.S. N.S. N.S. 
BROOK  4600 84 0.375 0.369 0.338 0.405 0.556 
ELDON  4895 312 0.481 0.496 0.359 0.485 0.246 
MACON  5471 95 0.297 0.309 0.351 0.452 N.S. 
DEXTW  6000 211 0.620 0.634 0.467 0.576 0.340 
ANON2  6155 429 0.462 0.470 0.420 0.445 0.136 
PACIF  7001 260 0.675 0.676 0.603 0.685 0.745 
SDLCN  7500 218 0.728 0.725 0.390 0.576 0.283 
UNONW  7936 1208 0.738 0.740 0.764 0.765 0.697 
MARSH  8000 539 0.505 0.503 0.471 0.563 0.524 
NEVAD  8082 955 0.332 0.328 0.287 0.376 0.468 
SDLNO  8250 80 N.S. N.S. N.S. N.S. N.S. 
PRYVL  9000 645 0.391 0.393 0.328 0.417 0.322 
KCTDC  9000 618 0.827 0.828 0.813 0.851 0.749 
MONET  9100 338 0.693 0.693 0.687 0.761 0.634 
MRSHL  10113 716 0.407 0.407 0.567 0.526 0.564 
FRMTN  10114 775 0.590 0.590 0.544 0.649 0.549 
BLIVR  10500 466 0.611 0.610 0.614 0.645 0.643 
ANON3  10559 378 0.350 0.352 0.303 0.417 0.251 
SDLSE  10730 225 0.7657 0.7659 0.464 0.697 0.306 
MEXCO  11500 752 0.703 0.697 0.667 0.707 0.548 
WARNE  11883 574 0.560 0.558 0.530 0.605 0.832 
CARTH  12000 606 0.593 0.596 0.490 0.646 0.422 
ANON4  12000 642 0.766 0.771 0.743 0.791 0.581 
WPLAN  12000 726 0.879 0.882 0.882 0.893 0.940 
KCROB  12000 665 0.610 0.616 0.591 0.646 0.410 
KCFSR  12000 525 0.588 0.590 0.575 0.578 0.639 
FULTN  12790 859 0.358 0.363 0.333 0.402 0.300 
WARNW  14477 389 0.659 0.653 0.701 0.721 0.666 
WASHN  15000 691 0.659 0.655 0.524 0.657 0.570 
JOPSC  15906 426 0.729 0.733 0.737 0.795 0.675 
HANBL  16000 727 0.414 0.416 0.490 0.512 0.307 
SKSTN  17000 1289 0.674 0.680 0.685 0.677 0.570 
NIXAF  20000 1118 0.680 0.678 0.669 0.698 0.693 
SFDNW 22818 2826 0.731 0.727 0.715 0.733 0.771 
MSDFN 24174 1633 0.515 0.527 0.435 0.543 0.376 
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ROLSE  25423 1309 0.676 0.681 0.545 0.668 0.475 
STJOE  27000 5048 0.787 0.787 0.740 0.851 0.533 
NPSDS  27391 1841 0.657 0.656 0.613 0.705 0.487 
CAPEG  33540 1653 0.591 0.599 0.474 0.698 0.401 
JOPTC  34403 2176 0.872 0.861 0.852 0.871 0.766 
LIBTY  35300 1534 0.8537 0.853 0.811 0.8541 0.749 
JEFFC  41153 2861 0.759 0.766 0.776 0.806 0.645 
STPSC  60000 3998 0.792 0.780 0.770 0.809 0.800 
KCWST  61250 1926 0.826 0.814 0.798 0.840 0.792 
MSDLM  66738 3677 0.789 0.790 0.726 0.795 0.728 
KCBIR  76759 4455 0.904 0.902 0.777 0.883 0.798 
MSDGG  115895 7392 0.797 0.787 0.764 0.809 0.664 
COLMB  123180 6607 0.783 0.763 0.741 0.810 0.640 
SFDSW  151966 8465 0.866 0.842 0.822 0.899 0.905 
MSDMR  174537 11632 0.854 0.859 0.844 0.864 0.799 
MSDBP  306647 15950 0.662 0.663 0.681 0.756 0.562 
LBVAT  360000 16524 0.938 0.930 0.932 0.944 0.899 
MSDME  451367 22557 0.874 0.872 0.906 0.888 0.723 
KCBLU  N.A. 8020 0.638 N.A. 0.510 0.645 0.409 

