Research Article

Evaluation of a microRNA-based Risk Classifier Predicting Cancer-Specific Survival in Renal Cell Carcinoma with Tumor Thrombus of the Inferior Vena Cava

Michael Kotlyara,1, Markus Krebsa,b,1, Maximilian Burgerc, Hubert Küblera, Ralf Bargoub, Susanne Kneitzd, Wolfgang Ottoc, Johannes Breyerc, Daniel C. Verghoc, Burkhard Kneitza, Charis Kalogiroua

a Department of Urology and Pediatric Urology, University Hospital Würzburg, 97080 Würzburg, Germany
b Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080 Würzburg, Germany
c Department of Urology, Caritas St. Josef and University of Regensburg Medical Center, Regensburg, Germany
d Physiological Chemistry I, Biocenter, University of Würzburg, Würzburg, Germany

1 both authors contributed equally and should be considered co-first authors.

Short Title: Prognostic Impact of microRNAs in Renal Cell Carcinoma with Vena Cava Infiltration

Corresponding Author:
Charis Kalogirou, MD
Department of Urology and Pediatric Urology, University Hospital Würzburg
Oberdürrbacher Str. 6
Würzburg, Bavaria, 97080, Germany
Tel: +49 931 201 32001
E-Mail: kalogirou_c@ukw.de

Keywords: kidney cancer, venous infiltration, cancer-specific survival, miR, risk stratification.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Introduction: Clear cell renal cell carcinoma extending into the inferior vena cava (ccRCCIVC) represents a clinical high-risk setting. However, there is substantial heterogeneity within this patient subgroup regarding survival outcomes. Previously, members of our group developed a microRNA(miR)-based risk classifier – containing miR-21, miR-126 and miR-221 expression – which significantly predicted cancer-specific survival (CSS) of ccRCCIVC patients.

Methods: Examining a single-center cohort of tumor tissue from \(n = 56 \) patients with ccRCCIVC, we measured expression levels of miR-21, miR-126 and miR-221 by qRT-PCR. Prognostic impact of clinicopathological parameters and miR expression were investigated via univariate and multivariate cox regression. Referring to the previously established risk classifier, we performed Kaplan Meier analyses for single miR expression levels and the combined risk classifier. Cut-off values and weights within the risk classifier were taken from the previous study.

Results: miR-21 and miR-126 expression were significantly associated with lymphonodal status at time of surgery, development of metastasis during follow-up, and cancer-related death. In Kaplan Meier analyses, miR-21 and miR-126 significantly impacted CSS in our cohort. Moreover, applying the miR-based risk classifier significantly stratified ccRCCIVC according to CSS.

Conclusion: In our retrospective analysis, we successfully validated the miR-based risk classifier within an independent ccRCCIVC cohort.

1. Introduction

In about 10% of all cases, clear cell renal cell carcinomas (ccRCC) extend into the inferior vena cava (ccRCCIVC) [1]–[3]. While constituting a high-risk setting in general, there still is substantial clinical heterogeneity within the ccRCCIVC subgroup – with reported 5-year survival rates ranging from 37% to 65% for non-metastasized patients treated with nephrectomy and tumor thrombectomy [4]–[9]. Regarding this discrepancy, biomarkers are urgently needed to identify patients with a specifically high risk of cancer relapse [10], [11]. Potentially, this subgroup of ccRCCIVC patients may also benefit from adjuvant systemic therapy and additional follow-up examinations.

MicroRNAs (miRs) as biomarker candidates are post-transcriptional regulators of gene expression in various cancer entities [12]–[14]. Regarding ccRCC, several studies demonstrated the prognostic impact of miR expression levels in tumor tissue [15]–[17]. Previously, Vergho et al. established a combined risk classifier for patients with ccRCCIVC receiving nephrectomy and thrombectomy in curative intention [10]. Based on miR-21, miR-126 and miR-221 expression in tumor tissue, the risk classifier significantly stratified patients regarding cancer-specific survival in a
single-center cohort (n = 37) – with a 5-year cancer-specific survival (CSS) of 78 % vs. 18 % in the favorable and the unfavorable subgroup, respectively [10].

To further assess the miR-based risk classifier as a prognostic tool in ccRCCIVC patients, we retrospectively evaluated it within an independent cohort (n = 56) from the Department of Urology, University of Regensburg (Regensburg, Germany). Cut-off values for miR expression levels as well as internal classifier weights were transferred from the previous pilot study [10], in order to test its transferability to independent study cohorts. Figure 1 illustrates the course of our study.

