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ABSTRACT 

Trimethylamine N-oxide (TMAO) is a circulating microbiome-derived metabolite implicated in 

the development of atherosclerosis and cardiovascular disease (CVD). We investigated whether 

plasma levels of TMAO, its precursors (betaine, carnitine, deoxycarnitine, choline) and TMAO-

to-precursor ratios associate with clinical outcomes, including CVD and mortality. This was 

followed by an in-depth analysis of their genetic, gut microbial and dietary determinants. The 

analyses were conducted in five Dutch prospective cohort studies including 7,834 individuals. To 

further investigate association results, Mendelian Randomization (MR) was also explored. We 

found only plasma choline levels (hazard ratio (HR) 1.17, (95% CI 1.07; 1.28)) and not TMAO 

to be associated with CVD risk. Our association analyses uncovered 10 genome-wide significant 

loci, including novel genomic regions for betaine (6p21.1, 6q25.3), choline (2q34, 5q31.1) and 

deoxycarnitine (10q21.2, 11p14.2) comprising several metabolic gene associations, e.g., CPS1 or 

PEMT. Furthermore, our analyses uncovered 68 gut microbiota associations, mainly related to 

TMAO-to-precursors ratios and the Oscillospiraceae family and 16 associations of food groups 

and metabolites including fish-TMAO, meat-carnitine and plant-based food-betaine associations. 

No significant association was identified by MR approach. Our analyses provide novel insights 

into the TMAO pathway, its determinants and pathophysiological impact in the general 

population. 
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INTRODUCTION 

There is a growing interest in the role of gut microbiome-related metabolites in cardiovascular 

disease (CVD).1, 2 Trimethylamine N-oxide (TMAO) in particular has received a lot of attention 

as a potential promoter of CVD and atherosclerosis.1 Elevated fasting plasma levels of TMAO 

have been associated with increased risk for CVD and mortality independently of traditional risk 

factors in clinical studies.3, 4, 5,6, 7, 8 However, investigations on TMAO have mainly been 

conducted in individuals with high risk of CVD, existing disease or multimorbidity while studies 

on general population are scarce.9 Proposed mechanisms through which TMAO may promote the 

development of atherosclerosis and CVD include vascular inflammation, activation of platelets, 

disturbance of bile acid metabolism and inhibition of reverse cholesterol transport.10 Yet, the 

actual mode of action in disease development may be context dependent.  

Variation in circulating levels of TMAO is driven by a complex interplay of multiple 

determinants, such as host genetics, gut microbiome, diet and kidney function.11 TMAO can be 

acquired directly from the diet from fish but it is mainly produced by gut microbiota from the 

dietary precursors choline, L-carnitine, the carnitine-derived metabolite deoxycarnitine (also 

known as γ-butyrobetaine) and betaine.12 Gut microbiota convert these ubiquitous dietary 

components into trimethylamine (TMA) which is subsequently absorbed from intestine, 

transported to the liver and oxidized into TMAO by hepatic flavin monooxygenases (FMOs), 

followed by its distribution to different tissues or kidney clearance.13 However, the extent to 

which consumption of different animal-based foods may affect plasma TMAO levels is 

debated,14, 15, 16 and TMA producers in the human gut microbiome have not been well-

characterized. Association studies point to several genera, however, published results are in most 

cases heterogeneous among studies.12, 17, 18, 19, 20, 21 On the other hand, several studies have 
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focused on identifying microbial genomes harboring the metabolic potential to produce TMA.22, 

23 Even though, Proteobacteria and Firmicutes phyla had the most predicted TMA-production 

potential,23 reports suggest that there is no association between gene abundance levels and 

TMAO plasma concentrations.24 At the same time, human genetic variation also contributes to 

TMAO variability. Rare genetic mutations in FMO type 3 gene (FMO3) have been shown to 

affect oxidation of TMA to TMAO.25 However, the role of common genetic variation in TMAO 

homeostasis remains to be elucidated. As identifying potential drivers for alterations in 

circulating TMAO levels could have preventive and therapeutic implications for CVD,26 a 

number of studies have explored determinants of TMAO.27,12, 21 However, these cross-sectional 

multi-omics studies lack in most cases large sample sizes and are limited to explore TMAO 

variability while all their precursors are overlooked. The physiological impact of choline and 

betaine associations with CVD risk remain controversial.28, 29, 30, 31 Importantly, the major 

sources of intraindividual variability of these metabolites, together with carnitine and 

deoxycarnitine, remain unknown.   

In addition, CVD risk has often been regarded as a sex-related disease, with clear prevalence 

differences between males and females.32 No studies to date have investigated whether the effect 

of TMAO metabolites on CVD risk might be sex-related and whether sex might differentially 

affect the factors that shape plasma concentrations of these metabolites.  

Therefore, our aim was to conduct an in-depth study to examine associations of plasma levels of 

TMAO and its precursors (betaine, carnitine, deoxycarnitine, choline) with clinical outcomes, 

including CVD incidence and mortality and to investigate their genetic, gut microbial and dietary 

determinants in the setting of five Dutch prospective cohort studies mainly based on the general 

population. Additionally, we also investigated ratios of TMAO to its dietary precursors33 as they 
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could provide important information about the TMAO biosynthesis pathway in relation to CVD. 

Lastly, we aimed to assess the potential causal nature of the relationships between TMAO and its 

precursors with CVD by using a Mendelian Randomization approach. 

RESULTS 

Characteristics of the study population 

An overview of the study design is depicted in Figure 1. Our study population included 7,834 

participants from five Dutch prospective cohort studies including the Rotterdam Study I-4, 

Rotterdam Study III-2, Leiden Longevity Study (LLS), LifeLines-DEEP (LLD) and 300-Obese 

cohort (300-OB). A description of contributing cohorts is provided in Supplementary Material 

and descriptive characteristics of study participants are shown in Table 1. The mean age of study 

participants ranged from 43.4 years (sd = 14.2) in the LLD to 75.1 years (sd = 6.1) in the 

Rotterdam Study I-4. The sex ratio of participants was roughly balanced, with slightly more 

females in most of the participating studies (up to 58%), with the exception of 300-OB in which 

the majority of participants were males (55 %). Detailed information on clinical outcomes such 

as CVD and mortality, host genetics, gut microbiome composition and diet was available for 

cohorts. 