788 
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Table 4. Case study in the smallest WWTP ANON1 (900 population) for the process limit of 789 
detection of wastewater SARS-CoV-2 surveillance. The process limit of detection (PLOD) of 790 
N1N2 mass load PLOD1 for at least one case was calculated based on the results of this study 791 
(Figure 7B). The PLOD2 was calculated based on the literature.34 The bold and underling values 792 
were the three weeks that N1N2 mass load higher both PLOD1 and PLOD2. 793 

SWCTY 
Cases 

Flow rate 
(GMD) Week N1N2 mass load N1N2 mass - PLOD1 N1N2 mass - PLOD2 

0 0.0425 9/13/2021 5.56E+10 -7.44E+10 -3.35E+10 
0 0.0639 9/20/2021 7.10E+10 -5.90E+10 -6.29E+10 
0 0.0535 9/27/2021 9.22E+10 -3.78E+10 -1.99E+10 
1 0.0531 10/04/2021 7.85E+10 -5.15E+10 -3.28E+10 
0 0.0553 10/11/2021 1.62E+10 -1.14E+11 -9.97E+10 
0 0.0488 10/18/2021 4.92E+10 -8.08E+10 -5.31E+10 
0 0.0562 10/25/2021 1.38E+10 -1.16E+11 -1.04E+11 
0 0.0546 11/8/2021 6.63E+09 -1.23E+11 -1.08E+11 
0 0.0512 11/15/2021 1.45E+10 -1.16E+11 -9.28E+10 
0 0.0474 11/22/2021 8.18E+10 -4.82E+10 -1.75E+10 
1 0.0458 11/29/2021 7.91E+10 -5.09E+10 -1.69E+10 
0 0.0493 12/6/2021 1.54E+10 -1.15E+11 -8.79E+10 
2 0.053 12/13/2021 4.32E+09 -1.26E+11 -1.07E+11 
1 0.0544 12/20/2021 7.34E+11 6.04E+11 6.20E+11 
6 0.0544 1/10/2022 1.98E+12 1.85E+12 1.87E+12 
0 0.0573 1/31/2022 6.01E+10 -6.99E+10 -6.00E+10 
0 0.06 2/7/2022 1.37E+11 7.00E+09 1.13E+10 
2 0.06 2/14/2022 9.48E+10 -3.52E+10 -3.09E+10 
0 0.0608 2/21/2022 4.69E+09 -1.25E+11 -1.23E+11 
0 0.06 2/28/2022 3.36E+08 -1.30E+11 -1.25E+11 
0 0.072 3/7/2022 1.44E+09 -1.29E+11 -1.49E+11 
0 0.07 3/14/2022 9.97E+08 -1.29E+11 -1.46E+11 
0 0.11 3/21/2022 2.18E+09 -1.28E+11 -2.28E+11 
0 0.05 3/28/2022 6.19E+08 -1.29E+11 -1.04E+11 

794 
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 795 

Fig. 1. A total of 2624 wastewater samples were collected from 64 wastewater treatment plants 796 
(WWTPs) across Missouri, USA. 797 
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      798 

Fig. 2. Distributions of coefficient of variation (CV%) of three biomarkers over seven months of 799 
study time from 09/13/2021 to 04/10/2022 (n=1569) within 64 WWTPs. The red lines indicate 800 
the mean CV%, and the black lines indicate the median CV% of each biomarker. 801 



 
29 

 802 

Fig. 3. The linear regression models between the mass loads of three wastewater biomarkers 803 
[(caffeine, paraxanthine, and pepper mild mottle virus (PMMoV)] and Metadata population 804 
(GIS-mapped census population or estimated from sewer connections) for Missouri based on 7-805 
month wastewater samples collected from 09/13/21 to 04/10/22 across 63 wastewater treatment 806 
plants (WWTPs) (plot A, C, and E). One facility from the initial 64 WWTPs (WWTP KCBLU) 807 
was removed from the models since the population served changed dramatically during the 808 
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sampling period due to facility upgrading. Plots of B, D, and F were the models for Wisconsin 809 
based on ten samples collected during the week of 06/07/2021 from ten different WWTPs.810 
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 811 
Fig. 4. Apple mobility indices of Columbia, MO for walking and driving using aggregated data 812 
collected from Apple Maps data for the duration of 01/13/2020 to 04/10/2022 (A). The original 813 
Apple mobility indices have been scaled to the maximum observed during the study period. 814 
Predicted real-time population using paraxanthine in Columbia, MO (B).815 
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 816 

