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1 Escuela de Matemática, Universidad de Costa Rica, San José, Costa Rica
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Abstract

Devising effective mass testing strategies to control and suppress COVID-19 pandemic
waves make up a complex sociotechnical challenge. It requires a trade-off between
performing detection technologies in terms of specificity and sensitivity, and the
availability and cost of individual tests per technology. Overcoming this trade-off
requires first predicting the level of risk of exposure across the population available.
Then selecting testing strategies that match resources to maximize positive case
detection and optimize the number of tests and their total cost during sustained mass
testing campaigns. In this article, we derive the behavior of four different mass testing
strategies, grounded in guidelines and public health policies issued by the Costa Rican
public healthcare system. We assume a (privacy-preserving) pre-classifier applied to
patient data, Capable of partitioning suspected individuals into low-risk and high-risk
groups. We consider the impact of three testing technologies, RT-qPCR, antigen-based
testing and saliva-based testing (RT-LAMP). When available, we introduced a
category of essential workers. Numerical simulation results confirm that strategies
using only RT-qPCR tests cannot achieve sufficient stock capacity to provide efficient
detection regardless of prevalence, sensitivity, or specificity. Strategies that harness
the power of both pooling and RT-LAMP either maximize stock capacity or detection,
efficiency, or both. Our work reveals that investing both in data quality and
classification accuracy can improve the odds of achieving pandemic control and
mitigation. Future work will concentrate, based on our findings, on constructing
representative synthetic data through agent-based modeling and studying the
properties of specific pre-classifiers under various scenarios.

Introduction 1

The recent SARS-CoV-2 pandemic highlighted the significance of mass testing 2

strategies as a key non-pharmacological intervention to combat and obtain accurate 3

information about unfolding health emergencies driven by communicable diseases. 4

Recent studies show that the effectiveness of test, trace and isolate the population 5
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depends on the ability of to estimate the current and expected pandemic impact. The 6

task, however, needs careful evidence-based planning, avoidance of misleading metrics, 7

and complementary information-based efforts [1]. Nations across the world must 8

contend with a varying array of limitations in their testing and epidemiological 9

monitoring infrastructure. Some limitations relate to systemic gaps across public 10

health processes and procedures [2], while other manifest because of the intersection 11

between health and economic factors leading to scarcity [3]. Sometimes testing 12

technologies find themselves constrained under extraordinary circumstances [4]. 13

This article departs from experiences at the intersection of limited testing 14

capabilities with RT-qPCR, the “gold standard” [5], scarce testing alternatives, and 15

limited information infrastructure for patient tracing. We address the question of how 16

to maximize the effectiveness testing infrastructure with multiple test types. The study 17

shows in silico the behavior of different population-level strategies under the existence 18

of mechanisms capable of predicting individual risk of contagion. We hypothesize the 19

population’s infection stays on a prior set of individual and collective factors that 20

allow predicting the outcome. Therefore, given any available—and possibly 21

anonymized—information, the authorities allocate testing during an emergency. 22

Mass testing under pre-symptomatic and asymptomatic regimes 23

The recent literature has amply studies on mass testing protocols because of the 24

challenging underlying optimization problems and the need for information for 25

decision-making during public health emergencies. From the perspective of operations 26

research, devising a mass testing strategy equates to solving a non-linear resource 27

allocation problem [6]. When real-world establishes constraints, the corresponding 28

optimization requires the use of generalized cost functions [7]. Its form, however, 29

changes drastically between diseases with a latent or pre-symptomatic period and 30

asymptomatic patients, and diseases without it. In particular, the testing strategy 31

needs not keep track of prior policies adopted during the process as it has no memory. 32

We define asymptomatic as the population infected that will never develop symptoms, 33

while pre-symptomatic patients developing symptoms after the incubation time [8, 9]. 34

For diseases with a latent period, we can have a closed form properties from 35

computing optimal mass testing schedules about the ineffective process and test 36

reliability [10]. However, the situation becomes harder for diseases with a 37

pre-symptomatic period. Other factors alter the future outcome of the strategy: The 38

patient’s clinical history, the disease ineffectiveness, the infection distribution, 39

population collective behavior, geography, mobility, ongoing testing policies. Hence, 40

the system depends on solve non-linear resource allocation problem bases on prior 41

memory of decisions and their responses. The work by Kırkızlar et al. [11] show that, 42

for a simple class of asymptomatic contagious diseases, determining the 43

cost-effectiveness of dynamic intervention strategies centered on mass testing 44

translates to a Markov Decision Process including prior data about individual test 45

outcomes and behavioral change induced by an awareness of the disease. 46

Early in the COVID-19 pandemic, it became clear that its etiology included a 47

pre-symptomatic period [8, 9, 12]. Further studies have obtained statistically reliable 48

data about its role in viral dispersion, including the secondary attack rate of 49

pre-symptomatic cases [13]. This finding helps partially to explain the effectiveness of 50

pooled testing strategies [14]. Comparative analysis of the robustness of mass testing 51

and isolation strategies indicate that pre-symptomatic and a-symptomatic sources of 52

COVID-19 transmission are significant. Clinical care needs to proactively integrate 53

mass testing with technologies capable of detecting the virus early to curb the disease 54

spread [15,16]. Simulation work on a small community with high-intensity 55

saliva-based molecular testing [17] strongly suggests that the mechanism behind the 56
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effectiveness of mass testing against COVID-19—and more generally, any infectious 57

disease with pre-symptomatic and asymptomatic populations—corresponds precisely 58

to detect and isolate large share these individuals. This is the main line of defense, 59

before the availability of vaccines to decrease the Rt. Detailed numerical models 60

confirm that these two populations contribute most to spontaneous transmissions, 61

making control by non-pharmacological intervention a challenging task [18]. Mass 62

testing at sufficient intensity increases the reliability of Rt for decision-making since its 63

representativeness of the situation is inversely proportional to the reported positivity 64

rate. It is worth remembering that the positivity rate is a function of the number of 65

tests and the sampling strategy used, and that it does not account for unobservable 66

variations introduced by pre- and asymptomatic cases [19]. 67

COVID-19 testing technologies 68

SARS-CoV-2 rapidly became a global threat since the first cases in China in 69

December 2019 [20]. It prompted an arms race to achieve reliable testing at scale [21]. 70

The world has experienced catastrophic social, economic and public health 71

consequences. The healthcare systems overwhelmed their capacity with infected 72

patients in their centers exceeding available capacity across multiple waves, putting a 73

strain on the available resources and generating excess deaths from other conditions 74

due to the saturation of patient services [22]. All nations since 2020 have implemented 75

numerous of public health interventions, such as full lock-downs, mask wearing and 76

social distancing, among others [23], and their effects were recently found to be 77

synergistic [24]. Even in the context of vaccination, nonetheless, mass testing remains 78

a powerful tool to contain, mitigate and control the spread of the pandemic at lower 79

social, economic and individual costs compared to other interventions. 80

It became clear during the first stage of the pandemic that mass testing constitutes 81

a key policy measure in the context of rapid contagion across borders [25], driven by 82

asymptomatic and pre-symptomatic individuals. Studies revealed a conservative 83

estimate of 30–45% asymptomatic cases, the latter figure including pre-symptomatic 84

ones. Iceland and Indiana (randomly selected individuals), Vo’ Italy (almost all 85

residents), the repatriate Greek persons evacuated from the UK, Spain and Turkey or 86

Latino workers in San Francisco [26–28] exemplify some locations where RT-qPCR 87

backed mass testings calculate the pre- and asymptomatic portion of the population. 88

Simulation models strongly establish that these two populations drive a large share—if 89

not the largest—of disease spread dynamics in COVID-19. Therefore, the detection of 90

silent transmission across these two populations constitutes a substantial public health 91

target. 92

COVID-19 detection through a reverse transcription–quantitative polymerase chain 93

reaction (RT-qPCR) molecular test constitutes the accepted “gold standard” for 94

clinical detection thanks to their established high sensitivity and specificity (above 95

95%) during in vitro studies [29]. Despite its accuracy, RT-qPCR requires robust 96

laboratory facilities and trained staff, both limited in number and availability. 97