Characteristics of gut microbiome related metabolites 

Plasma levels of TMAO and its precursors betaine, carnitine, deoxycarnitine and choline were 

measured in all participating cohorts. Descriptive characteristics of TMAO and its precursors 

betaine, carnitine, deoxycarnitine and choline and the methods used to quantify their plasma 

concentrations are shown in Supplementary Table 1. Phenotypic correlations between 

metabolites and their ratios are displayed in Supplementary Figure 1. Weak phenotypic 
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correlations were observed between TMAO and its precursors (r2 ≤ 0.20) and moderate 

correlations between the TMAO precursors (0.30 ≤ r2 ≤ 0.44).  

Incident clinical outcomes are associated with TMAO precursors but not with TMAO  

To assess the relationship between metabolites and incident clinical outcomes including CVD 

and mortality, Cox proportional hazards regression models with age as time scale were used. In 

total, 571 incident CVD events and 1,440 mortality events were observed among up to 5,011 

participants from Rotterdam Study I-4, Rotterdam Study III-2 and LLS. The results of 

association analyses are displayed in Supplementary Tables 2 and 3. A statistically significant 

association was observed between higher levels of choline and risk of CVD (hazard ratio (HR) 

1.17, (95% CI 1.07; 1.28)) after adjusting for sex, body-mass index (BMI), hypertension, 

diabetes, cholesterol in low-density lipoproteins (LDLC) and high-density lipoproteins (HDLC), 

serum triglycerides (TG), use of lipid-lowering medication, current smoking, fasting status (if 

appropriate) (model 1) and multiple testing. The association did not change after further 

adjustment for estimated glomerular filtration rate (eGFR) (model 2). The direction of effect size 

was concordant among the cohorts and no differences were observed between males and females 

(Supplementary Table 2). Additionally, a nominal significant association was observed 

between betaine and risk of CVD (HR 1.10; 95% CI 1.00; 1.21). This association was driven by 

a strong association in males (HR 1.23; 95% CI 1.07; 1.43). TMAO was not associated neither 

with CVD risk or mortality. Analyses were repeated using quartiles of TMAO and also here no 

association was observed with clinical outcomes. 

To assess potential causal effect, we performed a MR analysis. The results did not provide 

evidence for any causal effect of TMAO or its precursor metabolites on CVD (Supplementary 

Table 4).  
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Drivers of variation in gut microbiome related metabolite levels 

We next investigated the sources of variability of each of the measured metabolites. The 

combined effect of host genetics, gut microbiome and dietary variation in explaining the 

variability of plasma metabolite levels and ratios was evaluated by fitting linear regularized 

additive models (elastic net) on a train set and by estimating the determination coefficient (R2) 

on a test set (see details in Methods). We trained two models, using LLD or Rotterdam Study 

III-2 as the train set and the left-out cohort as the test set, respectively (Figure 2). Genetic 

contributions to metabolite variability was large for TMAO precursors but small for TMAO and 

TMAO-to-precursor ratios, although it showed low replicability in the testing cohort. We 

observed similar pattern regarding microbial features. For both LLD and Rotterdam Study III-2 

trained models, a large proportion of TMAO and TMAO ratios variability could be explained by 

the microbiome in the training set. However, this effect was lost in the test sets. On the other 

hand, diet showed small but consistent effects between cohorts, while anthropometrics effects 

seemed to be larger in LLD, both in the Rotterdam Study III-2 -trained and LLD-trained models.  

Subsequently, due to the lack of consistency found in the cohort-trained models, we sought to 

identify consistent associations between individual metabolites and host genetics, gut 

microbiome, or diet through a meta-analysis. 

Genetic variants are underlying levels of TMAO precursors, but not of TMAO itself 

To evaluate host genetic determinants of TMAO-related metabolites and ratios, we performed 

genome-wide association study (GWAS) (N = 7,093). The results of the GWAS meta-analysis 

are illustrated in Figure 3a. The quantile-quantile plots indicated that any cryptic relatedness 

and/or population stratification were well-controlled after genomic correction (λ ranged between 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.09.01.22279510doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279510
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.00 and 1.02) (Supplementary Figure 2, Supplementary Table 5). Meta-analyses identified 

55 independent genetic variants (see Methods section for description of independent genetic 

variant selection criteria) mapped to 5 genomic regions for betaine, 89 independent genetic 

variants mapped to 3 genomic regions for carnitine, 10 mapped to 3 genomic regions for choline 

and 37 mapped to 3 genomic regions for deoxycarnitine at Bonferroni corrected genome-wide 

significance level (p-value < 8.33×10-9) (Supplementary Table 6, 7 and 8, Supplementary 

Figure 3). Of these genomic regions, two genomics regions for betaine (6p21.1, 6q25.3), two for 

choline (2q34, 5q31.1) and two for deoxycarnitine concentration (10q21.2, 11p14.2) have not 

been reported in previous association studies (Supplementary Table 7). GWAS of TMAO 

revealed no genetic variant associated with TMAO concentration at genome-wide significant 

level (Figure 3a). Our findings are in line with previously published studies.34, 35, 36, 37 As this 

might suggest that genetic variants have a weak effect on variation in TMAO levels, we 

combined our results with the results from the publication of Hartiala et al35 in order to increase 

our sample size and improve power. However, no difference in signal was observed. 

Subsequently, we have also explored the genetic variants in the FMO region (Supplementary 

Figure 4). Even tough, previous studies reported a link between rare mutations in the FMO3 

gene and TMAO levels,38 no association (p-value > 0.1) was observed neither with common nor 

rare genetic variants of this region in our study. On the other hand, GWAS of TMAO to 

precursor ratio revealed genetic loci associated with TMAO to betaine ratio (n=2), TMAO to 

carnitine ratio (n=2) and TMAO to deoxycarnitine ratio (n=1) (p-value < 8.33×10-9) (Figure 3b, 

Supplementary Table 9). These genetic loci were identified in our GWA analysis of individual 

metabolites. 
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The genetic variants found have previously been associated with various metabolic (e.g. plasma 

cholesterol and triglycerides levels, metabolite levels, liver enzyme levels), anthropometric (e.g., 

height, waist circumference, BMI) and medical traits (e.g., chronic kidney disease, diabetes 

mellitus, blood pressure). The list of associations for independent significant genetic variants 

(please see Methods for details) and all genetic variants in LD with these is provided in 

Supplementary Table 10. 