Fig. 5.  The WWTP numbers with best population normalization models (highest R2) for each 817 
normalization model. The “61” after slash indicated the 61 out of 64 WWTPs had significant 818 
linear regression models between wastewater SARS-CoV-2 RNA load (copies/week/10K 819 
person) and clinical COVID-19 incidence rate (case/week/10K person). The numbers before the 820 
slash indicated the number of WWTPs with the highest R2 among the five regression models. 821 
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 822 

Fig. 6. Normalized wastewater SARS-CoV-2 RNA load (copies/week/10K person) by 823 
paraxanthine estimated real-time population and clinical COVID-19 incidence rate 824 
(case/week/10K person) within 64 WWTPs from the weeks of 09/13/2021 to 04/05/2022. The 825 
population of WWTPs increase from top left to right down. The title of each plot is in the format 826 
of “WWTP name: total COVID-19 case number/Metadata population”. 827 
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 828 

Fig. 7. The polynomial relationships between the coefficient of determination (R2) of the linear 829 
regression models and clinical case (A) and Metadata population (B). The models were linear 830 
regressions between wastewater SARS-CoV-2 RNA load (copies/week/10K person) and clinic 831 
COVID-19 incidence rate (cases/week/10K person) within 64 WWTPs without and with the 832 
population normalizations.  833 
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Table S1. Long-time monitoring wastewater facilities across Missouri state and population sizes 834 
it served.  835 

Facility ID Facility Name City County Population 
Served 

Source of 
Population 

Facility 
Capacity 
(MGD) 

Composite 
sampling 
mode 

ANON1 Anonymous WWTP#1   900 Operator 
information 0.14 Time Based 

ALBNY Albany WWTF Albany Gentry 1,730 Operator 
information 0.49 Time Based 

MEMPH Memphis Municipal 
WWTF Memphis Scotland 1,822 Operator 

information 0.21 Time Based 

MILAN Milan WWTP Milan Sullivan 1,960 Operator 
information 0.7 Flow Based 

WLOSP Willow Springs WWTP Willow 
Springs Howell 2,100 Operator 

information 0.4 Time Based 

TRYSE Troy Southeast WWTP Troy Lincoln 2,934 Connections w/ 
pop. Correction 0.45 Flow Based 

WARSW Warsaw WWTF Warsaw Benton 2,976 Operator 
information 1.1 Time Based 

CASVL Cassville WWTP Cassville Barry 3,300 Operator 
information 1.5 Time Based 

CAROL Carrollton WWTP Carrollton Carroll 3784 Operator 
information 1.5 Time Based 

CHARL Charleston  Charleston Mississippi 4,000 Operator 
information 2 Time Based 

BROOK Brookfield WWTP Brookfield Linn 4,600 Operator 
information 1 Time Based 

ELDON Eldon WWTP Eldon Miller 4,895 Operator 
information 2.5 Time Based 

MACON Macon WWTP Macon Macon 5,471 Operator 
information 0.78 Time Based 

DEXTW Dexter West WWTP Dexter Stoddard 6,000 Operator 
information 3.4 Time Based 

ANON2 Anonymous WWTP#2  6,155 Operator 
information 2 Time Based 

PACIF Pacific WWTP Pacific Franklin 7,001 Operator 
information 3.03 Time Based 

SDLCN Sedalia Central WWTP Sedalia Pettis 7,500 Connections w/ 
pop. Correction 1.5 Time Based 

UNONW Union West STP Union Franklin 7,936 Operator 
information 1.5 Time Based 

MARSH Marshfield WWTP Marshfield Webster 8,000 Connections w/ 
pop. Correction 2 Time Based 

NEVAD Nevada WWTF Nevada Vernon 8,082 Operator 
information 2.5 Time Based 

SDLNO Sedalia North WWTP Sedalia Pettis 8,250 Operator 
information 1.8 Time Based 

PRYVL Perryville SE WWTP Perryville Perry 9,000 Operator 
information 3.4 Time Based 

KCTDC KC, Todd Creek WWTP Kansas City Platte 9,000 Operator 
information 6 Time Based 

MONET Monett Wastewater 
Treatment Plant Monett Barry 9,100 Operator 

information 1 Time Based 

MRSHL Marshall SE WWTP Marshall Saline 10,113 Operator 
information 7.1 Time Based 

FRMTN Farmington East WWTP Farmington St. Francois 10,114 Operator 
information 2.55 Time Based 