Fig. 1. Course of the study – using a microRNA (miR)-based risk classifier established previously [10], we examined the prognostic impact of miR-21, miR-126, and miR-221 expression in an independent cohort of clear cell renal cell carcinoma samples with infiltration of the inferior vena cava (ccRCCIVC; n = 54). To assess the transferability of the miR-based risk classifier, cut-off value and weights were identical to the previous study.

2. Materials and Methods

2.1. Tumor Tissue Samples and Patients

Paraffin-embedded primary ccRCCIVC tumor-samples of 56 subjects who underwent radical surgery were aggregated by the Department of Urology, University of Regensburg, Germany (1997–2006). A uropathologist selected sample-regions with > 90 % cancerous tissue. Follow-up data were collected by the Department of Urology, University of Regensburg (Regensburg, Germany). The study was approved by the local Ethics Committee (Regensburg: Nr. 08/108). Detailed characteristics of the study cohort are summarized in Table 1.
2.2. RNA Extraction and qRT-PCR

Using the RecoverAll™ Total Nucleic Acid Isolation Kit (Thermo Fisher Scientific, Waltham, MA), total RNA from paraffin-embedded samples was isolated according to the manufacturer’s instructions. RNA concentration and 260/280 ratio were analyzed by Spark® 10M (TECAN, Männedorf, Switzerland). cDNA was synthesized from total RNA with stem-loop reverse transcription primers (TaqMan microRNA Assay protocol, Applied Biosystems, Birchwood, UK). TaqMan microRNA Assay kit was used to quantify miR expression according to manufacturer’s protocols. Samples showing a standard deviation > 0.5 were excluded (all reactions performed in triplicates). Small nuclear RNA (RNU6b) expression was used for normalization of miRs relative expression values. Samples with expression levels of RNU6B > 30 Ct were not included in further analyses. Relative miR expressions were calculated using the ΔCt-method (ΔCt sample = Ct miR of interest – Ct RNU6b). To calculate fold changes in miR expression between samples, the $2^{\Delta\Delta Ct}$ method (in this study, referred to as the ΔΔCt method) was used.

2.3. Statistics and computational analysis

To evaluate the validity of the miR-based risk classifier – $(4.592 \times \Delta Ct \text{ miR-21}) + (-3.892 \times \Delta Ct \text{ miR-126}) + (-1.938 \times \Delta Ct \text{ miR-221})$ – weights and cut-off values (> 18.7 ΔCt = “unfavorable subgroup”, < 18.7 ΔCt = “favorable subgroup”) were transferred from the pilot study [10] and applied in order to stratify the ccRCCIVC study cohort from Regensburg and perform Kaplan-Meier analyses. Within the risk classifier formula, a negative factor indicates that higher expression levels correlate with longer survival, while a positive factor correlates with shorter survival. For further analysis, we transferred cut-off values for miR-21 (8.17 ΔCt), miR-126 (3.57 ΔCt) and miR-221 expression (1.84 ΔCt) to evaluate their predictive potential in the new cohort using the Kaplan-Meier survival analysis. Kaplan-Meier, log-rank tests, univariate and multivariate Cox regression analysis as well as partial effects on outcome analysis were performed using Python LifeLines Package Version 0.27.0 [18]. Depending on the distribution of the data, Student’s t-test or Mann-Whitney-U-Test was used to analyze differences between miR expressions.

3. Results

Table 1 summarizes the basic clinical and pathological characteristics of our study cohort. Detailed follow-up information were available for 54 of 56 ccRCCIVC patients (96.4%).
Table 1. Clinical and pathological patient characteristics (n = 56). Detailed follow-up information were available for 54 patients.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Median Follow-up</td>
<td>94 (1 – 190) months</td>
</tr>
<tr>
<td>Median Age</td>
<td>67 (41 – 89) years</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>female</td>
<td>22 (39.3 %)</td>
</tr>
<tr>
<td>male</td>
<td>34 (60.7 %)</td>
</tr>
<tr>
<td>Tumor Stage - pT3b</td>
<td>56 (100 %)</td>
</tr>
<tr>
<td>Fuhrman Grade</td>
<td></td>
</tr>
<tr>
<td>G2</td>
<td>41 (73.2 %)</td>
</tr>
<tr>
<td>G3</td>
<td>15 (26.8 %)</td>
</tr>
<tr>
<td>Nodal Status</td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>45 (80.4 %)</td>
</tr>
<tr>
<td>N+</td>
<td>11 (19.6 %)</td>
</tr>
<tr>
<td>Distant Metastasis during Follow-up</td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>35 (62.5 %)</td>
</tr>
<tr>
<td>M1</td>
<td>21 (37.5 %)</td>
</tr>
<tr>
<td>Median Tumor Size</td>
<td>70 (18 – 225) mm</td>
</tr>
<tr>
<td>Overall survival</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>27 (48.2 %)</td>
</tr>
<tr>
<td>no</td>
<td>29 (51.8 %)</td>
</tr>
<tr>
<td>Cancer-related death</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>13 (23.2 %)</td>
</tr>
<tr>
<td>no</td>
<td>43 (76.8 %)</td>
</tr>
</tbody>
</table>