Furthermore, we performed a sex-stratified analysis to capture sex-based differences (Nfemales = 

4,026, Nmales = 3,067). All significant associations observed in males and almost all significant 

associations found in females were also significant in the overall analysis (Supplementary 

Figure 5, Supplementary Table 11). An exception was the intronic variant mapped to RP1 gene 

which showed a significant association with TMAO in females (beta = -0.29, p-value = 2.63×10-

9) but not in males (beta = 0.02, p-value = 0.78) or in the overall analysis. This variant showed 

heterogeneity between males and females (p-value = 3.35×10-5). The RP1 gene has been reported 

to function in photoreceptor differentiation (GeneCards Version 3: the human gene integrator). 

A gene-based association analysis revealed 11 genes associated with betaine, 16 with carnitine, 6 

with deoxycarnitine and two genes with choline at gene-wide significance level (p-value < 

4.42×10-7) (Supplementary Table 12). These genes were compared to previous association 

studies and an overview of both known genes replicated in our analysis and novel genes is shown 

in Supplementary Table 12. Several of the specific genes are considered in detail in the 

Discussion. No significant gene-sets were identified in the gene-set analysis (Supplementary 

Table 13). 
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Heritability estimates and genetic correlation 

SNP-based heritability of metabolites was estimated in a range from 0.16 (SE = 0.07) for choline 

to 0.28 (SE = 0.08) for betaine using LD score regression (Supplementary Figure 6). An 

overlap of lead genetic loci was observed between betaine and choline (2q34), betaine and 

deoxycarnitine (12p13.33), carnitine and deoxycarnitine (10q21.2) and carnitine and choline 

(5q31.1) (Supplementary Figure 7). Additionally, we examined genetic overlap on a genome-

wide level by computing genetic correlations. Evidence of suggestive genetic overlap was 

observed for TMAO and choline (ρgenetic�=�0.63, p-value�=�2.77�×�10-2) and betaine and 

choline (ρgenetic�=�0.54, p-value�=�5.7�×�10-3), while evidence of significant genome-wide 

genetic overlap was observed between TMAO and TMAO-to-precursor ratios (Supplementary 

Table 14).  

Microbial taxa are associated with plasma levels of TMAO, but not with those of its 

precursors  

The results of the association analysis between the metabolites studied and 241 gut microbial 

taxa abundance are shown in Figure 4. There were 68 associations that surpassed the 

significance threshold after Bonferroni multiple test correction (p-value < 6.21×10-5). Significant 

associations were predominantly seen for TMAO (11/68) and TMAO-to-precursor ratios (56/68) 

(Supplementary Table 15). From those, the TMAO/carnitine ratio was associated with 

abundance of 23 microbial taxa and the TMAO/choline ratio with 15 microbial taxa. The top 

associated taxa corresponded to several Ruminococcaceae genera (NK4A21, UCG003, 

UCG005) which were positively associated to TMAO abundance ratio to its precursors, carnitine 

and choline. Other top associations included the class Actinobacteria, which was consistently 
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negatively associated with TMAO-precursor ratios. The only significant association not directly 

related to TMAO was a positive association between the genus Haemophilus and betaine. Some 

members of this taxonomic group are able to oxidize choline to generate betaine, although we 

did not observe a negative association between these taxa and plasma choline.39 Association 

effect sizes across cohorts were generally concordant, with no evidence for heterogeneity in most 

associations (nominally significant heterogeneity in 120/2,169 associations and 4/64 among 

significant associations) (Supplementary Table 15). Interestingly, most of the significant or 

close to significant TMAO associations showed a different direction of effect than associations 

to at least one precursor (Supplementary Figure 8). This might highlight taxa with the potential 

to metabolize TMAO-precursors into TMA.  

Next, we performed such analyses using female (Supplementary Table 16) and male 

(Supplementary Table 17) stratified samples. In males we identified only four significant 

results, while we found 15 in females (Supplementary Figure 9). Most of these associations 

were for TMAO-precursor ratios, while only three of them were seen for TMAO (in females). If 

we focus on suggestive associations in one of the stratified analyses based on sex (p-value < 

1.2×10-3) but not found to be associated in the overall analysis (p-value > 1.2×10-3), we could 

identify 14 associations, 10 of which showed a significant heterogeneity (p-value < 0.05) 

between females and males (Supplementary Figure 10). The most noteworthy heterogeneous 

association is between Coprococcus and carnitine, for which a clear negative association is seen 

in males (beta = -0.0178, p-value = 0.039), which does not appear in females (beta = 0.006, p-

value = 0.583). This taxon has previously been linked to be sex-biased in mammals, such as mice 

or pigs.40, 41 
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In order to examine causality between the microbial taxonomy and metabolite levels, we 

performed two-sample Mendelian Randomization (MR) between taxa and metabolites 

(excluding ratios). However, we failed to find any significant association (Supplementary 

Table 18). 

Diet is associated with plasma levels of TMAO and its precursors  

Correlations between metabolites and dietary data categorized into 13 major food groups while 

adjusting for age, sex and BMI are presented in Supplementary Figure 11 and Supplementary 

Table 19. There were 16 correlations that surpassed Bonferroni corrected threshold for multiple 

testing (p-value < 7.58 × 10-4). Top positive correlations were observed between TMAO or 

TMAO-to-precursor ratios and fish intake. Levels of circulating precursors, showed association 

with other food groups. Betaine levels were positively associated with grains, vegetables and 

nuts, while carnitine levels showed positive association with meat and negative correlations were 

observed between cheese intake and choline and eggs intake and deoxycarnitine. Overall, our 

findings are in line with literature findings.11, 30, 42, 43, 44 

DISCUSSION 

We have performed an in-depth study to identify potential relationship between plasma levels of 

TMAO and its precursors betaine, carnitine, deoxycarnitine and choline on one hand and clinical 

outcomes, host genetics, gut microbiota composition and diet on the other hand in up to 7,834 

participants from five prospective cohort studies mainly based on the general Dutch population. 

We found a statistically significant association between choline and higher risk of CVD. 

Furthermore, we have found that variation in gut microbiota and dietary composition were 

important determinants of TMAO levels and that host genetics and dietary composition were 
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drivers of precursor levels. Among these, we identified several novel gut microbial drivers of 

TMAO levels and novel genetics determinants of TMAO precursor levels.  

