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ABSTRACT

Atrial Fibrillation (AF) is the most common cardiac rhythm disorder. Advance knowledge of an imminent switch from sinus
rhythm (SR) to AF could prompt patients to take preventive actions to avoid AF, like taking oral antiarrhythmic drugs. The
question is whether there is information, even if subtle, in the minutes prior to AF to indicate an imminent switch from SR. This
paper shows that, for the vast majority of patients, the answer is affirmative. On test data, our algorithm can predict the onset of
AF on average 31 minutes before it appears, with an accuracy of 83% and an F1-score of 85%. The predictions were based
on deep learning and data from 350 patients, plus an external validation of 48 patients. Overall, the proposed method has
low computational complexity and can be embedded in common wearable devices for continuous heart monitoring and early
warning of AF onset.

Atrial fibrillation (AF) is the most common cardiac arrhythmia worldwide; the estimated number of individuals with AF
in 2010 was 33.5 million1. Hand in hand with the growing prevalence of AF, healthcare costs continue to increase, mainly
because of hospitalization and treatment costs2. AF episodes contribute to emergency department presentations because of
high symptom burden and heart failure decompensation from tachycardiomyopathy. Moreover, as the aging of the population
increases, the number of patients with AF is expected to further increase3.

Clinicians can use catheter ablation, rate control therapy, and anticoagulation therapy to reduce the occurrence of stroke,
systemic embolism, hospitalization, and deaths for patients with persistent or permanent AF, normally diagnosed by routine
electrocardiography. Nevertheless, many patients with paroxysmal AF are misdiagnosed with resting electrocardiogram (ECG)
or even when they are monitored with Holter devices for 24 hours, and are at high risk of stroke and systemic embolism due to
repeated occurrences of AF4, 5. Even though implantable ECG monitoring recorder can be used to detect paroxysmal AF, the
method is invasive and difficult to popularize and apply6.

Maintaining sinus rhythm (SR) on patients can reduce symptoms of AF and further prevent the atrial remodeling that
enhances susceptibility to future episodes7. Consequently, an early prediction of AF episodes in patients with paroxysmal AF
can prevent emergency department presentations and associated healthcare costs. Yet the appropriate identification of patients
with a high likelihood of AF onset, and its early-warning prediction within the near future, are challenging problems in the
clinical setting8. It is the need to overcome these difficulties that motivates this study: the aim is to develop a method that
continuously monitor patients to predict and give early warnings of imminent AF onset, using only simple wearable devices
such as smartwatches.

The automated detection of AF regimes from recorded time-series data is a well-studied problem in the literature9–11, with
recent approaches based on machine learning and neural networks achieving over 99% accuracy in the classification task12–16.



Figure 1. Detection versus prediction. Early-warning AF prediction (left), AF prediction at onset (middle), and AF detection
(right). All methods are based on time-series windows sampled at different instants with respect to AF onset.

Nonetheless, prediction of the onset of AF is still an open problem17. Several well-established methods make long-term risk
assessment of AF in the order of months and years18–21, without the capability of real-time predictions. Past work on short-term
predictions can be classified into two main categories. The first category includes methods applied to one or multiple ECG leads,
involving features extracted from premature atrial contractions, atrial or ventricular ectopic beats, and spectral analysis22–31.
The second category focuses on R to R intervals (RRI) analysis, often consisting of handcrafted feature extraction and power
spectral analysis32–38. Or a combination of both, which typically involves ECG morphological features and RRI analysis
combined with convolutional neural networks (CNN) and automatic feature extraction algorithms18, 39–50. Such handcrafted
features entail serious limitations: they are computationally expensive, can lead to human bias, and require long-term samples,
making them unsuitable for real-time monitoring applications51.