Reporting of results normally takes 2–5 days depending, on the healthcare system 98

capacity to process samples and perform administrative follow-up [30]. The cost per 99

test ranges between $50 to $100 per result [31], contingent on reagent availability in 100

global markets due to competition. Both technical requirements and market 101

availability become obstacles to detection across the Global South [32], thereby risking 102

sustained contagion worldwide due to international travel patterns and prompting 103

substantial worldwide health inequalities. During high peak waves, global scarcity of 104

reagents forces to laboratories to use alternative options [33]. Mass testing using 105

RT-qPCR for the entire population is infeasible for most countries. Moreover, 106

increased testing volumes can rapidly saturate a limited number of analysis facilities, 107
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leading to increased number of contagions and further spread of the disease [34]. 108

Antigen-based tests comprise a less expensive alternative strategy to RT-qPCR. 109

Those could cost between $30 to $50 and can give a result within 15 minutes on 110

average [35], and a maximum of two hours [36]. Most antigen-based testing utilize 111

microfluidics to detect either the nucleocapsid or the spike proteins [37]. Detection 112

becomes reliable during the first week after symptoms onset [38], and in vitro studies 113

show high specificity (>99%) but low sensitivity (> 66% for nucleocapsid, >85% 114

spike) [37,39]. In practice, these figures mean that the proportion of false negatives 115

can increase to unacceptable levels when testing occurs after the week in which first 116

symptoms appear. To provide a baseline for antigen-based alternatives, WHO 117

established in 2020 a minimum sensitivity of 80% and specificity of 97% compared 118

with RT-qPCR. The Center for Disease Control and Prevention (CDC) published a 119

set of guidelines and good practices along these lines [40], including confirmatory 120

RT-qPCR test when antigen-based alternatives yield inconclusive results. 121

Reverse Transcriptase Loop Mediated Isothermal Amplification (RT-LAMP) 122

constitutes a molecular testing technology with sensitivity and specificity comparable 123

to that of RT-qPCR. Its detection limit for coding sequences of ORF1 and N ranges 124

between 10-25 copies per µL, and result times are within those of antigen-based 125

testing [41]. In addition, RT-LAMP testing requires lower bio-safety standards (level 1 126

compared to level 3 for RT-qPCR). Due to a preliminary inactivation phase, the 127

sampler sample handling can be optimized to minimize manipulation and thereby risk 128

to others, and their interpretation is colorimetric. In general, the protocol can be 129

scaled up, optimized [42] and distributed due to the use of abundant standard 130

reagents [43] and, when tests are inconclusive, these be repeated at low costs. In 131

relation to the progression of the disease, preliminary research on the sensitivity of 132

RT-LAMP found its value on 85.2% during the first nine days of infection and 44.4% 133

afterwards, and an average of 60% for asymptomatic patients [44]. Detailed accounts 134

of the technique can be found in [45–50]. 135

COVID-19 in Costa Rica: reactive testing with RT-qPCR 136

In Costa Rica, COVID-19 entered the territory via air travel during early March, with 137

the first positive case detected on March 6, 2020. During the early phase of the 138

pandemic (March-June), RT-qPCR remained as the primary line of detection, coupled 139

with contact tracing. Thanks to the low number of cases with respect to installed 140

testing capacity, simulations comparing against active cases were still representative of 141

the epidemiological reality [51]. Since contact tracing was still feasible, 7-day average 142

positivity remained below 10%, indicating that most test were proactively driven by 143

contact tracing. 144

However, from June 9, 2020, to this date, the spread of the pandemic rapidly 145

forced testing to become reactive, and reflect the administrative reality of 146

symptomatic patient reception in emergency services as revealed by a drastic jump in 147

7-day average positivity between 17% on June 10, 2020, and up to 60% on September 148

16, 2020. Given that testing capacity remained constant up to December 2020 and 149

testing was reactive, RT-qPCR is unlikely to have had played a role as a significant 150

non-pharmacological intervention. Testing capacity did not exceed 5000 daily samples 151

(0.1% of total inhabitants). A preliminary study in 2021 [52] using MCMC simulation 152

and wavelet analysis found statistically significant evidence that, based on the 153

collection of official policy interventions sanctioned by the Costa Rican government, 154

mask wearing had the largest effect in decreasing the number of hospitalizations. We 155

note in this case that hospitalizations constitute a more reliable observable when 156

positivity exceeds 10% of the total number of tests. 157

By September 28, 2020, Costa Rica introduced regulations pertaining 158
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antigen-based testing [53], where the LS-SS-012 guidelines established their use 159

alongside RT-qPCR confirmatory test. Despite this, however, their introduction and 160

use started only on December 26, 2021. In the meantime, RT-qPCR testing capacity 161

increased in the private sector, reaching up to 20,000 daily tests by January 27, 2022 162

(4% of total population). Even with this increased capacity, however positivity 163

remained above 10% and remains reactive. 164

Private healthcare providers were first authorized to perform antigen-based tests 165

aimed at satisfying requirements during the re-opening of air travel and certifying 166

COVID-19 positivity for sick leaves and remote work in the private health sector. A 167

negative antigen-based test performed by these private providers does not require an 168

RT-qPCR confirmatory test, though. This assumes implicitly that negative patients 169

are possibly healthy, while a negative result does not entirely discard the potential 170

infection in the patient due to the low sensitivity’s test. Only much later their open, 171

the authorities authorized commercial import of antigen-based tests for the public. 172

Hence, the antigen-based testing cannot was not part of a mass testing strategy in 173

Costa Rica. 174

As of today, Costa Rica lacks policies, guidelines and protocols for mass testing 175

against COVID-19. Despite mounting international evidence demonstrating their 176

ability to control the ongoing pandemic at a lower societal and economic cost 177

compared to other non-pharmacological interventions such as mobility restrictions. 178

Mass testing would therefore bring a significant improvement in the ability of the 179

public health system to decrease the probability of service saturation during high-peak 180

weaves and hence ensure continuity of service across all health services. To do so, 181

however, in the context of the constraints of a small emerging economy with a high 182

economic inequality driven by a complex wage structure (G = 0.52) [54] requires 183

optimizing the delicate balance between demographic accessibility, cost-effectiveness 184

and detection capability; doing this entails compromising guided by rational means. 185

The most simplistic strategy of relying solely on RT-qPCR, the dominant one to 186

this date, remains costly and impractical. Tilting the balance towards antigen-based 187

testing leads to false security environment. In particular, because the technology leads 188

to an increase of false negatives. This factor combined with the arising of new 189

aggressive variants, it will rekindle the infection process by raising the number of free 190

agents in the population. 191

A more balanced—and possibly more effective—approach would aim to partition 192

the population into groups based on their risk exposure and then apply individual 193

strategies. If risk levels are appropriately assigned to groups by predicting them via 194

attributes of susceptible individuals in the population and the probabilistic 195

manifestation of risk matches the capabilities of available testing technologies, then 196

developing a mass testing strategy becomes feasible. We foresee multiple advantages 197

to adopting this approach. 198

The first benefit entails the ability to perform the simultaneously largest and most 199

informative number of tests within the population. Pooled testing strategies share this 200

advantage, in which the statistical structure of the measurement maximizes 201

information gains with a limited number of individual measurements [14]. The second 202

benefit corresponds to strategically extending the reach beyond those exposed and 203

infected into susceptible populations, thus regaining a proactive stance with a limited 204

number of tests and testing technologies. Doing so enables an increasingly 205

personalized mass testing meta-strategy in which the testing technology fits the nature 206

and features of repeated risks individuals must face [55]; this has already been 207

performed across emergency departments [56] with RT-qPCR validation. As shown by 208

Meystre et al., the effectiveness of such predictive analytics depends strongly on 209

achieving sufficiently high precision and recall [57]. In situations of limited information 210
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and information quality, relaxed predictive analytics can still ensure expanding into 211

the susceptible region as desired. Based on the latter, two broad risk categories can be 212

drawn: a high-risk group, and a low-risk group. 213

The high-risk group contains all symptomatic individual, their epidemiological 214

nexus, healthcare workers and essential workers with frequent viral exposure. It 215

includes public transportation drivers, cleaning and maintenance workers, face-to-face 216

customer service representatives, and educators [58]. All individuals in the high-risk 217

group have salient features that ease their identification. Some of these include 218

economic status, access to medical services, education, and geographic location among 219

others. Work by Escobar et al. [59] applied a Gradient Boosting Machine (GBM) to 220

clinical and sociodemographic factors to optimize pooled testing, measured by 221

computing the efficiency between Dorfman’s pooling and matrix pooling strategies as 222

well as one-stage and two-stage strategies. Reported efficiency gains were significant. 223