We observed a significant association of the circulating choline and higher CVD risk. Higher 

circulating levels of choline correlated with a 17% increase in risk for CVD events. Furthermore, 

circulating levels of choline showed a trend towards nominal association with all-cause 

mortality. Choline is an essential nutrient that plays a role in various metabolic process such as 

C1 metabolism and synthesis of phospholipids. As such, choline metabolism interacts with the 

pathways of insulin sensitivity, fat deposition and energy metabolism.45 The relationship 

between dietary choline intake and circulating levels of free choline and its metabolites is 

concealed by homeostatic regulations and rapid tissue uptake.46 As a result, the concentration 

range of choline and its metabolites is often quite narrow.46 Despite being a common dietary 

compound, we did not identify a strong predictive potential of diet in plasma choline levels. This 

might be related to the fact that blood samples in our study were mainly collected after overnight 

fasting. Based on previous literature findings significant increase of choline concentration was 

observed up to the 8h after intake.46 Previous studies reported associations of circulating levels 

of choline with higher risk of CVD, mortality and with some traditional cardiovascular risk 

factors including lower HDL, higher systolic pressure, triglycerides.4, 8, 17, 47, 48 However, there 

are also studies focusing on dietary choline intake with conflicting results. Higher dietary intake 

of choline was not predictive for incident coronary heart disease or CVD mortality.28, 29, 30, 31 A 

systematic review and meta-analysis of six prospective studies also reported no association of 

dietary choline intake and incident CVD.49 However, there was significant heterogeneity among 

those studies. Therefore, inconsistency in findings may be related to differences in dietary 

patterns, sample sizes, follow-up periods and geographical location. We also investigated the 
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causality of our association by means of a MR analysis, which failed to support causal 

relationship. These findings are in line with previous literature findings.50 Future studies should 

focus on improving strength of the instrumental variables for plasma levels of choline. 

In contrast to circulating choline, we did not find association between plasma TMAO levels and 

CVD risk or mortality in our population-based cohorts. Even though a number of studies have 

demonstrated a relationship between TMAO levels and CVD risk, these results are derived from 

individuals with high risk of CVD, existing disease or multimorbidity.6, 7, 8, 51, 52, 53, 54 In line with 

our results, evidence from other studies based on a general population is mainly suggesting that 

there is no association between TMAO and cardiometabolic markers, carotid intima media 

thickness, CVD events including heart attack and stroke and mortality.9, 21, 55 Taken together with 

our results, these findings suggest that circulating TMAO may not be a metabolite of concern in 

individuals from the general population. 9, 17, 21, 55 

Next, we aimed to understand what factors are the most important drivers of metabolite 

variability in the general population. We estimated the amount of variability in circulating 

TMAO and its precursors explained by genetics, gut microbiome and diet. It is important to 

highlight that only linear additive effects were included and thus our estimates might be 

underestimation of the total variability explained. However, this analysis allowed us to compare 

the additive predictive power among the different data sources. Although the total variability of 

plasma TMAO levels that we could address is relatively small, a high proportion of that 

variability might be attributed to gut microbiome taxonomy. However, the results indicate a 

cohort-specific microbial contribution to TMAO levels. Similarly, the genetic effect on 

metabolite composition seems to differ between LLD and Rotterdam Study III-2. These 

heterogeneous results might be related to different demographics between the cohorts. For 
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instance, the age breadth of LLD participants is wider (18-83 years) than Rotterdam Study III-2 

(52 to 93 years), which is highlighted by the amount of variability explained by anthropometric 

factors seen in LLD in comparison to Rotterdam Study III-2. This demographic difference might 

be quite relevant in the metagenomic analysis, since our 16S data only allowed for resolution at 

the genus level, and important species and subspecies differences might be related with age.56 

This heterogeneity drove us to perform meta-analysis of the different information layers 

available to identify common metabolite drivers among the different cohorts included.  

Exploring the role of host genetics in underlying plasma levels of TMAO and its precursors 

revealed genome-wide significant variant associations with plasma levels of TMAO precursors 

but not for TMAO itself. We confirmed some of the previously reported associations implicated 

in determining plasma levels of all TMAO precursors. The DMGDH, BHMT, and BHMT2 genes 

mapped to the 5q14.1 region have previously been linked to betaine levels (Supplementary 

Table 9 and Figure 4).57, 58 These genes are involved in betaine metabolism which is related to a 

series of interlinking metabolic pathways that include the methionine and folate cycles.59 Choline 

is also related to this pathway and we confirmed association with the PEMT gene (17p11.2) 

encoding an enzyme critical in phosphatidylcholine synthesis.60 Furthermore, the SLC6A13 gene 

mapped to12p13.33 locus has previously been linked to deoxycarnitine levels while SLC16A9 

gene mapped to 10q21.2 locus has been associated with carnitine levels.61 Interestingly, we have 

identified 10q21.2 region as a novel genetic region underlying deoxycarnitine levels. The lead 

variant of this region mapped to the SLC16A9 gene which is involved in urate metabolism. 

SLC16A9 encodes a membrane transporter and is expressed in the intestine (GTEx Analysis 

Release V8), which might indicate a role in deoxycarnitine absorption. Previous studies showed 

that deoxycarnitine is an intermediary metabolite produced from carnitine by gut microbiota.62 
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However, deoxycarnitine may also act as an intermediate precursors to endogenous carnitine 

synthesis.62 Interestingly, we identified a novel genetic locus in the GWAS of deoxycarnitine 

that depicts this process. More specifically, the top lead intronic variant of 11p14.2 locus was 

mapped to BBOX1 gene which it known to catalyzes the formation of carnitine from 

deoxycarnitine and is therefore involved in the carnitine synthesis pathway. 

Additionally, we identified the 6p21.1 region as a novel region associated with betaine levels. 

This region has previously been associated with stroke and type 2 diabetes.63, 64 Genetic variants 

in linkage disequilibrium (r2 > 0.8) with our lead variant were associated with differential 

expression of GNMT and PEX6 genes. Interestingly, GNMT gene is involved in a metabolism of 

methionine. Among novel regions, we have also identified 2q34 locus underlying the plasma 

levels of choline. Lead genetic variant of this region is mapped to CPS1 gene which is involved 

in the urea cycle. Variants in this gene have previously been linked to creatinine, glycine, betaine 

and homocysteine levels, BMI, systolic blood pressure and cholesterol levels.58, 65, 66, 67 

Although we were not able to detect genetic variants underlying plasma TMAO levels, we 

estimated that 20% of genetic variability in TMAO levels could be explained by common genetic 

variants. To discover genetic determinants of TMAO, future studies should further increase 

sample size and focus on complex genetic effects. Additionally, diet intervention studies might 

be of help, as these could decrease the variability attributed to gut microbiome and diet. 