BLIVR Bolivar WWTP Bolivar Polk 10,500 Operator 
information 5.3 Time Based 

ANON3 Anonymous WWTP#3   10,559 Connections w/ 
pop. Correction 2.6 Time Based 

SDLSE Sedalia Southeast WWTP Sedalia Pettis 10,730 Operator 
information 3 Time Based 

MEXCO Mexico WWTP Mexico Audrain 11,500 Operator 
information 1.5 Flow Based 

WARNE Warrensburg East WWTP Warrensburg Johnson 11,883 Operator 
information 7 Time Based 
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CARTH Carthage WWTP Carthage Jasper 12,000 Operator 
information 9 Time Based 

ANON4 Anonymous WWTP#4   12,000 Operator 
information 3 Time Based 

WPLAN West Plains WWTP West Plains Howell 12,000 Operator 
information 2.8 Time Based 

KCROB KC Rocky Branch 
WWTP Kansas City Clay 12,000 Operator 

information 2 Time Based 

KCFSR KC, Fishing River WWTF Kansas City Clay 12,000 Operator 
information 2.9 Time Based 

FULTN Fulton WWTP Fulton Callaway 12,790 Operator 
information 1.5 Flow Based 

WARNW Warrensburg West 
WWTP Warrensburg Johnson 14,477 Operator 

information 4.8 Time Based 

WASHN Washington WWTP Washington Franklin 15,000 Operator 
information 4 Time Based 

JOPSC Joplin Shoal Creek 
WWTP Joplin Newton 15,906 Connections w/ 

pop. Correction 7.2 Time Based 

HANBL Hannibal WWTP Hannibal Marion/Ralls 16,000 Operator 
information 12 Time Based 

SKSTN Sikeston WWTP Sikeston Scott 17,000 Operator 
information 2.75 Time Based 

NIXAF Nixa WWTF Nixa Christian 20,000 Operator 
information 5 Time Based 

SFDNW Springfield NW WWTP Springfield Greene 22,818 Operator 
information 4 Time Based 

MSDFN MSD Fenton WWTP St. Louis St. Louis 24,174 Connections w/ 
pop. Correction 6.8 Time Based 

ROLSE Rolla SE WWTP Rolla Phelps 25,423 Operator 
information 6.75 Time Based 

STJOE St. Joseph Water 
Protection Facility St. Joseph Buchanan  27,000 Connections w/ 

pop. Correction 27 Time Based 

NPSDS NPSD Interim Saline 
Creek Regional WWTP FENTON Jefferson 27,391 Connections w/ 

pop. Correction 4 Time Based 

CAPEG Cape Girardeau Municipal 
WWTF 

Cape 
Girardeau 

Cape 
Girardeau 33,540 Connections w/ 

pop. Correction 15 Time Based 

JOPTC Joplin Turkey Creek 
WWTP Joplin Jasper 34,403 Operator 

information 5 Time Based 

LIBTY Liberty WWTP Liberty Clay 35,300 Operator 
information 11 Flow Based 

JEFFC Jefferson City RWRF Jefferson 
City Callaway 41,153 Operator 

information 9.5 Time Based 

STPSC St. Peters Spencer Creek 
WWTP St. Peters St. Charles 60,000 Connections w/ 

pop. Correction 22.5 Time Based 

KCWST KC, Westside WWTP Kansas City Jackson 61,250 Operator 
information 15 Time Based 

MSDLM MSD Lower Meramec 
WWTP St. Louis St. Louis 66,738 Operator 

information 11 Flow Based 

KCBIR KC Birmingham WWTP Kansas City Clay 76,759 Connections w/ 
pop. Correction 20 Time Based 

MSDGG MSD Grand Glaize 
WWTP Valley Park St. Louis 115,895 Operator 

information 21 Time Based 

COLMB Columbia WWTP Columbia Boone 123,180 Operator 
information 20.6 Time Based 

SFDSW Springfield SW WWTP Springfield Greene 151,966 Connections w/ 
pop. Correction 64 Time Based 

MSDMR MSD Missouri River 
WWTP St. Louis St. Louis 174,537 Operator 

information 38 Time Based 

MSDBP MSD Bissell Point 
WWTP St. Louis St. Louis 

City 306,647 Operator 
information 150 Time Based 

LBVAT LBVSD Atherton WWTP Independence Jackson 360,000 Population 
Equivalent 52 Time Based 

MSDME MSD Lemay WWTP St. Louis St. Louis 451,367 Operator 
information 210 Time Based 

KCBLU KC Blue River WWTP Kansas City Jackson 490,000 Operator 
information 105 Time Based 