In this category, given the frequency and non-contingency of their interactions, the 224

risk for others becomes symmetrical, and correspond to the signature of 225

superspreaders [60]. Hence, ensuring a precise diagnosis is paramount to preventing 226

superspreading events after successful exposure and, therefore, RT-qPCR must be 227

used. Assuming a power-law structure in the distribution of superspreaders [61], the 228

number of test required remains approximately constant for a fixed population size 229

and interaction structure. Were the stratified structure to broaden at the top, the 230

national guides of antigen-based test with confirmatory RT-qPCR become the next 231

reasonable choice. 232

The low-risk group comprises individuals not yet exposed to the virus and whose 233

features do not lead to a correspondingly high probability of contagion. It constitutes 234

the natural target for mass testing campaigns, and the largest potential gain for 235

proactive screening of pre- and asymptomatic populations. More specifically, this 236

group contains primarily individuals who telecommute or regularly practice social 237

distancing most of the time. We expect of this group low prevalence with great 238

potential susceptible to be infected. Controlling both populations would be relieved 239

medical centers, specially in hospital beds or ICUs. 240

To increase detection coverage in the low-risk group, we propose using a pooling 241

technique. It has its origin in studies in the decade of 1940 which aimed at increasing 242

the capacity of the detection for syphilitic men [62]. The scheme divides the total 243

number in different pools and tests each group. The negative groups declare all the 244

individuals as negative. With the positive ones, another round of individual testing 245

allows to detect the infected individual(s). Doing so maximizes tests that can be 246

carried out with a reduction in time, money and chemical reagents. Other complex 247

pooling schemes are possible as to increase the number of positive discovering [63]. 248

Performing multiple tests to the low-risk population constitutes an alternative to 249

pooling. This scheme implies weekly or biweekly tests to same group of individuals. 250

The work of [64] showed that consecutive testing reduced the number of days due to 251

sick leaves and overall transmission. Other studies have showed that frequent testing 252

reduces the positivity rate among workers [65–67]. 253

This work studies the statistical and mathematical mechanisms behind massive 254

testing strategies when using a classifier to detect subjects at risk prior to testing. We 255

explore three different strategies. Strategy 1 follows guidelines for the high-risk group 256

ignoring the low-risk one. For the low-risk group, Strategy 2 uses a pooling technique, 257

while Strategy 3 uses a multiple testing scheme. We formulate a probabilistic model to 258

quantify the costs, positive captured and number of tests per person required in each 259

strategy. To the best of our knowledge, the Costa Rican authorities have not 260

implemented a similar study. More generally, understanding the statistical properties 261

of testing strategies driven by classification of susceptible individuals into risk 262
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categories has the potential of maximizing the effectiveness of existing resources under 263

constrains of nations in the Global South. 264

Materials and methods 265

In this study, we performed an in silico evaluation of the behavior of different massive 266

testing strategies preceded by a patient classification mechanism. This section 267

describes the contextual framework of our work. 268

Sensitivity, specificity, PPV and NPV 269

Let DP be the condition of having the disease (i.e. infected) and DN the condition of 270

being no infected. The prevalence is estimated by P(DP ) such that 271

P(DN ) = 1− P(DP ). Let also N be the total population to undergo testing. Thus, 272

N × P(DP ) are the true infected and N × (1− P(DP )) the true healthy people. 273

Denote as Rj
P and Rj

N the results positive and negative of each test, respectively. In 274

addition, let j = PCR, Ag or LAMP denote each available testing technology, 275

RT-qPCR, Antigen or RT-LAMP respectively. We can thus define sensitivity the 276

proportion of people infected who are correctly identified as positive in the test, or 277

P(Rj
P | DP ). Specificity constitutes the proportion of people not infected who are 278

correctly identified as negative in the test, or P(Rj
N | DN ). 279

When the prevalence is known, the relationships for testing positive or negative in 280

a test become, 281

P(Rj
P ) = P(Rj

P | DP )P(DP ) + (1− P(Rj
N | DN )) (1− P(DP ))

P(Rj
N ) = 1− P(Rj

P ).

Meanwhile, the positive predicted value (PPV) is the probability of being actually 282

positive when infected, or P(DP | Rj
P ). In contrast, the negative predicted value 283

(NPV) is the probability of being negative while not having the disease, or 284

P(DN | Rj
N ). By virtue of Bayes’ theorem, 285

P(DP | Rj
P ) =

P(Rj
P | DP )P(DP )

P(Rj
P )

, (1)

P(DN | Rj
N ) =

P(Rj
N | DN )P(DN )

P(Rj
N )

(2)

In general, sensitivity and specificity are fixed values given a testing technology. 286

Nevertheless, NPV and PPV depend on the current prevalence. More generally, PPV 287

increases and NPV decreases as a function of increasing prevalence. Given RT-qPCR 288

testing has high sensitivity and specificity, PPV and NPV values are normally above 289

90% regardless the prevalence. 290

Antigen-based testing requires special attention due to its low sensitivity (80%). 291

For a population with 25%-50% prevalence, antigen-based testing will yield a PPV of 292

90%-96% given that the test is used 5 days after symptom onset. Increasing 293

prevalence, for example, above 36% yields a decrease in NPV decreases below 90%, 294

producing many false negatives. In other words, more than 10% of tested patients 295

were declared as negative when in reality they were infected. The procedure to follow 296

in this case is to collect another sample across individuals whose results were negative 297

results and perform an RT-qPCR confirmatory test. 298
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Prevalence in the range of 1%-10% entails low impact from false negatives 299

(NPV=98%-100%). However, an unacceptable number of false positives arises when 300

PPV reaches values between 21%-75%. That is, large quantities of healthy people are 301

being declared as infected when they are not, with potentially negative impacts to 302

workforce availability. This can become particularly significant when essential workers 303

are involved. The recommended strategy according to the [40] for this group therefore 304

becomes to apply antigen-based testing with high sensitivity to all the population for 305

an initial screening, and to either to perform a second round of antigen-based testing 306

(with higher specificity) or an RT-qPCR test those whose first test was positive. 307

Mass testing strategies: Pooling and multiple testing 308

Increasing the effectiveness of mass testing can be achieved through pooling or 309

multiple testing. Pool testing requires three important conditions to work: (a) if all 310

members in a group are negative then the group yields negative in the pool analysis; 311

(b) a single positive sample within a group makes the group test result 312

positive—further testing is necessary to identify the true positives—and (c) the 313

fraction of expected positive cases is small. Current literature describes two large 314

classes of pooling strategies: adaptive and non-adaptive. Adaptive ones require 315

incremental results to further stratify testing across the population. Non-adaptive 316

methods set the pooling scheme prior to testing, and each group is tested independent 317

of each other. A detailed review of those techniques can be found in [63]. To simplify 318

the estimation process, we used the most common algorithm pooling strategy, the 319

one-dimensional (1D) protocol. This technique dates back to 1943 [62] when it was 320

used to screen patients with syphilis. This scheme consists of mixing a group of 321

samples, taken in batches. The analysis is then carried out only over these batches. If 322

one batch is positive, then all members must be analyzed individually. 323

The main limitation with this technique that it becomes useful only at low 324

prevalence levels. Consider, for example, 100 people divided into groups of 10 with 325

only 1 positive patient (prevalence of 1%). In this situation, 9 of 10 groups will be 326

assigned a negative result. The remainder group with one positive case should be 327

tested entirely again. The strategy described above required 20 tests instead of 100. In 328

contrast, if 10 people are infected and each group has one positive case in each group 329

(prevalence of 10%), this pooling strategy results in a total of 110 tests. Other issues 330

include loss of sensitivity due to dilution or possible artifacts introduced by the actual 331

sample collection protocol [30,39]. 332

When pooling schemes are infeasible, multiple testing provides a straightforward 333

solution. Results in [18] show that weekly testings and 2-week periods of isolation 334

works best when transmission rates are high. If transmission rates decrease, then 335

monthly testings and 1-week isolation periods provide the best solution to maintain 336

the economy afloat. Re-testing strategies can reduce the sick leaves compared with no 337

testing at all [64]. Two unpredictable factors make hard to translate results into policy. 338