Microbial abundance was mainly associated with TMAO and TMAO to precursor ratios, which 

may be interpreted as a proxy for microbial conversion rates. Dietary precursors, on the other 

hand, did not show strong microbial associations. Several of the taxa we identified have 

previously been linked to TMAO. For instance, among the taxa belonging to the positively 
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associated cluster, Ruminococcus or uncultured Ruminococcaceae have frequently been 

described to correlate with TMA and/or TMAO levels in mice and human.17, 18, 20, 68, 69 A member 

of the Family III was associated with TMAO levels in mice.70 Anaerotruncus was seen to be 

decreased upon resveratrol treatment in a mouse model and has been linked to TMAO 

metabolism.68 In the same study, several bacterial taxa were increased after resveratrol treatment, 

including Bifidobacterium, Bifidobacteriaceae and Bifidobacteriales, which are negatively 

associated with TMAO in the present study, also in agreement with other observations in 

humans.12 Interestingly, the strongest negative associations were found between TMAO to 

precursor ratios and Pseudoflavonifractor or Granulicatella genera, have not been reported 

before. However, both taxa have been linked to CVD, although in opposite directions.71, 72 

Pseduoflavonifractor may produce a cholesterol derivative, coprostanol, which might be 

advantageous in the context of CVD, since this compound is not easily absorbed from the gut.71 

On the other hand, Granulicatella was found among the bacterial changes linked with a severe 

coronary artery disease.72 Conversely, other taxa that are often linked to TMAO73 did not show 

any significant association in our study, including Clostridia or Escherichia genera. 

Desulfovibrionales although did not pass the Bonferroni corrected p-value threshold showed 

consistent positive associations with TMAO.  

Although we found compelling associations between TMAO and bacterial taxa that were for the 

most part opposite or absent for its precursors, in-silico causal inference of TMAO metabolism 

from the associated taxa by means of two-sample MR was not successful. The weak microbial 

instruments may have added noise to this analysis, preventing the identification of consistent 

signals. Also, the lack of strong TMAO genetic architecture complicates the analysis. Thus, 
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further experimental analyses will be needed to probe a causal relationship between the bacteria 

reported here and TMAO metabolism. 

In addition to gut microbiota, diet composition was observed to be an important determinant of 

metabolite levels. For instance, TMAO levels and TMAO to precursor ratios showed positive 

association with fish intake. Previous studies linked TMAO levels to fish intake and this 

association has been demonstrated to vary throughout populations and/or regions.11 Fish 

consumption was associated with TMAO levels in Asian countries and some European countries, 

while intake of eggs and red meat showed stronger correlation with TMAO in the population of 

United States.14, 15, 16, 74 In our study population, no association was found between TMAO and 

eggs or red meat.21 Fish and seafood are rich in TMAO and TMA and they can be directly 

absorbed without being transformed by gut microbiota.14 As previous studies linked TMAO to 

atherosclerosis and CVD, these findings might be contra intuitive as fish is generally accepted to 

be cardioprotective.75 The risk of CVD is not increased with fish consumption as fish contains 

cardioprotective molecules such as ω3-poly unsaturated fatty acids.76 Previously published 

randomized trials also indicated that diet with a large proportion of lean white fish (rich in 

TMAO) reduces risk of CVD.75  

Overall, the large sample size, population-based design and comprehensive molecular and 

epidemiological data of our study helped us to investigate the sources of variation of TMAO and 

its precursor metabolites in the general population and their health-related consequences. We 

were able to study not only TMAO but also the compounds implicated in the TMAO 

biosynthesis pathway. Furthermore, we were also able to improve statistical power and internally 

cross-check the findings by combining data from five population-based studies. However, our 

study also has limitations. The gut microbial composition was determined from fecal samples 
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that might not be representative of the overall gut microbial composition.77 In addition, within-

species genetic variation is known to modulate bacterial-related metabolites, thus the taxonomic 

resolution of 16S might not properly reflect the metabolic potential of the present strains.23 

Metagenomic-shotgun sequencing experiments will be needed to address that level of variation. 

The cross-sectional nature of our metabolomics measurements and gut microbiota assessment in 

our study only allowed us to investigate the relationship between the two at one time point. To 

complement our findings and advance our understanding, future studies should focus on 

assessing longitudinal changes. For instance, a 1-year follow-up study in the general population 

reported large variation in plasma TMAO concentrations, which might underlie the 

heterogeneous associations related to this metabolite.78 Since our study population comprised of 

individuals of European origin and as some of associations might be population specific, 

expanding research in non-European populations will be needed.  

In conclusion, our data adds up to the mounting evidence of research showing that TMAO is not 

associated with an increased risk of CVD in general population, despite earlier evidence 

suggesting this to be the case among patient groups. However, we did show a significant relation 

between plasma choline levels and higher CVD risk. Our MR revealed no evidence for a causal 

link between TMAO or its precursors with incident CVD. Furthermore, we also identified 

several determinants explaining the variability of TMAO and its precursors blood levels in 

humans. Gut microbiome was mainly associated with TMAO-to-precursor ratios, although the 

total variability explained of TMAO concentration remains mild and cohort specific. Diet was 

associated with both TMAO and its precursors but could not explain a great proportion of their 

variation. Genetic contributions to precursor concentrations were greater than to TMAO itself, 
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where no strong genetic effects were seen. The biological mechanisms underlying these 

associations should be the subject of further studies. 
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METHODS 

Study population 

Our study population included 7,834 participants from five cohort studies. Detailed description 

of participating studies can be found in Supplementary Material and descriptive characteristics 

of study participants are shown in Table 1. Each study was approved by ethical committees 

(please see Supplementary Material for details). Written informed consent was obtained from 

all participants. 

Metabolite profiling 

TMAO and its precursors betaine, carnitine, deoxycarnitine and choline were quantified in 

plasma samples of participates from five cohorts by using liquid chromatography tandem mass 

spectrometry (LC-MS/MS) method. Detailed description of the method can be found 

elsewhere.33 Briefly, before introducing the sample to the mass spectrometer, an analytic column 

with a C18 stationary phase as used to realize an on-line cleanup of it. The analytes were not 

retained by this stationary phase but important matrix interferences were retained, such as 

(phosphor-)lipids.33 The descriptive statistics of metabolites were coherent across the cohorts 

(Supplementary Table 1). In addition to individual metabolites, ratios of TMAO to its dietary 

precursors were also calculated.  