Overall, despite these recent advances, important constraints remain. The main one is that all these methods provided
“predictions of AF at the onset”. In other words, the data window used for prediction comprises the time-series signal sampled
right up to the onset of AF and, hence, provides zero early warning (Fig. 1, middle). Standard detection algorithms use AF data
(Fig. 1, right). This paper, in contrast, proposes a method for accurate early-warning prediction of AF far ahead of the onset of
AF (Fig. 1, left). Table S1 shows the distinction between preceding works and the proposed method.

A limitation of ECG data is that long-term recordings are difficult to acquire, requiring the inconvenient and impractical
use of Holter devices or patches. Though simple smartwatches and smart bands can continuously capture RRI during the
individuals’ daily life, existing methods using RRI tend to require large time-series windows of up to 30min length for prediction
at onset29, 37, 38. This limits its application for short-term predictions. Moreover, when the RRI duration was reduced to less
than 30min in previous methods, a poor prediction accuracy was obtained51.

This paper presents a method, based on artificial intelligence (AI), for real-time monitoring and early warning of AF from
moving RRI windows with short-term duration, entitled AFiRMo (Atrial Fibrillation Real-time Monitoring). To circumvent the
above limitations, we provide a variable time horizon of prediction, with RRI samples of 30s to train a deep CNN. Hence, we do
not require feature selection and use significantly shorter RRI samples compared to previous work. Moreover, our method does
not require ECG data, and uses instead RRI signals that can be sampled by affordable and easy to wear pulse signal recorders,
such as smartwatches or smart fitness bands. These devices can be used continuously by patients, paving the way for real-time
monitoring algorithms that learn and monitor long-term cardiac dynamics.

Results

Data description

The original dataset from Tongji Hospital (Huazhong University of Science and Technology, Wuhan, China) consists of
long-term 12-lead ECG Holter from 595 patients, where each ECG is recorded in SR at baseline and includes at least one AF
episode. This study was approved by the Ethical Committee of Tongji Hospital with Institutional Review Board Approval
number of TJ-IRB20220423. The beginning and end of individual AF episodes were labeled by experienced cardiologists
at Tongji Hospital. The records have an average duration of 22.2± 2.2 hours, with a sampling frequency of 128 Hz and a
resolution of 12 bits. We excluded records that did not have SR or AF episode. Records starting from AF were also excluded
since the section of ECG preceding AF cannot be segmented. We considered only AF episodes with a duration of 10min or
longer. Finally, records that have significant noise artifacts before AF onset were excluded (by checking if the percentage
of missing R peaks within a 5min sliding window is above a threshold of 15%). After the exclusion criteria are applied, the
remaining 350 records were used in this study. The cohort was divided into two groups following a chronological order between
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Table 1. Characteristic of the patients.

Characteristic Training Cohort (total = 280) Test Cohort (total = 70)

Age < 65 (mean) 115 (55 years old) 31 (54 years old)
Age � 65 (mean) 165 (73 years old) 39 (73 years old)

Male 163 26
Female 117 44

2014 and 2019: the first 80% (280 patients) were used for the training/cross-validation of the model (252 for training and 28 for
validation) and the last 20% (70 patients) for testing (Table 1).

To externally validate the performance of AFiRMo on “out-of-distribution” datasets, we considered additional ECG data
collected from patients with AF from two healthcare centers in different countries: the Clínica y Maternidad Suizo Argentina
(53 patients of 24h ECG) and the open-access data Atrial Fibrillation Prediction Database (AFPDB) from Physionet52 (75
patients of 30min ECG). Applying the same exclusion criteria described above resulted in a total of 48 patients for external
validation: 8 from Argentina and 40 from Physionet. The Physionet database consisted of 50 healthy controls (SR) and 25
AF patients (with 30min ECG just before AF onset and 5min right after). Of those, 5 AF patients presented AF with duration
shorter than 1min and were excluded. Also, 2 records from healthy controls presented AF and heavy distortion due to artifact
noise and were excluded. Hence, overall, there were 20 records to predict AF plus an equal number of 20 randomly selected
records from healthy subjects for control.