3.1. Association of miR-21, -126 and -221 Expression with Clinicopathological Characteristics

To investigate the impact of miR-21, -126 and -221 within our ccRCCivc cohort, we associated expression levels of miR-21, miR-126 and miR-221 to relevant clinical parameters. Figure 2 illustrates the results.

At time of surgery, 11 of 56 ccRCCivc patients (19.6 %) were diagnosed with nodal metastasis. In cases with positive nodal status, a trend towards up-regulation of miR-21 (p = 0.065) and a significant down-regulation of miR-126 (p < 0.001) were observed. For miR-221, no statistical association to nodal status could be shown.

During the follow-up period, distant metastasis emerged in 21 of 56 ccRCCivc patients (37.5 %). As shown in Figure 2b, we observed a significant up-regulation of miR-21 (p < 0.001) and down-regulation of miR-126 (p < 0.0001) as well as a trend towards downregulation for miR-221 (p = 0.06) in ccRCCivc samples of patients with metastasized disease.

13 of 56 patients with ccRCCivc (23.2 %) died during the follow-up period due to cancer (cancer-related death, CRD). Regarding miR expression levels, we found a significant up-regulation of miR-
21 (p < 0.0001) and a down-regulation of miR-126 (p < 0.001) in CRD cases. Instead, miR-221 expression did not show a statistically significant association to CRD in this analysis (p = 0.27).

Fig. 2. miR-21, -126 and -221 expression levels depending on lymphonodal status (a), distant metastases (b) and cancer-related death (c). Significant changes between subgroups were calculated using unpaired Student’s t test or Mann-Whitney-U test. *p < 0.05; **p < 0.001; ***p < 0.0001.

3.2. Cox regression Analysis

Next, we performed a univariate Cox regression analysis to further assess the prognostic potential of miR-21, -126, and -221 expression levels as predictors of CRD. Detailed follow-up information were available for 54 of 56 cases with a median of 94 months.

As summarized in Table 2, miR-21 and miR-126 significantly predicted the occurrence of CRD in our study cohort (p = 0.007 for miR-21, p = 0.00035 for miR-126). In contrast, miR-221 expression in tumor tissue did not display significant prognostic potential (p = 0.28). Regarding further clinical parameters, significant results were also observed for nodal involvement, metastatic status and Fuhrman grade.
Table 2. Univariate and multivariate Cox regression of ccRCCIVC patients for miR expression levels and clinicopathological parameters. 95 % Confidence intervals (CI) shown for Hazard ratios. p values were computed using the chi-squared test. * p < 0.05; ** p < 0.001; *** p < 0.0001

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cancer-related death</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hazard Ratio (95 % CI)</td>
<td>P value</td>
<td>Hazard Ratio (95 % CI)</td>
</tr>
<tr>
<td>miR-21</td>
<td>3.79 (1.55 – 9.26)</td>
<td>0.003*</td>
<td>3.51 (1.2 – 10.2)</td>
</tr>
<tr>
<td>miR-126</td>
<td>0.19 (0.09 – 0.42)</td>
<td>0.00035***</td>
<td>0.18 (0.075 – 0.43)</td>
</tr>
<tr>
<td>miR-221</td>
<td>0.74 (0.46 – 1.19)</td>
<td>0.21</td>
<td>0.65 (0.38 – 1.13)</td>
</tr>
<tr>
<td>Age</td>
<td>0.98 (0.92 – 1.03)</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td>2.10 (0.58 – 7.65)</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td>1.01 (1.00 – 1.03)</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Fuhrman Grade</td>
<td>3.79 (1.27 – 11.33)</td>
<td>0.02*</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td>6.70 (2.09 – 21.47)</td>
<td>0.001*</td>
<td></td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>∞</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviation: CI, confidence interval; ∞ / NA: In case of distant metastasis as clinical predictor of CRD, the coefficient was not estimable (positively infinite). Hazard ratio and p-value were therefore not shown.