Incident clinical outcomes  

The Rotterdam Study I-4, Rotterdam Study III-2 and LLS cohorts had data on incident clinical 

outcomes including cardiovascular disease (CVD) and mortality. Incident CVD events were 

defined as incident stroke, myocardial infarction, angina pectoris and heart failure according to 
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the codes of International Classification of Disease, 10th edition. Incident CVD events were 

assessed continuously through an automated digital linkage of study database to medical records 

maintained by general practitioners in the Rotterdam Study and from general practitioner records 

in the LLS.79, 80 Information on vital status is additionally obtained from the central registry of 

the municipality of the city of Rotterdam and in January 2021 vital status for participants of 

Leiden Longevity Study was updated through the Personal Records Database (PRD) which is 

managed by Dutch governmental service for identity information 

(https://www.government.nl/topics/personal-data/personal-records-database-brp).81 

Baseline clinical characteristics 

The baseline clinical characteristics were obtained by means of interview, physical examination, 

blood sampling or medical records from general practitioner. Assessment of current smoking 

status, weight, height, blood pressure, glucose levels, total cholesterol in low-density lipoproteins 

(LDLC) and high-density lipoproteins (HDLC), serum triglycerides (TG), creatinine, and 

medication use including lipid-lowering medication and use of medication indicated for the 

treatment of diabetes. Diabetes was defined as fasting glucose levels above 7�mmol/L, non-

fasting glucose levels above 11.1 mmol/L (only if non-fasting levels were unavailable) or use of 

medication indicated for the treatment of diabetes,82 or through medical records from general 

practitioner. Hypertension was defined as a systolic blood pressure ≥140�mmHg, diastolic 

blood pressure ≥90�mmHg, or use of medication for the treatment of hypertension,82 or through 

medical records from general practitioner. BMI was calculated as weight in kilograms divided by 

square of heights in meters. Quantified creatinine was used to calculate the estimated glomerular 
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filtration rate (eGFR) using the Chronic Kidney Disease Epidemiology Collaboration equation 

(CKD-EPI).83   

Genotyping and imputation 

Details on genotyping platforms, calling method and quality control procedures in participating 

studies are shown in Supplementary Table 20. Commercially available genotyping arrays were 

used for genotyping. Similar quality control procedures were applied in each study prior 

genotype imputation (Supplementary Table 20). Genotypes in each cohort were imputed by 

Haplotype Reference Consortium (HRC) reference panel on a Michigan Imputation Server.84  

Microbiome processing 

The Rotterdam Study III-2 and LLD cohorts had available 16S-amplicon sequence data from 

fecal samples matching plasma collection. Fecal sample collection and 16S sequencing was 

described elsewhere.85, 86, 87 In brief, DNA was isolated from the fecal samples belonging to the 

Rotterdam Study III-2 cohort and the V3 and V4 variable regions of the 16S rRNA gene were 

amplified and sequenced on Illumina MiSeq sequencer. Similarly, DNA was isolated from fecal 

samples of LLD participants and the 16S V4 region was sequenced at the Broad Institute using 

Illumina MiSeq. 16S rRNA data was processed as previously described in a large 16S meta-

analysis including both cohorts.88 In brief, samples were rarified to 10,000 reads. Reads were 

classified to a given taxonomic level (genus to phyla) using RDP classifier (v2.12).89 Reads 

below 0.8 posterior probability to belong to a given taxonomic level were discarded. For each 

sample, each taxonomic level was centered-log ratio transformed (clr). Only taxa observed in 

above 10% of participants per cohort were used for association resulting on 241 microbial taxa. 
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Dietary assessment 

The Rotterdam Study cohorts, LLS and LLD had data on dietary intake collected via validated 

food frequency (FFQ) questionnaire. Data on dietary intake in the LLS, LLD and Rotterdam 

Study cohorts were collected via validated FFQs.90, 91, 92 The FFQs assess the frequency of 

consumption of food items and the number of servings per day. Additionally, information on 

portion size, type of food item, and preparation methods was collected. The average daily energy 

and nutrient intake was calculated using the Dutch Food Composition Database. Specific food 

items were aggregated into food groups in grams per day. The major food groups overlapping 

between the cohorts were used for subsequent analysis including vegetables, fruit, grains, nuts, 

eggs, fish, meat, poultry, processed meat, cheese, milk, yoghurt and total dairy products.  

Statistical analyses 

Incident clinical outcomes analysis 

Metabolites were transformed using rank-based inverse normal transformation. The relationship 

between metabolites and incident clinical outcomes was assessed using Cox proportional hazards 

regression models with age as time scale. The analyses were adjusted for sex, BMI, 

hypertension, diabetes, LDLC, HDLC, TG, lipid-lowering medication use, current smoking and 

fasting status (if appropriate) (model 1). Subsequently, the associations were adjusted for eGFR 

(model 2). The proportional hazard assumption was checked using statistical tests incorporated 

in the survival package. Violation of this assumption was observed for some of the covariates 

and was resolved by stratification. In the LLS, Cox-type random effect (frailty) regression 

models was used in order to adjust for family relations. All analyses were performed using R. 
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The summary statistics results of participating studies were combined using inverse variance-

weighted fixed-effect meta-analysis in METAL.93 The heterogeneity of effects was assessed by 

I2 which indicates the percentage of variance in the meta-analysis attributable to study 

heterogeneity.94 To model correlation between metabolites, we first used the method of Li and Ji 

to calculate number of independent tests.95 The Bonferroni corrected significance threshold was 

calculated based on the number of independent tests and set at 0.05/6 independent metabolites = 

8.33×10-3. Additionally, all analyses were stratified by sex. The same steps were followed as for 

overall analysis.  

Incident clinical outcomes-metabolites Mendelian Randomization analysis  

The potential casual effect of metabolites on clinical CVD outcomes was assessed by MR 

analysis using TwoSampleMR package. GWAS summary statistics results were obtained from a 

large meta-analysis comprising coronary artery disease cases and controls of UK Biobank 

resource and CARDIoGRAMplusC4D.96 Genetic variants with p-value < 1×10-5 were used as 

instruments. Independent genetic variants were selected based on r2 in European reference data. 