AFiRMo algorithm for early warning prediction of atrial fibrillation

The AFiRMo algorithm for early warning of the onset of AF is divided into two stages. First, we train AFiRMo to detect three
cardiac rhythms: SR, AF, and Pre-AF (the instances just before AF onset). Second, this model sequentially analyzes RRI data
to monitor the probability of an imminent switch to AF. When this probability crosses a predefined threshold, it triggers a
warning. Here, we provide an overview of the algorithm. Further details can be found in Methods and Supplementary Material.

Figure 2 illustrates the first stage of AFiRMo’s algorithm. The ECG Holter recordings are segmented into three classes:
SR, Pre-AF, and AF segments (Fig. 2a). The AF segments were labeled by cardiologists. The Pre-AF segments are labeled
as the ECG data preceding the AF onset characterized by high RRI variability (Fig. 5), in contrast with SR segments that
typically have lower variability53. A sliding window in the ECG data extracts segments of 30s which are converted to RRI data
(Fig. 2b,c) and then to recurrence plots (Fig. 2d), which serve as inputs to the CNN. Finally, the prediction is performed by
a deep CNN (Fig. 2e). The outputs of the network are the probabilities of the input belonging to each of the three regimes:
P(SR), P(Pre-AF), and P(AF) (Fig. 2f).

The second stage of AFiRMo’s algorithm computes the probability of a patient switching to AF in the near future from
the outputs of the trained CNN. Define the probability of danger as P(danger) = P(Pre-AF)+P(AF), which represents the
probability that a sliding window is in either Pre-AF or AF states. From the time-series RRI data, the algorithm sequentially
generates a sliding window of 30s every 15s. For each new window, the recorded 30s time-series are converted into a
recurrence plot and fed to the CNN for classification. Figure 3a illustrates the probability of danger computed by AFiRMo for a
representative example. Since the probability of danger has very high variability, we implemented a non-anticipative moving
average window to filter this high-frequency noise and smooth the output (Fig. 3b). A binary early-warning indicator (“danger”
or “no danger”) also requires the selection of a particular threshold of the probability. These two hyperparameters, the moving
average window length and probability threshold, can be optimized to maximize different performance metrics, depending on
the needs of particular patients.

The performance of AFiRMo was evaluated on a time series of 60min of sequential data before AF onset and also far
from AF (in SR), selected patient wise. The selection of samples far from AF is performed randomly, at least 2 hours before
AF, to guarantee that the median value of the coefficients of variation of the RRI signals (computed over the selected 60min
sample) is close to the median value associated with the SR distribution computed over all patients (Fig. S2a). For the validation
data (corresponding to the cross-validation with the highest performance in the CNN), as expected, it is not possible to
simultaneously maximize all performance measures. For example, Figs. S2a-c show that the maximum predicted time horizon
until AF onset (that is, the instant of the first early warning until AF onset, see Fig. 3b) is achieved at low thresholds (Fig. S2b,c).
However, the accuracy is very low for those values (bottom of Figs. S2a). Likewise, when the accuracy is maximized at 88.3%,
the predicted time horizon is relatively short.

To achieve a tradeoff in the validation set, we searched for hyperameters where the accuracy, sensitivity, specificity, and
F1 score are all greater than 80%, and mean and median predicted time horizon are above 30min. There was a total of 34
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Figure 2. Pipeline of the first stage of AFiRMo. (a) Each ECG record is split into three classes: SR, Pre-AF, and AF. (b) R
peaks are detected from a sliding window of 30s in the ECG data. (c) RRI signal is generated from the R peaks. (d) A
recurrence plot is generated from the RRI signal. (e) A deep CNN is trained using the recurrence plots as inputs. (f) Network
output are the probabilities of the sampled data to belong to each of the three classes (SR, Pre-AF, and AF).

