Insomnia and risk of sepsis: A Mendelian randomization study

Marianne S. Thorkildsen (ORCID ID 0000-0002-3328-9133)1, Lise T. Gustad, PhD (ORCID ID 0000-0003-2709-3991)2,3, Tom I.L. Nilsen, PhD (ORCID ID: 0000-0001-8251-3544)4,5, Jan K. Damås PhD (ORCID ID 0000-0003-4268-671X)6,7,8,1, Tormod Rogne, PhD (ORCID ID 0000-0002-9581-7384)9,1,10

1 Gemini Center for Sepsis Research at Institute of Circulation and Medical Imaging, NTNU, Trondheim, Norway.
2 Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway.
3 Department of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway.
4 Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway.
5 Department of Public Health and Nursing, NTNU, Trondheim, Norway.
6 Centre of Molecular Inflammation Research, NTNU, Trondheim, Norway.
7 Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.
8 Department of Infectious Diseases, St. Olavs Hospital, 7006 Trondheim, Norway.
9 Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, Connecticut, USA.
10 Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.

Correspondence
Marianne S. Thorkildsen, Gemini Center for Sepsis Research at Institute of Circulation and Medical Imaging, NTNU, Trondheim, Norway (mariasth@stud.ntnu.no, +4748246342)

Abstract
Objective: Research suggest insomnia possibly decrease immune function and therby increase risk of infections. Insomnia is the most common sleeping disorder and is potentially treatable and preventable. As infections can lead to severe illness, finding potentially preventable risk factor is of outmost importance. We wanted to determine whether insomnia is a risk factor for the severe infectious disease sepsis.

Methods: We used two sample mendelian randomization (MR) as our method investigate the causal association between insomnia and risk of sepsis. We obtained a total of 203 genetic variants associated with insomnia, from the UK Biobank and 23andMe genome-wide association studies (GWAS), derived from 1,3 million subjects. From the UK Biobank GWAS 10,154 sepsis cases were extracted, and 452,764 were controls.

Results: Insomnia was associated with a 7% (95% CI 2–13%, P=0.01) increased odds of genetically-predicted sepsis.

Conclusions: Our results provide evidence that suggests insomnia is causally associated with an increased risk of sepsis.

Keywords: Mendelian randomization, sepsis, insomnia, infectious disease
Introduction

Insomnia is the most common sleep disorder [1] and is associated with numerous adverse health outcomes [2]. Current evidence suggests that insomnia can alter the immune function [3] and possibly leave individuals suffering from insomnia more susceptible to infectious diseases. Sepsis is a systemic condition with high morbidity and mortality that is characterized by a dysregulated response to an infectious disease [4]. It is therefore of utmost importance to identify modifiable risk factors for sepsis that can be targets for preventive efforts. It has recently been reported that people with symptoms of insomnia have an elevated risk of bloodstream infection (BSI) – a condition closely linked to sepsis [5].

Sleep disturbances could be influenced by other factors or conditions associated with the risk of infectious diseases (e.g., diabetes, cardiovascular disease, adiposity and smoking) [2], and the association between insomnia and infectious diseases risk reported in previous observational studies may therefore be biased. Mendelian randomization (MR) is a powerful method using genetic variants as instruments for modifiable risk factors to reduce the influence of confounding and reverse causation [6]. This approach mimics a randomized controlled trial by utilizing the principle of random segregation of genetic variants at conception.

Our aim was to evaluate whether the previously reported association between insomnia and risk of systemic infectious diseases in observational studies also hold true when applying instrumental variable analyses with genetic instruments.

Method

We used a two-sample MR approach to estimate the unconfounded association between insomnia and risk of sepsis. Using single nucleotide polymorphisms (SNPs) as genetic instruments, and for each SNP we estimated the Wald ratio defined as the SNP-outcome association divided by the SNP-exposure association [7]. For an instrument to be valid, it must be associated with the exposure, it cannot be associated with any confounder of the exposure-outcome association, and it cannot affect the outcome other than through the exposure [7].

We obtained 203 genetic variants associated with insomnia from a genome-wide association study (GWAS) evaluating 1.3 million subjects of European ancestry from the UK Biobank and 23andMe (Table) [8]. We only included SNPs that were strongly associated (p-value <5e-8) with insomnia and independent (R^2<0.01) of one-another. These variants explained 2.6% of the variance in insomnia in the original GWAS. We used clumping to identify independent signals with correlated SNPs.
For the multivariable MR analyses (see below), we extracted genetic variants from relevant GWASs of body mass index (BMI) [9], type 2 diabetes mellitus (T2DM) [10] and smoking status [11], using the same thresholds for inclusion as noted for insomnia.

Genetic instruments for sepsis were extracted from a GWAS in the UK Biobank [12] including 10,154 sepsis cases and 452,764 controls, where cases were defined according to the explicit sepsis criteria defined in the most recent Global Burden of Disease study of sepsis [4]. Because sample overlap between the exposure and outcome GWASs may bias the estimate towards the confounded estimate, we included a sensitivity analysis of sepsis (International Classification of Diseases, 10th revision code A41) in FinnGen Release 5; 5,373 cases and 197,660 controls.