First, the asymptomatic and pre-symptomatic fractions of the population at any given 339

time tend to be most uncertain, particularly when testing strategies are being devised; 340

knowing how they behave explains the rate of disease spreading. Second, local 341

transmission rates are modulated by multiple factors where little or no control is 342

possible, including population, density, mitigation policies and local immunity [18]. 343

The unpredictable behavior of disease transmission and the evolving response of 344

the COVID-19 virus to survive across human populations [68] correlates well with 345

sustained, rapid waves of transmissions. Governments continuously—yet 346

imperfectly—have adapted to rising conditions, and then vaccines became globally 347

available with an uneven distribution. The wide differences in testing strategies across 348

countries, driven by limiting factors, point to the inadequacy of one-size-fits-all 349

September 5, 2022 8/37

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted September 9, 2022. ; https://doi.org/10.1101/2022.09.05.22279618doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.05.22279618


recommendations [69]. In this sense, remaining skeptical of the efficacy of theoretically 350

optimal approaches appears to be essential when applied to real situational landscapes 351

in which suboptimal strategies may be the most cost-effective ones. To ground this 352

discussion, the following section focuses on the Costa Rican response. 353

Costa Rican testing guidelines 354

In the Costa Rican case, the Ministry of Health in [53], defined guidelines for 355

antigen-based testing as an alternative to RT-qPCR, depending on whether the 356

patient is tested in public or private health services. The discriminating element is the 357

use of RT-qPCR confirmatory test after an antigen-based test outcome is negative 358

within the public healthcare system. The private system is excluded from required 359

confirmatory testing. These guidelines define a suspicious patient (i.e., high risk) when 360

both symptoms (e.g., high fever, cold, loss of smell sense) and a well identified 361

epidemiological nexus (e.g., living with positive individuals, recent travel history) are 362

present. Asymptomatic patients are deemed low risk. Therefore, the underlying 363

principle establishes that high-risk patients must go to the public healthcare system, 364

while the low-risk ones are directed to the private one. 365

Costa Rican guidelines directly follow CDC recommendations [40], which 366

distinguish between congregate and community living setting. Congregate living 367

entails facilities where people live in proximity to each other such as long-term care 368

facilities, correctional and detention facilities, homeless shelters, and other group 369

shelters. Community living is defined in contraposition to congregate living. We note 370

that Costa Rican guidelines have failed to consider prevalence across the population as 371

a significant factor in how they differentiate between public and private health services. 372

The main assumption behind this, that every patient tested in the private service has 373

a low-risk of infection and that consequently antigen-based testing is reliable, may not 374

hold in the complex reality of disease spread of a small size, emerging economy. 375

High and low risk classification 376

Any successful mass testing strategy should be able of to screen rapidly individuals 377

while controlling as strictly as possible for false negatives and positives. Three 378

elements are reported in this work to achieve this goal: cost-effectiveness, positive rate 379

and number of tests per person. We focus on the sequence of events leading to a 380

confirmatory test depending on whether the person is symptomatic or not and the 381

current level of prevalence of the disease. We hence propose a set of alternative 382

configurations informed by features of the public-private healthcare system discussed 383

above. Our work includes a two-step strategy for massive testing: classifying the 384

patients into high risk and low risk categories, and later applying a suitable adaptive 385

mass testing strategy per group. 386

The general strategy proceeds as follows: 387

1. Collect or access patient data in advance corresponding to factors that determine 388

the probability of becoming exposed to COVID-19. Due to privacy reasons or 389

local legislation, the patient data could be confidential. In those cases, we can 390

use aggregated statistics and estimate synthetic models to simulate a usable data 391

table. 392

2. Predict patient risk categories based using data above. All symptomatic patient 393

or those with an epidemiological nexus are automatically classified as high-risk 394

regardless of prediction outcomes. 395

3. Select a strategy based on the predicted risk category: 396
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(a) High-risk group: provide antigen-based testing if symptoms started 5 397

days or less, or provide RT-qPCR testing otherwise. All negative outcomes 398

must be confirmed with RT-qPCR. 399

(b) Low-risk group: 400

i. Use a pooling technique with a pool size of five. 401

ii. Perform antigen-based testing across all groups, and perform 402

antigen-based confirmatory testing to all members of groups with at 403

least one positive. 404

The effectiveness of each strategy will depend on the prevalence, sensitivity, 405

specificity, PPV and NPV of each test, as well as on the accuracy of the predictive 406

model. As mentioned before, we explore only the theoretical properties of such 407

strategies assuming an arbitrary predictive model. Models can be fitted using a wide 408

variety of information (i.e., residence-work location, socioeconomic status, 409

comorbidities, recent travel). Then, we will use combined characteristics of RT-qPCR 410

and Antigen tests to create a massive strategy for all population. 411

For the purposes of this study, define CPCR = $100 and CAg = $50 as the cost of a 412

single RT-qPCR and antigen-based test respectively. Administrative expenses, fees and 413

other cost were excluded. We assume a total population of N = 1000 individuals. For 414

instance, using RT-qPCR test for the entire population yields N × CPCR = $100000. 415

We denote a high-risk classification outcome by MH , and a low-risk one by ML. 416

We define the classifier’s sensitivity as P(MH | Rj
P ), which contrasts the prediction 417

against laboratory test results for each testing technology j. This value estimates the 418

proportion of people being classified as high-risk when they have indeed a positive test 419

result. For simplify, we assume the same sensitivity for RT-qPCR and antigen-based 420

tests. We establish then 421

P(MH | RP ) = P(MH | RPCR
P ) = P(MH | RAg

P ).

Meanwhile, the specificity P(ML | Rj
N ) corresponds to the proportion of people 422

classified as low-risk having a negative result. Again, we assume that both 423

technologies have the same specificity, and we denoted just as P(ML | RN ). For the 424

purpose of our computational study, we explored classifier combinations of sensitivity 425

and specificity at 30%, 60% and 90% for both variables. 426

Knowing the prevalence we can estimate 427

pjMH
= P(MH | RP )P(Rj

P ) + (1− P(ML | RN ))P(Rj
N ),

pjML
= 1− pjMH

,

the probabilities of being classified high or low risk depending on the testing 428

technology. To combine both probabilities, we use the logit transformation 429

logit(p) = log

(
p

1− p

)
(3)

which leads to 430

P(MH) = logit−1

 logit
(
pPCR
MH

)
+ logit

(
pAg
MH

)
2

 (4)

P(ML) = 1− P(MH). (5)
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The corresponding values for PPV and NPV are P(Rj
P | MH) and P(Rj

N | ML). 431

Using Eq. 4 and 5, these become 432

P(Rj
P | MH) =

P(MH | Rj
P )P(R

j
P )

P(MH)

P(Rj
N | ML) =

P(ML | Rj
N )P(Rj

N )

P(ML)

We obtain combined probabilities P(RP | MH) and P(RN | ML) via a similar 433

treatment with the logit transformation. 434

In the context of antigen-based testing, we denote as S−5 the event of a patient has 435

less than 5 days since the beginning of symptoms and S+5 otherwise. Since neither the 436

high-risk condition nor the result of the test alter the distribution of patient 437

symptoms, we assume that S−5 and S+5 are independent of MH , Rj
P or Rj

N . While 438

this assumption may not hold in all the cases, it will not affect the results due to the 439

theoretical nature of this study. To re-estimate the probability correctly when the 440

assumption does not hold, a detailed study of the patients should make results more 441

precise in order to confirm the hypothesis. 442

In our computational experiments, we set P(S+5) with values of 30%, 60% and 443

90%. We define P(S−5) = 1− P(S+5). We assume a greater proportion of RT-qPCR 444

tests used directly on high-risk patients when P(S+5) increases, and the number of 445

antigen-based tests used at the group level increases when P (S−5) increases. The 446

following sections define formulas for the overall cost, number of tests per person and 447

number of positive reported of each strategy. 448

Strategy 1: antigen-based testing 449

We model this scenario based on the Costa Rican public healthcare guidelines [53]. 450