Figure 3. Second stage of AFiRMo: indicator of early warning. (a) Probability of danger computed by AFiRMo as a function
of time for a representative patient from the test dataset. The sample images are generated by taking a sliding window of 30s
every 15s and the probability of danger is computed for every sampled window. (b) Average probability of danger, computed
from a non-anticipative moving average window of 7 samples to smooth the probability fluctuation. The red line is a threshold
of 0.57 that will trigger a warning of an imminent AF onset.

hyperparameters satisfying this criterion. We picked the smallest moving average window, since this leads to lower computation
and memory usage in smart devices, and, among those, the one that maximizes accuracy, F1 score, and mean and median
predicted time horizon. The resulting hyperparameters are a moving average window size of 7 samples (corresponding to a
1.5min window) and a threshold of 0.57. This produced an accuracy of 86.7%, F1 score of 87.5%, sensitivity of 93.3%, and
specificity of 80%. The mean (median) predicted time horizon until onset of AF is 31.4min (36.3min). Figure 3b illustrates the
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moving average of the probability of danger and the threshold for a representative patient. In this example, an early-warning
signal is alerted to the patient by AFiRMo with 22min in advance to the AF onset. These hyperparameters can be adjusted
according to different objectives by giving more importance to, for example, sensitivity, specificity or size of the predicted time
horizon.

Performance on test data

AFiRMo was evaluated on the test data set as an early warning of the onset of AF. The results are summarized in Fig. 4. For a
fixed moving average window, the choice of threshold depends on the needs of a patient. For example, for a healthy user, the
threshold could be higher and more specific to avoid false positives. For a patient at risk, the threshold could be smaller and
more sensitive to reduce false negatives. Figure 4 presents results for different thresholds (the default 0.57, plus 0.73 and 0.88)
to contrast tradeoffs between sensitivity and specificity. Figure 4a shows the mean and median values of the predicted time
horizon of the AF onset across all patients, i.e., the time from the first early warning until AF onset (Figs. 1 and 3b). With a
threshold of 0.57, AFiRMo predicts AF with an average (median) of 31min (38min) before its onset and an accuracy of 82.7%.
AF in younger patients (less than 65 years old) can be predicted slightly earlier than for older patients: means of 32.5min versus
29.4min, respectively (Fig. 4a).

As seen in Fig. 4a, the predicted horizon depends on the threshold. Overall, a smaller threshold leads to a larger predicted
horizon and, hence, a higher number of patients predicted to be in danger before the onset of AF. Figure 4b shows the fraction
of patient to be predicted in danger as a function of the time until AF onset. For a threshold of 0.57, around 50% of patients
are predicted to be in danger at least 37min before AF onset. To better observe the tradeoffs, Fig. 4c shows the performance
of AFiRMo as a function of the threshold for different metrics (see Supplementary Material for definitions of performance
metrics). The curves cross at a threshold of 0.74 (with a value of 83.6%).

The area under the receiver operating characteristic curve (AUROC) and the precision-recall curve (AUPRC) are 0.90 and
0.88, respectively (Fig. S3). This shows that the performance is balanced among the “danger” and “SR” samples. Figure 4d
display the confusion matrices computed on 75 episodes of AF out of the 70 patients in the test set for different values of the
threshold. It contains the true and false number of predictions by AFiRMo with respect to positive (danger) and negative (SR)
episodes. Finally, Fig. 4e presents trade-offs between AFiRMo accuracy and the predicted time horizon as a function of the
threshold. As expected, an increase in the predicted time horizon typically results in a decrease in accuracy, and vice-versa.

Performance on ECG data

The above results were shown for predictions based on RRI data (computed from ECG data). Here, we investigate by how
much the performance increases when using the original ECG data. As explained, RRI data are preferable since they can be
obtained from simple wearable devices that can be worn 24/7. In contrast, 24/7 continuous measurements of ECG using Holter
or patches devices are impractical for long-term usage.

