Title

Myopia is not a global epidemic: - what can we learn from a longitudinal study conducted in Sweden?

Authors

Pelsin Demir, P.D., MSc (*)
Karthekeyan Baskaran, K.B., PhD (*)
Pedro Lima Ramos, P.L.R., PhD (*, §)
Thomas Naduvilath, T.J.N., PhD (†)
Padmaja Sankaridurg, P.S., PhD (†)
Antonio Filipe Macedo, A.F.M., PhD (*, §)

* Medicine and Optometry, Linnaeus University, Kalmar, Sweden.
† Brien Holden Vision Institute, Sydney, NSW, Australia.
§ Department and Center of Physics – Optometry and Vision Science, University of Minho, Braga, Portugal.

Running title

Incidence of myopia in Swedish schoolchildren

Keywords:

incidence, myopic shift, myopia, environmental factors, parental myopia, refractive error

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Purpose
The aim of this longitudinal study was to investigate the incidence of myopia, incidence of myopic shift and associated risk factors in Swedish schoolchildren.

Methods
A longitudinal study was conducted between Jan-2019 and June-2021. Participants were Swedish schoolchildren aged 8-16 years. Myopia was defined as spherical equivalent refraction (SER) \( \leq -0.50 \text{D} \). Myopic shift was defined as a minimum change in SER of -0.50D between measurements. The cumulative incidence and incidence rate was computed. Cox proportional hazards regression model and linear mixed models were used to modulate myopic shift and changes in SER.

Results
The study enrolled 128 participants, 86% Caucasian, 5.8% dropped-out during follow-up. The baseline prevalence of myopia was 10.0%, hyperopia was 48.0%, and emmetropia was 42.0%. The cumulative incidence of myopia during the two-years was 5.5%, incidence rate of myopia was 3.2 cases per 100 person-years. The cumulative incidence of myopic shift during the two-years was 21.0%, incidence rate of myopic shift was 12.4 cases per 100 person-years. Cox regression revealed that the probability of myopic shift reduced with “age” and increased with “axial length/corneal-curvature ratio”. Myopic children at the baseline and children with two myopic parents showed a significant faster-paced SER change over time.

Conclusions
In the current study the incidence of myopia and myopic shift was low when compared with countries in East Asia. Parental myopia remains a critical factor to consider when predicting myopia progression. Further studies involving children from different ethnicities and incorporating longer follow-up period would further our understanding of the incidence of myopia in Swedish schoolchildren.
Introduction

The prevalence of myopia remains remarkably low in Scandinavia when compared with other parts of the globe. A recent study from Denmark found that the prevalence of myopia has been stable in the past 140 years. Curiously, these findings have been corroborated by recent studies reporting 13.0% (CI95=8.7-18.3) myopia prevalence in Norway and 10.0% (CI95= 4.4-14.9) in Sweden. These findings are in sharp contrast with other regions of the globe where prevalence of myopia amongst children is estimated to be between 50.0% and 71.0%. It remains unclear which factors can explain these contrasting results of prevalence of myopia.

Myopia is hereditary and that has been shown in many studies. Some studies showed that the odds ratio of having myopia in childhood with two myopic parents is around 3 when compared to children with no parental myopia. In addition, myopic children with two myopic parents also exhibited higher myopia (-2.33 D) when compared with children whose parents were not myopic (-1.13 D). In our previous study we also found significantly more negative refraction among children with two myopic parents compared with children whose parents were not myopic. Therefore, it seems that there is a clear genetic susceptibility because parents with myopia tend to have children also with myopia. However, genetics may be only part of the picture and genetic susceptibility might be “activated” or “accelerated” when individuals are exposed to environmental risk factors.

Environmental factors such as near work and outdoor time have been associated with the incidence of myopia. For outdoor time, the most common result is that extended outdoor time may delay the onset of myopia. There are currently conflicting results for near work. Some studies point that sustained near work is a risk factor for myopia development and progression while others have failed to confirm this association.