Figure 1 depicts the steps involved in this strategy, which adds a new decision layer 451

prior to laboratory testing (blue box). The layer uses a classifier to determine 452

high-risk (red box) or low-risk (green box) individuals. Using this label, the strategy 453

applies different mechanism to each group. The assumptions for this scenario are: 454

1. Patients in the low-risk group (ML) are not tested. 455

2. Patients in the high-risk group (MH) are tested according to symptom onset: 456

(a) Patients with less than 5 days since the beginning of symptoms (S−5) 457

undergo antigen-based testing. 458

i. If the test is positive (RAg
P |MH), the patient is declared positive. 459

ii. If the test is negative (RAg
N |MH), apply a confirmatory RT-qPCR 460

(CPCR) test. 461

(b) Apply an RT-qPCR test for patients with more than 5 days after symptom 462

onset (S+5). 463

To estimate overall costs, given by the number of test per person and positive 464

captured by the strategy, we define formally each component. First, the population at 465

risk is given by 466

NMH
= N × P(MH)

Since we only apply tests to high risk patients, we can establish the number of tests 467

applied for each technology, 468
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Data

Predictive
model

Low-risk
patient

P(ML)

High-risk
patient

P(MH)

Do not take any
 further action

Beginning of symptoms
in 1 to 5 days

Beginning of symptoms
in more than 5 days

Antigen test
(CAg)

Antigen result 
positive

P(RP|MH)

Antigen result 
negative

P(RN|MH)

Quarantine

Confirmatory
RT-qPCR test
(CPCR)

Positive

Fig 1. Strategy 1, mass testing with RT-qPCR and antigen-based technologies.
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TAg
1 = NMH

× P(S−5) (6)

TPCR
1 = NMH

×
(
P(S+5) + P(S+5)P(RAg

N |MH)
)

(7)

and, then, the cost for this strategy becomes

C1 = CAg TAg
1 + CPCR TPCR

1

For the number of tests per person, we simply compute 469

T per person
1 =

TAg
1 + TPCR

1

NMH

For the number of positive cases reported, we estimate the population which has 470

undergone either antigen-based or RT-qPCR testing and multiply it by the probability 471

of having a positive result in each case. This estimate is 472

P Reported
1 = NMH

P(S−5)

+
(
P(RAg

P | MH) + P(RAg
N | MH)P(RPCR

P | MH)
)

+NMH
P(S+5)P(RPCR

P | MH)

Strategy 2: pooling 473

We maintain all features from Strategy 1, but include a pooling component for the 474

low-risk group (Figure 2). The assumptions are 475

1. The high-risk group follows Strategy 1 476

2. Pooling is applied to the low-risk group (ML), with pool size of 5 samples. 477

Similarly, as before, we define the high-risk group as NM and the low-risk one as 478

NL = N × P(ML). Since we did not modify the number of antigen-based tests, we use 479

the same value TAg
1 as in formula (6). The RT-qPCR tests applied in this scenario 480

disaggregate into two components. The first one is the same in equation (7), called 481

here TPCR
1 . For the second one, we need to determine the number of tests used in the 482

pooling strategy. 483

The first element to establish is the prevalence among the low-risk subpopulation. 484

Given the model, we need to estimate those individuals which are expected to be 485

positive given the ML classification. The negative predictive value of the model is 486

given by P(RN | ML). Therefore, we define the prevalence in this subgroup as the false 487

omission rate estimated by pL = 1− P(RN | ML). 488

Assuming that no loss of sensitivity occurs in the pooling technique and that the 489

sensitivity of an RT-qPCR test is P(RPCR
P | DP ), we estimate the number of positive 490

groups 491

P groups
2 =

[
1− (1− P(RPCR

P | DP ) pL)
g
]
NML

(8)

with given a total test population of size NML
divided into groups of size g. The total 492

number of test required are 493

T Pooling
2 = g

(
1

NML

+ P groups
2

)
. (9)
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Data

Predictive
model

Low-risk
patient

P(ML)

High-risk
patient

P(MH)

Pooling samples
with RT-qPCR

Beginning of symptoms
in 1 to 5 days

Beginning of symptoms
in more than 5 days

Quarantine

Positive

Antigen test
(CAg)

Antigen result 
positive

P(RP|MH)

Antigen result 
negative

P(RN|MH)

Confirmatory
RT-qPCR test
(CPCR)

Positive

Fig 2. Strategy 2. Strategy 1 is supplemented with pooling for low risk patients.
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Having those elements, we define the total number of RT-qPCR tests applied as 494

TPCR
2 = TPCR

1 + T Pooling
2

And the total cost is, therefore, 495

C2 = CAg TAg
2 + CPCR TPCR

2

The estimate the number of tests per person required becomes 496

T per person
2 =

TAg
2 + TPCR

2

N
.

For the number of positive cases reported, we have again two components. First, 497

we have the same number as Strategy 1 for the high-risk population. For the low-risk 498

branch, we need to consider only those groups with positive test outcomes. We 499

estimate the probability that their individual test in the Dorfman scheme attains a 500

positive result. We therefore multiply the prediction outcome for pooling by the 501

positive predictive value of an RT-qPCR test and by the group size, 502

P Reported
2 = P Reported

1 + g P Pooling
2 P(RPCR

P | ML).

Strategy 3: consecutive antigen-based testing 503

Another alternative to increase the efficiency of Strategy 1 entails applying consecutive 504

tests to the low risk population (Figure 3). This requires applying an antigen-based 505

test to all low-risk patients, and in case of a positive result, a second confirmatory test 506

should be performed within the next week or two. The measure is suboptimal due to 507

false positive rates in current antigen-based testing technologies. Confirmatory testing 508

of positive cases prevents an increase in sick leaves or costs derived for sudden 509

adaptation to unexpected remote work requests. However, it has been shown that 510

even suboptimal measures were the best governments could achieve when pandemic 511

waves emerge [18]. 512

The assumptions behind this strategy are 513

1. All patients in the high-risk group follows Strategy 1. 514

2. All patients in the low-risk group (ML) undergo antigen-based testing. 515

(a) If the result is negative, we declare the person negative. 516

(b) If the result is positive, we apply a confirmatory antigen-based test within 517

one or two weeks. 518

The number of antigen-based test has two components due to re-testing. For the 519

high-risk population we use the same value as Strategy 1, TAg
1 . For the low-risk 520

population, all patients undergo a first round of testing, and positive patients undergo 521

a second one. At the end, the total number of antigen-based tests required during 522

re-testing is 523

TRetest
3 = NML

(
1 + P(RAg

P | ML)
)

(10)

and the total number of antigen-based tests becomes 524

TAg
3 = TAg

1 + T Retest
3 (11)
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Data

Predictive
model

Low-risk
patient

P(ML)

High-risk
patient

P(MH)

Antigen test
(CAg)

Beginning of symptoms
in 1 to 5 days

Beginning of symptoms
in more than 5 days

Antigen result 
positive

P(RP|ML)

Antigen result 
negative

P(RN|ML)

Retest in
 one or two weeks

Quarantine

Positive

Antigen test
(CAg)

Antigen result 
positive

P(RP|MH)

Antigen result 
negative

P(RN|MH)

Confirmatory
RT-qPCR test
(CPCR)

Positive

Fig 3. Strategy 3. Instead of pooling as in Strategy 2, all low-risk patients undergo
antigen-based testing, and positive cases are required to have a similar, confirmatory
test within one or two weeks.
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RT-qPCR tests applied are exactly the same as the Scenario 1, TPCR
1 . The total 525

cost due to testing for Strategy 3 is 526

C3 = CAg TAg
3 + CPCR TPCR

1 (12)

For the number of tests per person, we simply estimate 527

T per person
3 =

TAg
3 + TPCR

3

N
(13)

Finally, the number of positive cases reported divides into two components. First, 528

we have the same number of positive cases as Strategy 1 for the high-risk population. 529

For the low-risk branch, we need to consider only the test that were positives in the 530

first or second round. This estimate is defined as 531

P Reported
3 = P Reported

1 +ML P(RAg
P | NL)

2. (14)