The maximum accuracy of the validation set of the ECG data is 89.3%, which results in a relatively low mean predicted
time horizon. Following a similar tradeoff decision as described above, we obtained 8 hyperparameters that satisfy the criterion.
The smallest moving average is 6 samples (corresponding to 1.25min windows), and the threshold of 0.48 maximizes accuracy,
F1 score, and mean and median predicted time horizon. The mean predicted time horizon is 32.5min and the median 43.4min
(Fig. S2d-f). With these hyperparameters, Fig. S4 summarizes the performance of AFiRMo on the test ECG data. The mean
(median) predicted time horizon before onset of AF were 32.1min (35.6min), with a similar accuracy of 82.4% of the RRI data.
F1, sensitivity, and specificity were 84.5%, 96.0%, and 68.9%, respectively.

Both the AUROC and AUPRC increased to 0.95 and 0.96. The cut-off balance between all the performance metrics is
reached at a threshold of 0.76 with a value of 86.4%. These values are about 3.3% higher than the model performance using
RRI data alone. It is not surprising that the ECG data has improved performance. However, it is surprising that the improvement
was relatively small, considering the richer highly-sampled continuous-time ECG data compared to the simpler low-sampled
discrete-time RRI data. This shows that prediction of AF onset can be performed with only RRI data.

Performance on external center data

To further validate the performance of AFiRMo on “out-of-distribution” datasets, we considered ECG data collected from
patients with AF from two healthcare centers in Argentina (8 patients). With the same hyperparameters from the RRI validation
set of 7 samples moving window and 0.57 threshold, we obtained an accuracy of 77.8% and a mean (median) predicted time
horizon until AF onset of 47.8min (58.0min). Figure S5 summarizes the model performance for this external center dataset.
The AUROC and AUPRC are 0.75 and 0.62, respectively. A higher threshold leads to slightly more balanced results. For
example, for a threshold of 0.71, the accuracy increases to 83.3%, with mean (median) predicted horizon of 32.6min (41.1min).
Although there were only 8 patients in this dataset, the performance is similar to the above RRI test dataset.
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Figure 4. Performance of AFiRMo with 7 samples moving average. (a) Box plots of the predicted time horizon until AF onset
for different probability thresholds across all patients. Median and mean values are marked by coloured and black lines,
respectively. Blue circles and red asterisks represent the means of patients younger and older younger than 65 years,
respectively. Histograms of the predicted time horizon are shown on the right side of the box plots. (b) Fraction of patients
predicted to be in danger as a function of time before the AF onset for different thresholds. (c) Performance metrics as a
function of the probability threshold. (d) Confusion matrices for different values of the threshold. (e) Mean (solid line) and
median (dashed line) of the predicted time horizon and model accuracy as a function of the probability threshold.

Performance on Physionet AF prediction challenge

Finally, we further tested AFiRMo’s performance on the open-access data Atrial Fibrillation Prediction Database (AFPDB)
from Physionet52 (20 AF patients and 20 healthy patients). With the same hyperparameters from the RRI validation set of 7
samples moving window and threshold of 0.57, we obtained an accuracy of 70.0% and a mean (median) predicted time horizon
of 12.9min (9.1min) out of 30min (the ECG data collected in this dataset is 30min long and, hence, the predicted horizon time
is limited to 30min). Figure S6 summarizes the AFiRMo performance for this dataset. The AUROC and AUPRC are 0.76 and
0.79 respectively.
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Discussion

This paper has developed AFiRMo, an automated prediction method for early warning of AF onset based on deep CNN and
short-term RRI signals. Our method takes 30s RRI samples every 15s and computes the probability of danger of imminent
AF onset. A moving average of 7 samples, corresponding to 1min30s, smooths this probability to filter out noise. The key
feature is the early and continuous rise of the probability of danger when approaching AF, providing an early warning when this
probability crosses 0.57. On the test data (70 patients) and two external validation sets (8 and 40 patients), AFiRMo predicted
AF onset on average 31min, 48min, and 13min in advance with an accuracy of 83%, 78%, and 70%, respectively. AF onset
for younger patients (less than 65 years old) were consistently predicted earlier than older patients by an average of about
3.1min. If AFiRMo is implemented in smartwatches or other wearable devices that can record RRI signals, which can be worn
continuously by patients, this early warning of AF could give sufficient time for patients to take oral antiarrhythmic drugs
in advance to try to prevent the onset of AF. Moreover, anticoagulation therapy could also be used simultaneously. Finally,
AFiRMo can significantly improve the positive screening rate for paroxysmal AF.