There is currently a lack of studies looking at the incidence of myopia and the progression of refractive errors in Swedish children. Likewise, there is a lack of studies investigating risk factors affecting myopia incidence and progression in Swedish schoolchildren. Having this information is relevant to understand the prevalence of myopia in Sweden and in Scandinavia and to generate new ideas to tackle the high
incidence of myopia in other parts of the globe. Given this gap in the knowledge, this
longitudinal study aimed to assess the incidence of myopia, incidence of myopic shift
and associated risk factors in Swedish schoolchildren.

Methods

This was longitudinal study involving a cohort of 128 children conducted in
southern Sweden from January 2019 to June 2021. Readers are referred to our
previously paper on baseline characteristics and recruitment procedures. The study
protocol complied with the tenets of the Declaration of Helsinki, informed consent was
obtained the participants and their parents. The study received ethics approval from The
Regional Committee for Medical Research Ethics in Linköping (Dnr 2018/423-31).
The follow-up period was 2 years and with a total of four visits: baseline, 0.5, 1 and
2 years. An identical comprehensive eye examination was repeated at every visit to
determine changes in refractive error and changes in ocular parameters. Details of the
methodology has been given in our previous publication. In brief, each visit included
measurements of: distance visual acuity, axial length and corneal curvature with
noncontact optical coherence biometry (IOLMaster 500 (Carl Zeiss Meditec, AG, Jena,
Germany, https://www.zeiss.com/corporate/int/home.html), hight, weight and
cycloplegic refraction ( NVision-K 5001autorefractor (Shin-Nippon, Rexxam,
http://www.shin-nippon.jp/). To ensure paralysis of the ciliary muscle and complete
dilation, accommodation and pupil response were verified with a RAF rule and a
penlight respectively. Cycloplegic refraction was taken 30 minutes after installation of
two drops of cyclopentolate 1% (Cyclogyl, Alcon, https://www.alcon.se/sv).
Questionnaires completed by parents were collected at baseline and follow-up
assessments (given in Demir et al.). The questions covered demographics, parental
myopia, medical history, academic preferences of the child, education, living
conditions, time spent on near work and time spent on outdoor activities after school,
and reading habits. Questions were asked in Swedish and the answers were recorded in
English. Parental myopia was confirmed by analysis of spectacle prescription.
Definitions and Statistical analysis

The definition of myopia was based on cycloplegic spherical equivalent refraction (SER) of the right eye: SER = sphere + cylinder/2, cylinder with negative sign. A participant with SER of -0.50 dioptre (D) or more negative was considered myopic. Hyperopia was defined as SER +0.75 D or more positive. Myopic shift was defined as a change of -0.50 D or more in SER between visits (SER at ½ year was subtracted from SER at baseline, then SER at 1 year was subtracted from SER at ½ year, and SER at 2 years was subtracted from SER at 1 year). Cumulative incidence was computed by dividing the number of incident cases by the number at risk at baseline using the equation:

\[ \text{Cumulative incidence} = \frac{\text{new cases}}{\text{population at risk}}. \]

Incidence rate was computed using the equation:

\[ \text{Incidence rate} = \frac{\text{new cases during observation period}}{\text{total person-time of observation}} \]

while at risk during study.

Cox proportional hazards regression model was performed to capture all possible myopic shifts (repeated events) during the 2 years of follow-up. The model included time-invariant covariates (e.g., “sex”) and time-dependent covariates (e.g., “age”) for each participant. Independent variables tested are given in results, the descriptive statistics in Table 1 and their contributions to the model in Table 2.

The effect of time, ametropia at baseline and parental myopia on SER was tested using linear mixed models in SAS software PROC MIXED (Release: 3.8 Enterprise Edition, SAS Institute Inc., Cary, NC, USA). Normalized SER was obtained by subtracting the baseline SER from all other measures, that corresponds to a baseline SER of 0 for all participants, that way it was possible to model SER progression. For this analysis the normalized SER was defined as “dependent variable”. Participants were defined as “random factors”. Explanatory factors or “fixed factors” were: “ametropia” (Myopia, Emmetropia, Hyperopia), “parental myopia” (0, 1, 2 myopic parents). Other factors and their interaction with time were tested. P-values were adjusted for multiple comparisons using the Tukey-Kramer procedure. Means in the text and shown in graphs are the estimated means (mean response for each factor, adjusted
for any other variables in the model) and their standard errors for the specified factors.
Statistical significance was set at p<0.05.