Additionally, multivariate Cox regression for the three miR candidates yielded statistical significance for miR-21 (p = 0.02, Hazard Ratio 3.51) and miR-126 expression (p = 0.0001, Hazard Ratio 0.18) as predictors of CRD within our ccRCCIVC cohort. Despite a Hazard Ratio of 0.65, miR-221 expression again did not meet statistical significance as predictor of CRD (p = 0.13).

To further estimate the prognostic impact of single miR candidates from multivariate Cox regression, we analyzed their partial effect on CSS for varying miR expression levels (Fig. 3). For miR-21, higher relative expression levels were associated with lower CSS (Fig. 3a). In contrast, higher expression levels of miR-126 as well as miR-221 were associated with higher CSS (Fig. 3b, c).
Fig. 3. (a–c) Partial effects of miR-21 (a), miR-126 (b) and miR-221 (c) expression levels on cancer-specific survival. The baseline represents median relative expression for each miRNA (miR-21 = 8.34 ΔCt, miR-126 = 4.0 ΔCt, miR-221 = 1.3 ΔCt). Blue line represents minimum and brown line the maximum relative expression of each miRNA in present study cohort. (d) Forest plot representing log Hazard Ratios (HR) from multivariate Cox regression of miR-21, -126, -221 for cancer-related death (CRD). p values were computed using the chi-squared test.

3.3. Kaplan Meier Analyses for single miR expression and the Risk Classifier

To investigate the prognostic transferability of single miRNAs, survival analyses using the cut-offs from Vergho et al. [10] were performed. Both, miR-21 and miR-126 showed a strong predictive significance in the Kaplan-Meier survival analysis (Fig. 4a, b). However, differences regarding CSS of miR-221 high vs. low expressing tumor specimens (Fig. 4c) did not reach statistical significance (p = 0.25).

To validate the predictive potential of the risk classifier (Fig. 4d), the cut-off level of 18.7 ΔCt (> 18.7 ΔCt = unfavorable subgroup, < 18.7 ΔCt = favorable subgroup) was used to stratify the validation cohort consisting of n = 54 ccRCCIVC tissue samples. Out of 13 CRD cases in total, the classifier correctly identified 12 patients who suffered from CRD as members of the unfavorable subgroup (92.3 %; > 18.7 ΔCt). Overall, a sensitivity of 92.3 % (CI 95 %: 62.1 % – 99.6 %) and a specificity of 61.0 % (CI 95 %: 44.5 % – 75.4 %) were reached. Difference in 5-years and 10-years CSS
was 100% vs 70% and 94% vs 31% between the favorable and the unfavorable subgroup, respectively.

Fig. 4. Kaplan Meier survival analysis for CSS for external independent ccRCCIVC (n = 54) cohort from Regensburg stratified by miR-21 (a), miR-126 (b) and miR-221 (c) expression levels. (d) Combined miR-based risk classifier (miR-21, -126, -221) using identical cut-offs and weights from a previous publication [10]. p values from log-rank tests are shown within each plot.

4. Discussion

cCRCCs infiltrating the inferior vena cava represent a clinically relevant high-risk subgroup. Still, there is substantial clinical heterogeneity within this distinct subgroup – and biomarkers are needed to assess the individual risk of progression. In general, adjuvant therapy with tyrosine kinase inhibitors (TKI) or immune checkpoint blockers could be a promising therapeutic option after nephrectomy – especially for patients suffering from high-risk RCC. However, European kidney cancer guidelines currently do not contain strong recommendations towards adjuvant therapies due to the mixed outcome in clinical trials [19]. For the TKI sunitinib, one trial displayed improved disease-free survival (DFS) for patients – while showing no significant differences in overall survival (OS) [20]. Additionally, another phase 3 trial did not detect significant survival effects for adjuvant sunitinib or sorafenib in nonmetastatic high-risk renal cell carcinoma [21]. Due to the sobering TKI
results, research efforts were mainly shifted towards immune checkpoint blockers. For the PD-1 (Programmed Cell Death Protein 1) inhibitor pembrolizumab, KEYNOTE-564 trial detected improved progression-free survival (PFS) in an adjuvant setting after nephrectomy [22].

4.1. Evaluating a miR-based Risk Classifier for RCC with Infiltration of the Vena Cava

To estimate the individual risk of patients suffering from ccRCCIVC, members of our research group have established a risk classifier based on the tissue expression of miR-21, miR-126, and miR-221 [10]. Former cohort contained tumor tissue of $n = 37$ patients undergoing surgery at the University Hospital of Würzburg, Germany. In this study, we externally validated the prognostic potential of the miR-based risk classifier. Therefore, we examined an independent cohort of ccRCCIVC from the University of Regensburg, Germany ($n = 56$). To test the transferability and usability of the classifier within an external tissue cohort, we applied identical cut-off values and weights as in the previous pilot study.