836 
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Table S2. Comparison of caffeine and paraxanthine concentrations from two sample preparation 837 
methods with samples of weeks of December 6, 2021. “M” indicated dilution solution was 838 
methanol, and the corresponding sample above with the same sample I.D. and date (e.g., 1-12/7) 839 
but without “M” means method with acidification and dilution solution was LC-MSMS buffer.  840 

Samples lab I.D. Caffeine concentration (ug/L)  Paraxanthine concentration (ug/L) 
1-12/7 53.77 12.47 
1-12/7M 54.37 9.54 
2-12/6 130.57 20.00 
2-12/6M 128.92 17.16 
3-12/7 143.90 21.28 
3-12/7M 158.40 22.45 
4-12/7 59.64 9.66 
4-12/7M 66.07 8.59 
5-12/6 108.25 14.51 
5-12/6M 111.08 14.71 
6-12/7 42.41 8.79 
6-12/7M 45.35 12.72 
7-12/8 22.48 0.66 
7-12/8M 24.50 0.92 
9-12/6 65.94 7.71 
9-12/6M 63.93 7.32 
10-12/7 84.42 8.80 
10-12/7M 84.41 9.60 
11-12/6 60.38 16.19 
11-12/6M 61.49 18.10 
12-12/8 48.53 4.08 
12-12/8M 47.14 5.51 
14-12/7 115.88 25.76 
14-12/7M 121.46 23.36 
15-12/7 70.25 5.61 
15-12/7M 77.87 6.26 
16-12/7 122.98 22.27 
16-12/7M 135.14 22.38 
18-12/7 87.00 19.71 
18-12/7M 98.78 24.42 
19-12/7 78.86 15.28 
19-12/7M 83.29 16.23 
20-12/7 98.70 13.56 
20-12/7M 105.32 13.75 
22-12/6 101.51 15.80 
22-12/6M 107.08 18.08 
23-12/6 51.84 19.90 
23-12/6M 57.01 14.51 
24-12/6 27.90 8.05 
24-12/6M 29.00 7.06 
25-12/7 107.68 21.25 
25-12/7M 112.49 25.92 
26-12/7 78.37 14.44 
26-12/7M 84.80 15.19 
27-12/7 141.10 29.72 
27-12/7M 146.91 28.84 
28-12/7 64.87 7.87 
28-12/7M 70.24 7.71 
29-12/7 45.03 10.61 
29-12/7M 48.56 12.92 
30-12/8 74.65 11.97 
30-12/8M 75.51 15.27 
31-12/7 70.36 10.81 
31-12/7M 79.95 10.13 
34-12/6 86.26 13.51 
34-12/6M 91.11 13.74 
35-12/7 52.33 8.81 
35-12/7M 60.88 9.27 
36-12/7 58.39 5.94 
36-12/7M 66.11 6.94 
37-12/6 72.33 6.13 
37-12/6M 71.84 7.06 
38-12/7 1073.50 16.30 
38-12/7M 1164.20 16.38 
39-12/7 36.39 0.00 
39-12/7M 39.24 0.00 
41-12/8 71.57 10.40 
41-12/8M 73.37 10.75 
42-12/7 49.39 8.23 
42-12/7M 56.02 8.50 
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 841 

Fig. S1. The relationship between caffeine and paraxanthine concentrations. Plot A included all 842 
the available data, but plot B was without Sikeston Wastewater Treatment Plant (SKSTN).843 
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 844 

Fig. S2. A: Predicted real-time populations in the area served by the Kansas City Blue River 845 
wastewater treatment plant (WWTP KCBLU) using concentrations of wastewater biomarkers 846 
based on the models with the data from WWTP KCBLU. The metadata population was plotted 847 
using the orange line for reference. The total Covid-19 clinical cases of each WWTP from 848 
09/13/2021 to 04/10/2022 were strongly increased with the metadata population size (B: with 849 
WWTP KCBLU; C: without WWTP KCBLU). 850 
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 856 
Fig. S3. Comparison of the coefficient of determination of the linear regression models (R2) 857 
between wastewater SARS-CoV-2 RNA load (copies/week/10K person) and clinic COVID-19 858 
incidence rate (cases/week/10K person) within 64 WWTPs without and with the population 859 
normalizations860 
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 862 

 Fig. S4. The linear regression relationship between wastewater SARS-CoV-2 RNA load with 863 
clinical cases (A: without population normalization; B: paraxanthine population normalization). 864 
The slopes of the regression equation indicated wastewater SARS-CoV-2 RNA concentration per 865 
week and person. 866 

 867 
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