This paper is a proof of concept, showing that it is possible to predict and give early warnings to a cardiovascular disease.
Hence, it opens the door to further develop tools, devices and apps that can continuously monitor both patients and healthy
subjects. Moreover, the more data devices obtain from users, the more they can be personalized by learning unique individual
disease traits. We expect that in the near future these prediction devices will be widely used by the general population to alert
us to the onset of not only AF but also other more catastrophic cardiovascular diseases such as cardiac arrest, with the potential
to save numerous lives.

AFiRMo introduced two parameters that can be tuned by physicians depending on the clinical application: the probability
threshold (danger indicator) and the moving average. These two parameters are roughly inverse to each other: lower (higher)
moving averages required higher (lower) thresholds (Fig S2). Our choice in this paper was based on a simple tradeoff decision
to keep both accuracy, F1 score, and prediction horizon relatively high. Placing greater weight on one of these objectives would
lead to different results. For example, for a particular moving average, smaller thresholds yield more sensitive models, which
can be used for high risk patients. On the other hand, higher thresholds lead to more specific models and reduce false positives,
which may be more suitable to monitor healthy patients.

We analyzed all false predictions, negative and positive, to gain insight on the algorithm. We focused on the RRI data with
the chosen hyperparameters of 7 samples moving average and threshold 0.57 (Fig. 4). Table S4 summarizes the observations
on the incorrectly classified patients. Of the 4 false negatives, one patient had a sudden AF onset with a very stable SR
beforehand. The other 3 patients had a combination of tachycardia, bradycardia, unstable base lines, and noisy signals before
AF onset. There were 22 false positives. Among those, 13 had premature atrial contractions (PACs), 5 had premature ventricular
contractions (PVCs), 6 had unstable baselines, 4 had sinus tachycardia and one had atrial flutter. Moreover, 15 records were
very noisy. We speculate that some of these false positive events correspond to moments where the heart was close to switch
from SR to AF and, for some reason, it did not. Due to a number of conditions (e.g., stress or stimulants), heart dynamics can
be pushed towards the tipping point that leads to a dynamical transition from SR to AF. It is possible that in some false positives
the heart was close to switch to AF, but reverted back to SR. Especially those patients with PACs (13 out of 22), which are
well-known precursors of AF54, and highly connected to the occurrence or even trigger of AF. Thus, monitoring PACs seems
significant to predict AF. Noise was also a major factor in most false predictions. Hence, it is necessary to treat patients’ skin
with saline or disinfectant before wearing ECG devices to ensure the electrodes are well connected to the skin and decrease
noise during recording.

Compared with ECG data, results using RRI data had a slightly reduced performance. On the test data, both had a similar
accuracy of 83% while the average prediction horizon was 32.1min for the ECG and 30.8min for the RRI data. This slight
reduction is compensated by the fact that RRI data can easily be obtained continuously from simple wearable devices, such as
a smartwatch. While critical patients could still use Holter or patches devices to measure ECG and take advantage of their
better performance, this is not reasonable for other patients and the general population. Overall, on a standard computer (2GHz
Dual-Core Intel Core I5, 8GB RAM), the total computational time for each window was around 100ms. This is considerably
less than the sampling time of 15s, making it feasible to implement AFiRMo in smartphones to process the streamed data in
real-time from wearable devices55. Moreover, the deep learning model used in this paper, EfficientNetV2, can be adapted for
mobile devices through the TensorFlow Lite framework. Finally, noise played a strong role in false predictions. However, the
use of smartwatches and smart bands can reduce noise by being worn tight on the wrist.