Strategy 4: the role of saliva-based testing 532

Prior strategies model the current state of healthcare guidelines Costa Rica, anchored 533

in RT-qPCR tests as the main line of defense which does not scale for mass testing 534

purposes. Antigen-based testing has lower costs, but its low sensitivity makes 535

confirmatory tests of negative results still necessary. An alternative solution is to 536

include saliva-based RT-LAMP testing into the mix as suggested by a prior study [50]. 537

RT-LAMP and other saliva-based testing technologies reach values above 90% for 538

sensitivity and above 95% for specificity, and can be adapted quickly to new variants. 539

In addition, the sampling process is inexpensive, requires lower biosafety standards 540

and trained personnel than nasopharyngeal swabs. For a detailed account of a 541

successful application of saliva-based technologies to COVID-19 prevention and 542

mitigation, see [46,70]. 543

The fourth strategy proposed here seeks to overcome the flaws of other technologies 544

by targeting them to appropriate groups based on a data-driven assessment of 545

individual patient risk. We first separate high-risk patients further into essential 546

workers and other high-risk. For essential workers, an RT-qPCR test is mandatory to 547

ensure continuity of services without risking high numbers of false positives or 548

negatives. Other high-risk patients undergo saliva-based RT-LAMP testing, well 549

suited to in particular for high peak waves and massive screening. To capture all 550

positive cases, a confirmatory RT-LAMP should be performed over negative cases. 551

Finally, the low-risk group is subjected to antigen-based testing at home or in 552

point-of-care (POC) centers. As with Strategy 3, all positive cases must confirm their 553

result with a second test within one or two weeks. 554

The main assumptions behind this strategy are: 555

1. Essential workers are tested with RT-qPCR. 556

2. Patients in the high-risk group are tested with RT-LAMP. 557

(a) If the result is positive, we declare the person as positive. 558

(b) If the result is negative, we perform a confirmatory test by RT-LAMP. 559

3. Patients in the low-risk group (ML) are tested with antigen-based tests. 560

(a) If the result is negative, we declare the person as negative. 561
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Data

Predictive
model

Essential
workers

P(ME)

(Empirical estimate)

Low-risk
patient

P(ML)

High-risk
patient

P(MH)

Antigen test
(CAg)

RT-LAMP test
(CLAMP)

RT-qPCR test
(CqPCR)

RT-qPCR result 
positive

P(RP|ME)

RT-qPCR result 
negative

P(RN|ME)

Quarantine

Antigen result 
positive

P(RP|ML)

Antigen result 
negative

P(RN|ML)

Retest in
 one or two weeks

Positive

RT-LAMP result 
positive

P(RP|MH)

RT-LAMP result 
negative

P(RN|MH)

Confirmatory
RT-LAMP test
(CLAMP)

Positive

Fig 4. Strategy 4. The high-risk group in Strategy 3 splits into essential workers
(RT-qPCR) and other high-risk patients to be tested using RT-LAMP. Low-risk
patients proceed as with Strategy 3.
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(b) If the result is positive, we apply a confirmatory antigen-based test in one 562

or two weeks. 563

We define the new quantity 564

NME
= N × P(ME) (15)

where ME represents the class of essential workers on this Strategy. For simulation 565

purposes, we set the proportion of essential workers at a fixed value of 1%. The value 566

is a conservative estimate based on the 1.25% of total healthcare workers in Costa 567

Rica: 2470 in the Ministry of Health, 62814 in the public social security from a total 568

population of 5213374 inhabitants [71–73]. Therefore, we estimate the high- and 569

low-risk groups with the remainder of the population, 570

NMH
= (N −NME

)× P(MH)

NML
= (N −NME

)× P(ML) (16)

The number of tests applied in each case will depend on the technology. For 571

RT-qPCR, we have 572

TPCR
4 = NME

(17)

RT-LAMP tests only apply to the high-risk group, with a confirmatory test in case 573

of negative result, 574

TLAMP
4 = NMH

+NMH
P (RN | MH) . (18)

For antigen-based tests, the number is equal to that in Strategy 3, TAg
4 = TRetest

3 . 575

The strategy total costs become 576

C4 = CPCRTPCR
4 + CLAMPTLAMP

4 + CAgTAg
4 (19)

And for the number of tests per person, we estimate 577

T per person
4 =

TPCR
4 + TLAMP

4 + TAg
4

N
(20)

Finally, the number of positive cases can be decomposed into 578

PReport
4 = NME

P
(
RPCR

P

)
+NMH

P
(
RLAMP

P | MH

) (
1 + P

(
RLAMP

N | MH

))
+NML

P
(
RAg

P | ML

)2
(21)

Results 579

In this section, we compare the strategies above according to their costs (Ci), number 580

of tests per person (T per person
i ) and number of positive cases reported (PReported

i ) for 581

i = 1, 2, 3. The total population used is N = 1000 and prevalence ranges from 0% to 582

30%. The cost of an RT-qPCR test is set to $100 and an antigen-based test to $50. 583

Across all figures, the red dashed line is the cost of applying an RT-qPCR test to 584

each true infected. Formally, it is equal to 1000× $100× P(DP ). Those reported as 585
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positive correspond to the number of true infected individuals 100× P(DP ). For the 586

number of tests per person, we set to the constant 1 indicating a baseline. Blue lines 587

represent the percent of antigen-based tests used in each strategy according to the 588

proportion of people showing symptoms for less than 5 days. From dark to light blue, 589

we assume proportions of 25%, 50% and 75%. The primary x axis represents percent 590

prevalence and the y axis varies per target: cost in dollar, number of people or tests 591

per person. Secondary axes show the model specificity and sensitivity used in each 592

case. Our code is available in a GitHub repository for reproducibility purposes1. 593

Costs 594

Computational experiments show that using the pre-classifier reduces the total cost by 595

correctly identifying the high-risk individuals in Strategy 1 (Figure 5). As the 596

pre-classifier increases its predictive accuracy, cost decreases to only for those truly 597

infected. Notice that specificity has a greater effect in reducing cost relative to 598

sensitivity. Since this strategy excluded low-risk individuals, false negatives do not 599

contribute to the overall cost. Conversely, false positive cases appear (i.e., false 600

high-risk individuals), the strategy applies an antigen-based test with a confirmatory 601

RT-qPCR in case of negative outcome. 602

Sensitivity and specificity modulate the effectiveness of the classifier to rebalance 603

the overall cost structure depending on prevalence. Specificity determines the sign of 604

the slope of the resulting curves, while sensitivity determines the percentage of 605

antigen-based tests applied to the population. Proportionally applying more 606

antigen-based tests becomes more effective at prevalence values higher than 10% with 607

tests having high specificity (90%) and medium to high sensitivity (60%, 90%). 608
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Fig 5. Total cost structure for Strategy 1. Using RT-qPCR tests only for the
high-risk group predicted by the pre-classifier on symptomatic patients matches
minimizes cost while maximizing discovery of true positives at high specificity and
sensitivity values, but only for a limited portion of the population.

1See: https://github.com/maikol-solis/code_paper_massive_testing_strategies
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For Strategy 2, false positive cases represent the largest cost factor (Figure 6), 609

similar to Strategy 1. However, individuals misclassified as low-risk individuals do not 610

increase dramatically overall costs, since it becomes a natural an overhead already 611

accounted for in the method. Misclassifying high-risk individuals leads to incorrectly 612

applying Strategy 1 to a healthy individual, or to applying a pooling technique to a 613

group with at least one infected individual. 614

We observe how the pre-classifier helps to reduce the total cost identifying correctly 615

the high-risk individuals. When the pre-classifier has high levels of sensitivity and 616

specificity, we achieve outcomes similar to the Strategy 1 with a small overhead due to 617

the cost introduced by pooling. Again, as the model becomes more accurate, this 618

overhead decreases. Sensitivity and specificity play the same role as in Strategy 1. 619
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Fig 6. Total cost structure for Strategy 2. Pool size equals 5 samples. Cost outcomes
are similar to Strategy 1 at very low prevalence, while a larger population receives
testing thanks to the application of a pooling technique. Cost structure increases with
prevalence, while specificity makes the effect of different antigen-based testing
proportions less noticeable.