Prior to analyses, SNPs in the exposure and outcome GWASs were harmonized to evaluate the presence of the same allele. In the main analysis, using the inverse-variance weighted (IVW) method, we calculated the combined effect across the Wald ratio for all SNPs, putting more emphasis to the SNPs with the lowest variance. For the IVW estimate to be valid, all included instruments must be valid. Thus, we conducted sensitivity analyses that provide unbiased results even in the presence of some invalid instruments, but at the cost of less statistical power: the weighted median, weighted mode and MR Egger regression [7]. Lastly, to further control for potential pleiotropic effects of the SNPs used as instruments for insomnia, we included traits genetically associated with insomnia that are risk factors for sepsis – BMI, T2DM and smoking – in a multivariable MR. In this analysis, we first identified instruments for the traits as described above, extracted SNPs for each trait that were identified as an instrument for at least one trait, and finally did a second round of clumping (R²<0.01) to remove any introduced SNPs across traits that were strongly correlated with one-another.

We used R (version 4.0.5) for data formatting and the TwoSampleMR package (version 0.5.6) for all analyses. All data used are publicly available, and there is ethical approval for each included study.

Results

In our main analysis we found that a one-unit increase in the log-odds ratio of genetically-predicted insomnia was associated with a 7% (95% CI 2–13%, P=0.01) increased odds of genetically-predicted sepsis (Figure). The weighted mode, median and MR-Egger analyses had low precision and included both the point estimate from the IVW analysis and the null effect. The result from the analysis of risk of sepsis in FinnGen was in the same direction as the main analysis, but closer to the null. Finally, when additionally adjusting for genetically
predicted BMI, T2DM and smoking, we observed a point estimate similar to the main analysis, albeit with a wide confidence interval.

Figure Mendelian randomization analyses of the association between insomnia and risk of sepsis using data from UK Biobank, 23andMe and FinnGen

Main analysis: IVW

Weighted Mode

Weighted Median

MR Egger

FinnGen

Multivariable MR

Odds ratio

Odds ratios with 95% confidence intervals of risk of genetically predicted sepsis per one unit increase in log-odds ratio of genetically-predicted insomnia. The FinnGen data was analyzed using IVW. The multivariable MR analysis included genetically predicted body mass index, type 2 diabetes mellitus and smoking status. Abbreviations; IVW – inverse variance weighted, MR – Mendelian randomization.
Discussion

Our findings support a causal positive association between insomnia and risk of sepsis. This is in line with previous research and results from observational data, reporting that insomnia increase the risk of altered immune response [3] and bloodstream infection [5]. Although the precise mechanisms of this association remains elusive, evidence suggests that sleep can promote the immune homeostasis through different mediators that both affect the innate and adaptive immune responses [3]. As summarized by Besedovsky et al., numerous studies have reported on insomnia altering immune function though various mechanisms (e.g., inflammatory cytokines, lymphocyte subsets and telomere length), suggesting insomnia in itself is linked to immune and inflammatory dysregulation [3]. Although a few of our sensitivity analyses suggested some bias due to pleiotropy, they were overall in accordance with our main analysis. In particular, the multivariable MR analysis was very similar to the IVW analysis, but with less precision partly due to fewer genetic instruments in the analysis. The MR design of our study is a major strength, greatly reducing the risk of bias due to confounding. By not restricting our definition of sepsis to specific pathogens, our study also covers a wide range of sepsis causes. Limitations of the study are 1) the low statistical power and imprecise results of our sensitivity analyses, and 2) that it only includes individuals with European ancestry which limits the generalizability of our results.

Conclusion

The findings from this MR study are in line with those of previous observational studies and supports that insomnia is causally associated with an increased risk of sepsis.

References

5. Thorkildsen MS, Laugsand LE, Nilsen TIL, et al. Insomnia symptoms and risk of bloodstream infections: prospective data from the prospective population-based HUNT Study, Norway. medRxiv. 2022;2022.05.05.22274704. doi:10.1101/2022.05.05.22274704
Statements and contributions

Founding
This work has received no funds, grants, or other support.

Competing interests
The authors have no financial or non-financial conflicts of interest to declare.

Author contribution
All authors have contributed significantly to the manuscript. All authors participated in designing the study. Marianne Thorkildsen constructed the manuscript. Tormod Rogne directed its implementation and performed the analyses. Jan Kristian Damås, Tom Ivar Lund Nilsen and Lise Tuset Gustad quality controlled the work and analyses.

Ethics approval
All data used in this study is publicly available and has received all necessary ethical approvals.
<table>
<thead>
<tr>
<th>Trait</th>
<th>Study</th>
<th>Ancestry</th>
<th>Cases/controls or number of participants</th>
<th>Number of SNPs used (p-value<5e-8)</th>
<th>F-statistic for individual SNPs; median (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Multivariable: 386,533</td>
<td>Multivariable: 14</td>
<td>Multivariable: 34 (30-95)</td>
</tr>
<tr>
<td>Body mass index</td>
<td>Yengo 2018 [9]</td>
<td>European</td>
<td>681,275</td>
<td>921</td>
<td>44 (29-1360)</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>Mahajan 2018 [10]</td>
<td>European</td>
<td>74,124/824,006</td>
<td>206</td>
<td>44 (28-1394)</td>
</tr>
<tr>
<td>Sepsis</td>
<td>Ponsford 2020 [12]</td>
<td>European</td>
<td>10,154/452,764</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>