Regarding clinicopathological characteristics of our study cohort, low miR-126 expression was significantly associated with a positive lymphonodal status at time of surgery. Moreover, occurrence of metastases during follow-up was significantly associated with higher miR-21 and lower miR-126 levels. Tumor tissue from patients suffering from CRD was also characterized by a significant upregulation of miR-21 and a downregulation of miR-126. Within univariate cox regression, miR-21 and miR-126 showed prognostic significance regarding cancer-specific survival (CSS). Lower levels of miR-221 in tumor tissue and its association with CRD did not reach statistical significance. Beyond miR expression, Fuhrman grade, lymphonodal status and occurrence of metastasis emerged as prognostically relevant. Next, we added a multivariate Cox regression for the three miR candidates. Again, this study identified miR-21 and miR-126 expression to significantly impact CRD. Kaplan Meier analyses based on cut-off values determined previously by Vergho et al. [10] confirmed the significant influence of miR-21 as well as miR-126 expression levels on CSS. Finally, applying the miR-based classifier using identical cut-off values and weights split patients in two groups. Of note, the classifier nearly stratified the study cohort in two halves – with $n = 26$ patients belonging to the favorable and $n = 28$ patients belonging to the unfavorable subgroup. Regarding the substantial difference in CSS between both groups, adjuvant therapies appear promising especially for the unfavorable subgroup of ccRCCIVC patients.

4.2. Functional Roles of miR-21, miR-126, and miR-221 in Cancer

After confirming the prognostic potential of the miR classifier using the validation cohort from Regensburg, we were interested in previously reported functions of these miRs in RCC and other malignancies. For miR-21, several researchers demonstrated oncogenic effects in various cancers, including RCC [23], [24]. Among the prominent miR-21 target genes are key players of apoptosis
induction like PDCD4 (Programmed Cell Death 4) [25] and genes like PTEN (Phosphatase and Tensin Homolog) [23]. Latter is an established tumor suppressor gene best known for regulating PI3K/Akt signaling. In contrast to miR-21, miR-126 acts as a tumor suppressor in tumor tissue, e. g. by targeting ROCK1 (Rho Associated Coiled-Coil Containing Protein Kinase 1) [26] and VEGFA (Vascular Endothelial Growth Factor A) [27]. For miR-221, oncogenic versus protective functions appear to depend on the underlying cancer entity, as researchers demonstrated both roles [28]–[30]. For RCC, a downregulation of miR-221 appears well in line with previous publications. Specifically, miR-221 is reported to regulate KDR (Kinase Insert Domain Receptor) – also known as VEGFR2 (Vascular Endothelial Growth Factor Receptor 2) – in ccRCC [31] and prostate cancer [32], thereby regulating the sensitivity towards sunitinib. In summary, among diverse tumorigenic functions of these miRs, all three candidates prominently influence angiogenesis-related pathways (so-called AngiomiRs) [33], [34]. Given that not all ccRCCs depend on angiogenic signaling to the same degree [35], it is tempting to assume that the unfavorable subgroup identified by our risk classifier could benefit from adjuvant anti-angiogenic therapy.

4.3. Limitations and Future Directions

Our study has several limitations. Leaving aside the special RCC subgroup investigated here, sample size of our study is relatively small. Moreover, we purposely did not adjust cut-off values and individual miR weights determined previously in order to check the transferability of the risk classifier to external tissue cohorts. More research is needed – ideally in a prospective setting – to further validate the risk classifier in a clinical setup and to elucidate whether sub-classification of ccRCCIVC is able to identify patients most susceptible towards adjuvant therapy.

5. Conclusions

While RCC extending into the inferior vena cava represents a high-risk setting, there is still substantial clinical heterogeneity within this patient subgroup. Previously, Vergho et al. established a miR-based risk classifier - containing miR-21, miR-126 and miR-221 expression – which significantly predicted CSS for patients from this subgroup. To validate this classifier, we examined its impact on an external and independent patient cohort. Using identical cut-off values for single miRs and identical weights within the classifier, we confirmed a highly significant risk stratification within the new cohort. Patients with an unfavorable constellation according to the miR-based classifier could especially benefit from adjuvant therapy and continuous follow-up examinations.
Statement of Ethics

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by the local Ethics Committees (Regensburg: Nr. 08/108, Würzburg: Nr. 136/08).

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Funding Sources

Markus Krebs was funded by a personal grant from Else-Kröner-Foundation (Else Kröner Integrative Clinician Scientist College for Translational Immunology, University Hospital Würzburg, Germany).

Author Contributions

References