In Strategy 3 (Figure 7), total costs are higher than the Strategy 1 or Strategy 2 620

due to massive testing with antigen-based technologies for the low-risk group. Even if 621

it is possible to classify correctly most of the population according to their risk, the 622

minimum will be of at least $60,000 for each 1000 individuals. 623

Finally, Strategy 4 has a similar cost structure compared with the pooling scheme 624

in Strategy 2 (Figure 8).Using maximally targeted technologies to each type of patient 625

is similar to applying complex (and difficult) techniques like pooling. Given that we 626

use antigen-based testing without the restriction of incubation periods, sensitivity is 627

the only factor affecting the sign of the slope. 628

Positive Cases Reported 629

In the case of positive reported, Strategy 1 performs well in conjunction with a prior 630

classification. Even when ignoring low-risk individuals, we capture almost all true 631

positives when the sensitivity and specificity of the model is 90%. Sensitivity helps to 632
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Fig 7. Total cost according to Strategy 3. Costs are larger than for Strategies 1 and 2
due to an increased number of antigen-based tests applied to the low-risk group. Cost
structure becomes less markedly modulated by prevalence.
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Fig 8. Total cost according to Strategy 4. Introducing RT-LAMP testing significantly
decreases total costs compared with all other strategies.
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discard potential true negatives, because it has determined correctly the majority of 633

possible positive cases. When the sensitivity is low, the strategy misses those true 634

positives who are thus left untested. 635
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Fig 9. Number of individuals reported as positive according Strategy 1. Model
sensitivity critically modulates detection of true positive cases.

Strategy 2 includes the low-risk individuals (Figure 10), with an increase in 636

positive reported from the start, decreasing the number of mismatches. Even when the 637

classifier has low sensitivity and specificity, pooling captures the infected individuals 638

identified as low-risk at the expense of higher costs than only using RT-qPCR. 639

Strategy 3 (Figure 11) increase detection of true positives even more with respect 640

to Strategy 1, specially at low prevalence contingent on reaching high sensitivity 641

(90%); the number of false negatives increases at high prevalence below this sensitivity 642

value. A large group of infected individuals are declared as low-risk. Combined with 643

the application of antigen-based tests which have lower sensitivity than RT-qPCR 644

ones, the probability of capturing true positives is reduced. 645

Strategy 4 (Figure 12) shows a similar pattern as Strategies 1 and 3. We observe 646

that all functions are concave, implying improvements in detection as prevalence 647

increases for sensitivity beyond 60%. Even when the outcome of the classifier 648

resembles that of Strategies 1 and 3, the robustness of the curves indicates that 649

RT-LAMP reduces the variability introduced by antigen-based testing. 650

Finally, we observe that sensitivity below 50% appears to yield convex curves for 651

number of positives reported, while curves corresponding to values above 50% seem to 652

be all concave for strategies 1-3; this is modulated by the number of antigen-based 653

tests when applicable. This is significant, since it delineates a response function in 654

terms of testing efforts needed at a certain value of prevalence given a current 655

combination of resources. The higher the prevalence, the more likely it is to increase 656

detection of true positives. Similarly, the more antigen-based tests are used, the more 657

likely false negatives will appear. However, it also implies that the impact of 658

RT-LAMP and similar technologies is significant, since even at low sensitivity of the 659

classifier the effort function is concave. 660
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Fig 10. Number of individuals reported as positive according Strategy 2. Pooling
improves detection at low prevalence compared to Strategy 1, observed in the smaller
number of crossings between true cases and reported cases.
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Fig 11. Number of reported as positive according Strategy 3. Sensitivity is inversely
correlated with the number of false negatives as prevalence increases, explained in part
by the lower sensitivity of antigen-based tests and the increasing reliance on them.
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Fig 12. Number of reported as positive according Strategy 4. Introducing RT-LAMP
testing yields concave curves at all sensitivity and specificity values. Outcomes are
qualitatively similar to Strategies 1 and 3.

Number of Tests per Person 661

For Strategy 1 (Figure 13), the number of tests per person obtained with 662

computational experiments is as expected. The less accurate the model in identifying 663

high-risk individuals, the larger the number of test needs to be be spent given the 664

confirmatory mechanism of antigen-based testing against RT-qPCR. When the model 665

is poorly fitted, the strategy spends around 1.2–1.7 tests per person. As the model 666

sensitivity and specificity increases, the curves approach 1 at high prevalence. In all 667

scenarios, the number of test per person is high (1.2–1.7) at low prevalence, since 668

negatives are majority and the strategy must spend two tests to confirm true positives. 669

When pooling is introduced (Figure 14),a 0.5 reduction in average occurs when the 670

model is correctly fitted with respect to Strategy 1. Specificity controls the behavior of 671

the curve in terms of convexity and slope. Low specificity increases mis-classification of 672

low-risk individuals, increasing the detection of true positives in the pooling technique. 673

The number of test per person in Strategy 3 descends linearly as specificity 674

increases (Figure 15). Compared against Strategy 1, multiple testing can be reduced if 675

the model is well-fitted. Strategy 2, in contrast, maintains better performance in this 676

aspect. A similar pattern occurs in Strategy 4 (Figure 16). However, it is worth noting 677

that the number of tests per person remains relatively constant –and close to 1- when 678

the classifier shows high sensitivity and specificity in both Strategies. This is 679

significant, since the resulting curve indicates scalability. 680

Performance across strategies 681

To compare the relative performance across different strategies, we establish two new 682

quantities, which we call stock capacity (S) and detection efficiency (E). To do so, we 683

define an amortization index per Strategy i 684
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Fig 13. Number of tests per person in Strategy 1. Low prevalence forces more
frequent retesting with antigen-based technologies, while high prevalence approximates
one test per person at high sensitivity and specificity.
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Fig 14. Number of tests per person in Strategy 2. An average of 0.5 fewer tests are
needed, with a sharp decrease at high specificity, which controls the response of the
system and erases differences introduced by sensitivity and the percentage of
antigen-based tests applied.
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Fig 15. Test per person in Strategy 3. Specificity strongly determines proximity to
one test per person, but cannot reach a a few tests as Strategy 2.
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Fig 16. Test per person in Strategy 4. Similar to Strategy 3, specificity determines
proximity to one test per person. The constant number of tests at high specificity and
sensitivity, despite changes in prevalence, points to their scalability.
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Si =

(
TTotal
i

Ci

)(
NE +NH +NL

1000

)
, i ∈ {1, 2, 3, 4} (22)

where TTotal
i is the total number of test performed by that Strategy. The left-most 685

factor in Si represents the buying power of testing per each dollar spend. The 686

right-most factor scales the number to the effectively covered population. This is the 687

case of Strategy 1 where it only considers the high-risk population. For instance, if 688

Si = 0.01 and the budget is $100,000, then healthcare system can only afford 689

Si × 100,000 = 100 tests in total according to each strategy (a mix between RT-qPCR, 690

Antigen and RT-LAMP). 691

Meanwhile, the detection efficiency is 692

Ei =

(
PReport
i

Ci

)(
NE +NH +NL

1000

)
, i ∈ {1, 2, 3, 4}.

We interpret the index as the capacity of each strategy to detect a positive case per 693

each dollar spend. Similar to Si the number is scaled to the effective population 694

covered. In the case of a value Ei = 0.001, and plans to spend $100,000 in the 695

strategy, we can expect to detect Ei × $100,000 = 10 positive cases. 696

Figure 17 shows the values of Si and Ei across all the strategies. We set here a 697

fixed budget of $100,000. The red arrow (or point) represents a base case with 698

detection of 1000× P(DP ) positive cases spending $(100× 1000× P(DP )) using only 699

RT-qPCR tests. Arrows per strategy (i.e., hues of blue) indicate prevalence increase. 700
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Fig 17. Comparison of the four strategies with respect to the stock capacity versus
their detection efficiency. Arrows go from 0% (start) to 30% (point). Red arrows (or
single triangle) represent the perfect case when there is 1000 people× P(DP ) positives,
with a cost of 1000 people× P(DP )× $100 using only RT-qPCR.