The results were kept if these were based on at least three shared genetic variants. Causality was 

estimated using various MR method’s including Inverse variance weighted (IVW), MR-Egger, 

Wald ratio, Weighted median, Simple Mode and Weighted Mode. 

Estimation of determination coefficient in different data layers  

The Rotterdam Study cohorts and LLD were used to estimate the total determination coefficient 

(R2) from each of the analyzed data layers in each of the metabolites or metabolite ratios. We 

used features present in both cohorts including anthropometric covariates (age, sex, BMI), 8 

overlapping dietary items, 242 bacterial taxonomic abundances and the number of suggestive 
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genetic variants (p-value < 1×10-5) from a meta-analysis of the GWAS results from LLS and 

300-OB. These two cohorts were used for preselecting variants and were not used to train the 

model or estimate R2. Taxa-abundance was clr-transformed, while metabolites and diet were 

inverse-rank normal transformed. 

We trained a regularized additive linear model, elastic net (glmnet v4.0), and selected the best 

combinations of hyperparameters alpha (regularization mix) and lambda (regularization strength) 

through a 5-repeated 10-fold cross-validation procedure using the root mean square error 

(RMSE) as performance metric (caret v6.0, tunelength=10). We trained a model for each 

metabolite (or metabolite ratio) using two different training sets, a training set consisting of the 

LLD cohort (784 samples) and a training set consisting of the Rotterdam Study III-2 cohort (772 

samples). For the test set (LLD in the Rotterdam Study III-2-trained or the Rotterdam Study III-2 

in LLD-trained model), the determination coefficient (R2) was estimated in nested models. To 

estimate anthropological R2, all other coefficients were made 0. To estimate genetics R2, all non-

genetics, non-anthropological covariate coefficients were made 0. This was followed by the 

addition of non-0 diet parameters and finally the complete model including microbial features. 

Individual layer R2 was quantified by subtracting the R2 from the nested models, e.g microbial 

R2 was estimated by subtracting the complete model R2 and the diet model. 

Genome-wide association analysis 

Each participating study performed genome-wide association analysis under an additive model 

using metabolites as dependent variable and variant allele dosage as a predictor. Prior to the 

analysis, metabolites were transformed using rank-based inverse normal transformation. The 

association analysis was adjusted for age, sex, fasting status if applicable, familial relatedness if 
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appropriate and principal components if needed. Study-specific details on covariates and 

software used to run the analysis are provided in Supplementary Table 20. The quality control 

(QC) was performed using a standardized protocol provided by Winkler et al. 97 Genetic variants 

with minor allele count below 10 and low imputation quality (r2 < 0.3) were excluded. The 

summary statistic results were combined using fixed-effect meta-analysis in METAL.93 To 

account for a small amount of population stratification or unaccounted relatedness, genomic 

control was applied. After meta-analysis, genetic variants that were present in less than three 

participating studies were filtered out. The Bonferroni corrected genome-wide significance 

threshold was set at 5×10-8/6 independent metabolites = 8.33×10-9. Additionally, the analyses 

were stratified by sex. The same QC steps were followed as for overall analysis. The sex-

stratified summary statistic results were combined using fixed-effect meta-analysis in METAL 

while applying genomic control.93 Test statistics of each variant were tested for heterogeneity 

between males and females.  

Functional mapping and annotation  

Functional Mapping and Annotation of genetic associations (FUMA) was used to characterize 

genomic loci.98 Genetic variants that passed Bonferroni corrected genome-wide significance 

threshold and were independent from each other (r2 < 0.6) were defined as independent genetic 

variants. Independent significant genetic variants with r2 < 0.1 were defined as lead genetic 

variants. Independent significant genetic variants with r2 ≥ 0.1 or that were 250 bp or closer were 

assigned to the same genomic risk locus. Each locus was represented by the top lead genetic 

variant with minimal p-value in the locus. Functional annotation was performed using Combined 

Annotation Dependent Depletion (CADD)99, HaploReg100, and RegulomeDB101 tools as 

implemented in FUMA.   
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Gene based and gene set enrichment analysis  

Genome-wide summary statistics were used to perform gene-based analysis using MAGMA as 

implemented in FUMA.98 Genetic variants were assigned to the genes from Ensembl build 85 

based on genomic location. All genetic variants mapped to the protein coding genes were tested 

for association with metabolites using SNP-wide mean model. 1000G phase 3 was used as a 

reference panel to calculate LD across SNPs and genes. To account for multiple testing, 

Bonferroni correction was calculated and gene-wide significance threshold was set at 0.05/(18 

861 tested genes × 6 independent metabolites) = 4.42×10-7. Subsequently, gene sets enrichment 

analysis was also performed using FUMA. Hypergeometric tests were performed to test if genes 

of interest are overrepresented in any of 15,496 pre-defined gene sets obtained from MsigDB. 

Multiple test correction was calculated based on the total number of gene sets (p-value = 

0.05/15496 = 3.23×10-6). 

Heritability estimates and genetic correlation  

Heritability of metabolites and genetic correlation between them were estimated from GWAS 

results using LD Score Regression approach.102 We used pre-computed LD scores for Europeans. 

Only genetic variants available in HapMap3 were used. 

Gut microbial taxa and metabolites association analysis 

Each of the metabolites and TMAO-to-precursor ratios were rank-based inverse normal 

transformed to ensure normality. Standard linear regression models were carried out to associate 

the transformed metabolite and taxonomy abundances while adjusting for age, sex, BMI, and 

study-specific covariates (sample batch, time in mail and storage time in the Rotterdam Study 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 2, 2022. ; https://doi.org/10.1101/2022.09.01.22279510doi: medRxiv preprint 

https://doi.org/10.1101/2022.09.01.22279510
http://creativecommons.org/licenses/by-nc-nd/4.0/


III-2). This analysis was also reproduced in sex-stratified samples. Common taxonomy 

associations in the Rotterdam Study III-2 and LLD were meta-analyzed using a fixed-effects, 

inverse-variance analysis (R package meta v4.12). Association’s heterogeneity was measured by 

Cochran’s Q statistic. 

In order to correct for multiple testing, we determined the number of independent tests using the 

method of Li and Ji.95 There were 134 independent tests among microbial taxa and 6 independent 

tests among metabolomics measures. The Bonferroni significance threshold was set at 0.05/(134 

independent microbial taxa × 6 independent metabolites) = 6.2×10-5, while a suggestive 

threshold was set at 1/ (134×6) = 1.2×10-3. 