There are several opportunities for improving performance. This paper used the data from 280 patients to train AFiRMo.
However, individual patients have specific traits that may not be picked by an “average” model across all patients. Hence,
continuously monitoring a single patient could lead to a personalized AFiRMo that regularly retrains itself to maximize
performance for that individual. Under this modality, a physician could eventually prescribe AFiRMo for continuous,
personalized patient follow-up. We expect that in the near future, algorithms like AFiRMo will be embedded in smart devices
to monitor our health 24/7, to warn us against imminent dangers, and to seek immediate medical attention. AFiRMo may also
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Figure 5. Pre-AF labeling process for a representative patient. (I) Starting from the AF onset and travelling back in time, a
sliding window is generated to extract ECG samples of 5min with 30s overlapping. (II) For each 5min window, a second
sliding window is generated, to extract samples of 30s every 5s. (III) R waves are detected for each 30 s window and the RR
intervals are calculated. (IV) The coefficient of variation of the RR intervals of all 30s windows within a 5min window is
calculated. The process is then repeated for each 5min window to generate a histogram of coefficient of variation of RRI. (V)
When the histogram of sRRI has a median less than 0.7, the Pre-AF section is segmented from the beginning of this last
window until the onset of AF. In this example, Pre-AF lasts 14min before the onset of AF.

be improved by running a cross-validation to tune the two hyperparameters on data from different centers and countries to
capture patient heterogeneity.

Methods

Pre-AF ECG segments

The labeling of the Pre-AF ECG segments consists of five steps, illustrated in Fig. 5 for a representative patient. First, starting
from the AF onset (labeled by clinicians), we generate a sliding window to extract ECG samples of 5min with 30s overlapping;
the sliding window moves backward in time. Second, within each 5min window, we generate a second sliding window to
extract smaller samples of 30s every 5s. Third, we use the Pan–Tompkins algorithm56, 57 to detect R waves for each 30s
window and calculate the RRI. Fourth, we compute the coefficient of variation of the RRI for each 30s window and generate
the corresponding histogram for each 5min window. Fifth, we analyze the evolution of the distribution of frequencies until their
median is less than 0.7. The threshold of 0.7 is selected as the interception point between the distributions of frequencies of the
coefficient of variation of the AF and SR regimes for all patients from the training set (Fig. S1). Below this threshold, the heart
dynamics have low variability and can be associated with SR58. At this fifth and last stage, the Pre-AF section is segmented,
including the beginning of this last window until the onset of AF.

Data segmentation by an AI model

In the first stage of AFiRMo’s algorithm, the ECG Holter recordings are segmented into three classes, as illustrated in Fig. 2a:
SR, Pre-AF, and AF segments. As explained above, Pre-AF segments are labeled as the ECG data preceding the AF onset
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characterized by high RRI variability, in contrast with SR segments that typically have lower variability53. Pre-AF segments
vary in length from patient to patient58 and may also vary within multiple onsets of AF for the same patient due to morphological
and electrical changes in the heart over time66.

The baseline wander and interference noise from the ECG are reduced using a band-pass filter with cut-off frequencies of
0.5 and 40 Hz. From a moving window of 30s of an ECG record (Fig. 2a), we detect the R peaks using the Pan-Tompkins
algorithm, which has an average error rate of about 1%56, 57 (Fig. 2b). Then, the difference between heartbeats is computed
(i.e., from R to R peaks) to generate the RRI signal (Fig. 2c), which is then converted into a 2-dimensional recurrence plot61

(Fig. 2d). Recurrence plots provide a visual representation of RRI signals and can be used to identify hidden periodicities in
physiological signals11, 67, 68 and detect dynamical transitions in time-series data59, 69. For instance, the SR and AF states are
represented by spatiotemporal recurrent patterns of particular rhythmicity, which can be detected by recurrence plots70 (see
Fig. S7 for details). Thus, we hypothesize that an AI-enabled model can capture such patterns, including the transient Pre-AF
state before AF onset. Finally, to take advantage of existing and efficient deep learning algorithms on image recognition71, we
convert each recurrence plot into a 2-dimensional image that is then fed to the deep CNN (Fig. 2e).