Strategy 1 shows its weakness due to the small capacity to buy tests and overall 701

effectiveness. In other words, there is no difference between using antigen-based 702

testing or one using only RT-qPCR if only patients classified as high-risk are tested in 703

the best-case scenario, and significantly deteriorates when the classifier performs 704
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poorly. Meanwhile, Strategies 2 and 3 increase their capacities by covering the weak 705

points from Strategy 1. Pooling (Strategy 2) increases the capacity of detection by 706

maintaining the number of tests stable. Retesting (Strategy 3) is inefficient to capture 707

positive cases even when the number of test is still small. This is explained due to the 708

low sensitivity of antigen-based tests, around 80%. 709

Finally, Strategy 4 present an augmented buying power of tests and detection 710

efficiency. Targeting technologies to specific pre-selected groups appears to be the best 711

strategy to maximize budget impacts across healthcare systems. 712

Discussion and conclusions 713

We studied in this article the theoretical impact of four different strategies for massive 714

testing in Costa Rica in the case of COVID-19. We measured the overall cost of each 715

strategy, the number of positive reported individuals and the number of test per 716

person. To improve the performance of each strategy, we introduce a pre-classifier 717

applied to the population before executing any possible testing campaigns. The 718

putative classifier groups people into high and low risk, according to other variables 719

like the social determinants of the population while preserving patient privacy and 720

information security. Also, we presented a reformulation of the outcomes of each 721

strategy in terms of purchasing power (i.e., stock capacity) detection effectiveness per 722

dollar spend. Our theoretical analysis provides a better picture of the impact of 723

different strategies for massive testing on performance and resource allocation during a 724

pandemic. While vaccination has become widely available, remaining vigilant of the 725

phenomenon and preparing for massive testing is crucial for containing any new 726

variants or other infectious diseases. 727

Our results show that Strategy 1 can be improved only by adequately identifying 728

true positive individuals, while ignoring altogether the low-risk group; this makes it 729

indistinguishable to not just applying routine RT-qPCR tests as usual. Strategy 2 730

exhibits better testing coverage by including the pooling technique for low-risk 731

individuals. The technique however, is rendered ineffective when a large group of 732

potential positives are tested; the technique requires more testing than just applying 733

one test per person. Strategy 3 is more straightforward to implement. We discovered, 734

however, that it is more costly due to multiple testing in the low-risk group. Finally, 735

Strategy 4 is the most cost-effective strategy due to both the properties of the testing 736

technology (RT-LAMP) and the more refined targeting of the testing protocol per risk 737

group. 738

The introduction of a predictive model or classifier brings two strategic advantages. 739

First, it can reduce overall costs, time and human efforts. Second, it increases 740

information richness across the testing process. The first advantage relates to the 741

system capacity to choose the best and cheaper technology according to each patient. 742

If the model classifies individuals correctly, testing efforts can be optimized. 743

Furthermore, healthcare systems can cover deficiencies present in one technology with 744

the advantages of another (i.e., scalability), using the probabilistic prediction of the 745

classifier as a triaging device while waiting for laboratory tests to finish and confirm or 746

reject the result. Having more data, and consequently better prediction capabilities, 747

allows clustering individuals into subgroups according to particular features such as 748

their social, demographic or economic indicators and mobility patterns, among others. 749

This information could lead healthcare authorities to adopt more personalized 750

measures to cover certain vulnerable groups. 751

Our results show that all the strategies become more effective when the classifier 752

–arguably a sophisticated machine learning method- is well-fitted, reaching sensitivity 753

and specificity levels of 60% or higher. In particular, we showed that sensitivity 754
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(identification of potential positives) plays a crucial role in reducing costs and 755

increasing confirmation of positives. For the pooling scenario, specificity controls the 756

number of tests per person. 757

One of the fundamental limitations of achieving a good fit for such models is access 758

to high-quality individual data. The quality of data remains a challenge since the 759

beginning of the pandemic, particularly in developing nations and emerging 760

economies. Available data tend to only reflect the reality of people who have 761

undergone testing, and even when that is the case, datasets are biased by the 762

administrative reality –and shortcomings- of the specific healthcare system. Therefore, 763

we can expect a similar systematic bias in the classification process due to the 764

different epidemiological moments across the pandemic. Testing increases during 765

high-peak waves, confirming symptomatic patients and capturing asymptomatic nexus 766

of them. When the pandemic wave passes and minimum cases are reached, the testing 767

strategy tends to focus on confirming symptomatic cases arriving at clinical centers. 768

During these periods, the real number of infected asymptomatic people remains 769

unclear. In addition, overloading of the healthcare services impacts data production, 770

which may be ready for consumption days or weeks later. This requires, as proposed, 771

adjusting the model to correct for administrative and systematic lags. 772

Another set of limitations corresponds to the choice of potential classification 773

models as well. We mention a non-exhaustive list of classification methods with their 774

respective advantages and disadvantages. The classic logistic regression model is easy 775

to implement, but the implicit assumptions and the inclusion of administrative lags in 776

the data can negatively impact the interpretability of results due to an artificial 777

increase in the number of coefficients; in this situation, a Ridge or Lasso regularization 778

could reduce their number. Another option, if the data exhibits non-linearity, is to use 779

a support vector machine (SVM), which can handle situations in which classes are 780

not-linearly separable. The downside here is the computational cost during the 781

training stage, which has to be performed a limited number of times as the pandemic 782

evolves. Tree ensemble approaches are popular, including Random Forest, XGboost, 783

and Gradient Boosting. In practice, these methods perform better than the mentioned 784

classifiers, but require fine-tuning of hyperparameters whose interpretation may not be 785

direct. Finally, deep-learning algorithms can be used to fit the classifier at the expense 786

of complexity and interpretability. 787

We envision a series of challenges in the implementation of a classification system 788

such as that described here. The main one is the adoption of machine learning assisted 789

system by clinical and health policy authorities to triage the population before 790

performing laboratory tests. While unforeseen clinical or ethical reasons may hamper 791

the implementation of the model, the aim of this statistical approach is to become a 792

companion instead of competitor for healthcare providers. The advantage of 793

classification-assisted triaging of patients in clinical contexts has been discussed and 794

demonstrated in literature in general [74,75], and more recently in the context of the 795

COVID-19 pandemic [76,77]. Having some prior information about the possible test 796

result can better prepare clinicians and staff to handling wave peaks efficiently, 797

allocate resources more appropriately and anticipate critical resource usage and 798

patient mortality counterfactuals. Another challenge is the actual capacity of systems 799

triage patients. Even with an algorithm ready, further studies are needed about how 800

to integrate it into workflows across medical centers and public health authorities. In 801

the particular case of Costa Rica, the EDUS (Expediente Digital Único en Salud) 802

system can serve as the the channel to deliver results from the algorithm to laboratory 803

technicians and physicians. However, creation of a new submodule will require testing, 804

validation and data assurance in compliance with information security standards in 805

the public health service (CCSS). Even if the EDUS system already collects already 806
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most of the information about patients, the process of anonymizing, handling, 807

securing, and ensuring responsible use of personal information must remain as a top 808

priority. Finally, the attitude of the public around collection of information and its 809

handling constitutes a challenge of uncertain proportions. 810

Our next step is to fit a classifier using both real and synthetic datasets. The 811

EDUS is the main source of individual data of the Costa Rican public health. When a 812

patient arrives at a medical appointment, physicians register the health status, 813

diagnosis, demographic and related factors of each patient. During the COVID-19 814

pandemic, the tool was used to track down the symptoms across the population, to 815

provide hot-lines for medical support and to validate the number of vaccines already 816

applied. We believe this information source can be responsibly used further in benefit 817

of all users. Its main advantage is the massive information density and patient 818

coverage. Given the universal healthcare system in Costa Rica, information about a 819

wide range of groups exists regardless of economic status. Another secondary 820

corresponds to the Instituto Costarricense de Investigación y Enseñanza en Nutrición 821

y Salud (INCIENSA: National Institute of Research and Education on Nutrition and 822

Health). At the beginning of the pandemic, INCIENSA collected numerous COVID-19 823

samples alongside epidemiological and sociodemographic data of infected patients. 824

Even if the diversity in this source is less than that of EDUS, it could be an important 825

source to adjust the model. 826

Finally, we expect to develop synthetic datasets through simulation. Prior 827

experience with agent-based modeling [17] indicate that it is possible to replicate 828

features of epidemic waves and the effect of public policy measures in silico, to then 829

overlay our strategies and determine performance under various scenarios and 830

constraints; other methods exist, and will be explored. These datasets can be openly 831

shared across all relevant stakeholders without risking healthcare data leaks while still 832

being representative of aggregate statistics of the underlying population. 833
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