Gut microbial taxa and metabolites Mendelian Randomization analysis  

Potential causal relation between gut microbial taxa and metabolite levels was tested by two-

sample MR using the TwoSampleMR package. Only taxa to metabolite associations that 

surpassed our significant thresholds (p-value < 6.2×10-5) were considered for the analysis. We 

used the GWAS summary statistics for metabolites produced in this work, while for microbial 

taxa we obtained summary statistics from a large 16S meta-analysis comprising 18,340 

individuals from 24 cohorts including both Rotterdam Study III-2 and LLD.88 Genetic variants 

with p-value < 1×10-5 were selected as instruments. Bacterial taxa with no available instruments 

were removed from the analysis. Independent genetic variants were selected as instrumental 

variables based on r2 threshold of 0.001 (1000 Genomes in the European reference population). 

The number of instruments varied between 11 and 20. The causality was estimated using various 

MR method’s including Inverse variance weighted (IVW), MR-Egger, Wald ratio, Weighted 

median, Simple Mode and Weighted Mode. In addition, we also assessed genetic variant 
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heterogeneity and evidence of horizontal pleiotropy (using egger). Individual summary statistic 

for genetic variants were estimated using Wald ratio tests.  

Diet and metabolites correlation analysis 

Each food group, metabolite and TMAO-to-precursor ratio were rank-based inverse normal 

transformed prior to analysis. Partial correlation coefficients were calculated between each 

transformed food group item and metabolite or metabolite ratio while adjusting for age, sex and 

BMI. Summary statistics results of participating studies were combined by performing fixed-

effect meta-analysis in METAL.93 To model correlation between food groups, method of Li and 

Ji was used to calculate number of independent tests. Associations were considered significant if 

they surpassed Bonferroni corrected significance threshold of 0.05/ (11 independent food groups 

× 6 independent metabolite) = 7.58 × 10-4. 

Data availability 

The data is available from the author on request.  
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TABLES 

Table 1. Descriptive characteristics of study population. 

 

  
Rotterdam 
Study I-4 

Rotterdam Study 
III-2 LLS LLD 300-OB 

N 2556 1377 2158 1650 302 

Age (years), mean (sd) 75.14 (6.08) 62.68 (5.82) 59.12 (6.71) 
43.94 

(14.15) 
67.05 (5.39) 

Women, N (%) 1486 (58.14) 748 (54.32) 1208 (55.98) 833 (57.52) 167 ( 55.29) 
Smoking, N (%) 301 (12.05) 238 (17.32) 241 (11.17) 289 (19.63) 26 (8.63) 
Diabetes, N (%) 346 (13.61) 123 (8.94) 90 (4.17) 28 (1.7) 37 (12.25) 

Hypertension, N (%) 2182 (85.60) 752 (54.77) 159 (7.37) 
321 

(19.47%) 
175 (57.94) 

LDLC (mmol/L), mean (sd) 1.63 (0.44) 1.76 (0.51) 1.60 (0.47) 3.14 (0.91) 4.13 (0.96) 
HDLC (mmol/L), mean (sd) 1.40 (0.28) 1.37 (0.35) 1.49 (0.33) 1.52 (0.40) 1.33 (0.31) 
Serum triglycerides (mmol/L), mean (sd) 1.38 (0.57) 1.33 (0.62) 1.55 (0.82) 1.16 (0.86) 1.83 (1.02) 
Lipid-lowering medication, N (%) 583 (22.90) 362 (26.51) 207 (9.59) 29 (2.55) 83 (27.48) 
BMI (kg/m2), mean (sd) 27.43 (4.13) 27.44 (4.50) 25.43 (3.57) 25.30 (4.22) 30.73 (3.48) 
eGFR* 79.41 (13.10) 95.31 (9.29) 94.88 (11.60) 73.13(12.6) 80.4 (15.68) 

Incident cardiovascular disease 544 9 85 23 (1.5%) - 
Follow-up time cardiovasular disease, 
mean (years) 8.62 (3.49) 2.48 10.7 (1.77) - - 
Incident mortality events 1295 37 209 - - 
Follow-up time mortality, mean (years) 10.15 (3.88) 2.48 (1.17) 12.74 (2.22) - - 
 

Abbreviations: LLS - Leiden Longevity Study, LLD - LifeLines-DEEP, 300-OB - 300-Obese cohort, LDLC - cholesterol in low-
density lipoproteins, HDLC - high-density lipoproteins, BMI – body-mass index, eGFR – estimated glomerular filtration rate;  

*eGFR – calculated using the sing the Chronic Kidney Disease Epidemiology Collaboration equation (CKD-EPI).  

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint
this version posted S

eptem
ber 2, 2022. 

; 
https://doi.org/10.1101/2022.09.01.22279510

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2022.09.01.22279510
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURES AND FIGURE LEGENDS 

 

Figure 1. Overview of study design and performed analyses. Study population included 
participants from Rotterdam Study I-4 (RSI-4), Rotterdam Study III-2 (RSIII-2), Leiden 
Longevity Study (LLS), LifeLines-DEEP (LLD) and 300-Obese cohort (300-OB). 
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.  

Figure 2. Variance explained in gut microbiome related metabolite levels and ratios by different 
data layers. X-axis shows the coefficient of determinations R2 gained with each additional data 
layer (gray: anthropometrics, red: genetics, blue: diet, purple: microbiome). Two models were 
trained, using LLD or Rotterdam Study III-2 (named RS) as the train set, and the left-out cohort 
as the test set respectively.  
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A.                                                                                               B. 

  

Figure 3. Results of genome-wide association analyses for individual metabolites (panel A) and TMAO-to-precursor ratio’s (panel B). 
Each dot represent a genetic variant. Genetic variants surpassing Bonferroni corrected significance threshold (p-value < 8.33×10-9) are 
highlighted in red. Genetic variants showing suggestive evidence of association (p-value < 1.7×10-7) are highlighted in blue.  
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Figure 4. Heatmap showing results of the association analysis between metabolites and gut 
microbial taxa. Displayed results are after adjustment for age, sex, BMI, and study-specific 
covariates. Metabolites are displayed on x-axis and gut microbial taxa are shown on y-axis. Red 
color denotes positive associations and blue color stands for negative associations. Hash symbol 
(#) represents the Bonferroni significant associations (p-value < 6.2×10-5), while star denotes 
suggestive associations (p-value < 1.2×10-3). 
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