For building AFiRMo, we implemented EfficientNetV2, a deep CNN with 479 layers, developed by Google in 202172. The
EfficientNetV2 is a modified and optimized version of EfficientNet73, winner of the ImageNet 2019 competition74. The input
of EfficientNetV2 are images of size 224⇥224 pixels. The last fully connected layer was modified to perform the classification
among the three classes. Hence, three probabilities are output by the network: P(SR), P(Pre-AF) and P(AF), which correspond
to the probability of the input data belonging to each of the three regimes, and satisfying P(SR)+P(Pre-AF)+P(AF) = 1
(Fig. 2f).

Training of the deep convolutional neural network

AFiRMo is enabled with artificial intelligence (AI) for early warning detection of AF. It was trained and cross-validated on
random samples from 280 patients. The network was trained using categorical cross-entropy as the loss function, ADAM as the
optimizer75, and stochastic gradient descent as the objective function optimizer76. To compensate for class imbalance, the loss
function was weighted according to the proportion of the sample labels (SR, Pre-AF, and AF). The training ended after the
validation-loss did not decrease over 8 consecutive epochs.

We investigated the optimal length of the sampling window to generate the recurrence plot from the RRI data, starting from
10s up to 5min. We computed the average accuracy to predict individual samples, from the 10-fold cross-validation of the
EfficientNetV2 using different windows length (Table S2). The best performance was obtained using a window length of 30
seconds, which has been also reported in39. Changes in performance are associated with tradeoffs between the number of
samples generated and the length of the window. The wider the window, the lower the amount of samples obtained for training,
hence reducing the effectiveness of AFiRMo to properly generalize the data. On the other hand, a smaller window length may
lead to information losses77. After fixing the sampling window length to 30s, we compared the performance of AFiRMo with
two other network benchmarks: 1-D CNN and LSTM, commonly used on arrhythmia detection and prediction78, 79 (Table S3).
The proposed AFiRMo model over-performed the benchmark networks, achieving an average validation accuracy of 0.74 and a
good generalization of the data as represented by a small standard deviation of 0.03 across all 10 folds. Finally, the best model
was selected for performance analysis on the test set of 70 patients.

Data availability

The data was provided by the Tongji Hospital from China and the Clínica y Maternidad Suizo Argentina, acquired between
2014 and 2022. To protect patients’ privacy, the data was anonymized. The data collection teams from each center handled
sample collection and anonymization. The algorithm development team received anonymized data containing only age and
gender information for the subsequent algorithm development. The study design was evaluated and exempted from a full review
by the Huazhong University of Science and Technology Institutional Review Board (approval number: TJ-IRB20220423), and
approved by the Ethics Review Panel of the University of Luxembourg (approval number: ERP 22-057 RTMonitor). All data
have been obtained according to the principles of the declaration of Helsinki. Training and validation sets from Tongji Hospital
will be accessible pending approval by Xiaoyun Yang. Data use is limited to non-commercial research. Readers can request
access to the training and validation sets to Xiaoyun Yang. The data used as external validation of this study are available from
the open-access PAF Prediction Challenge Database https://physionet.org/content/afpdb/1.0.0/.

Code availability

Data preprocessing and segmentation were implemented using the MATLAB software. The neural network was implemented on
the Keras Framework with Tensorflow backend on Python 3.7. Codes have been deposited on GitHub at https://github.
com/marino-gavidia/AFiRMo.git.
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