Results

Sample characteristics

The cohort was formed of 128 participants, at baseline 70 (54.7%) were females and 58 males (45.3%), during the study seven participants dropped out meaning that 121 participants finished the study, 67 (55.4%) females and 54 (44.6%) males – the retention rate was 95%. The sample was predominantly Caucasian (86.0%), Table 1 summarizes longitudinal values of clinical and sociodemographic variables.

Incidence and prevalence

At baseline, the prevalence of myopia was 10.0% (CI95=4.4-14.9), hyperopia was 48.0% (CI95= 38.8-56.7), and emmetropia was 42.0% (CI95=33.5-51.2). The cumulative incidence of myopia during the two years of follow-up was 5.5% (CI95= 2.2-10.9), and the incidence rate of myopia was 3.2 cases per 100 person-years (CI95= 0.8-5.6). The cumulative incidence of myopic shift during the two years of follow-up was 21.0% (CI95= 14.4-29.2), and the incidence rate of myopic shift was 12.4 cases per 100 person-years (CI95= 7.7-17.1).
Table 1. Summary of the key variables for baseline (0), 0.5, 1, and 2 years.

<table>
<thead>
<tr>
<th></th>
<th>Baseline (n=128)</th>
<th>0.5 Years (n=126)</th>
<th>1 Years (n=114)</th>
<th>2 Years (n=121)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td></td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
<td>Median (IQR)</td>
</tr>
<tr>
<td>Age (Years)</td>
<td>12.0 (SD=2.5)</td>
<td>12.0 (SD=2.5)</td>
<td>12.5 (SD=2.5)</td>
<td>13.5 (SD=2.5)</td>
</tr>
<tr>
<td></td>
<td>12.0 (IQR=5.0)</td>
<td>12.5 (IQR=4.0)</td>
<td>13.0 (IQR=4.0)</td>
<td>14.0 (IQR=4.0)</td>
</tr>
<tr>
<td>SER (Diopters)</td>
<td>+0.65 (SD=1.2)</td>
<td>+0.70 (SD=1.3)</td>
<td>+0.66 (SD=1.2)</td>
<td>+0.51 (SD=1.5)</td>
</tr>
<tr>
<td></td>
<td>+0.70 (IQR=1.0)</td>
<td>+0.78 (IQR=1.1)</td>
<td>+0.67 (IQR=1.1S)</td>
<td>+0.64 (IQR=1.0)</td>
</tr>
<tr>
<td>AL (millimeters)</td>
<td>23.2 (SD=0.86)</td>
<td>23.2 (SD=0.87)</td>
<td>23.1 (SD=0.82)</td>
<td>23.3 (SD=0.92)</td>
</tr>
<tr>
<td></td>
<td>23.2 (IQR=1.1)</td>
<td>23.2 (IQR=1.1)</td>
<td>23.1 (IQR=1.1)</td>
<td>23.3 (IQR=1.2)</td>
</tr>
<tr>
<td>AL/CR</td>
<td>3.0 (SD=0.1)</td>
<td>3.0 (SD=0.1)</td>
<td>3.0 (SD=0.1)</td>
<td>3.0 (SD=0.1)</td>
</tr>
<tr>
<td></td>
<td>3.0 (IQR=0.1)</td>
<td>3.0 (IQR=0.1)</td>
<td>3.0 (IQR=0.1)</td>
<td>3.0 (IQR=0.1)</td>
</tr>
<tr>
<td>Near work (hours-per-day)</td>
<td>5.3 (SD=3.1)</td>
<td>4.8 (SD=2.6)</td>
<td>2.5 (SD=1.6)</td>
<td>2.9 (SD=1.8)</td>
</tr>
<tr>
<td></td>
<td>4.6 (IQR=3.3)</td>
<td>4.4 (IQR=3.2)</td>
<td>2.2 (IQR=2.1)</td>
<td>2.7 (IQR=2.4)</td>
</tr>
<tr>
<td>Outdoor time (hours-per-day)</td>
<td>2.6 (SD=2.2)</td>
<td>2.4 (SD=1.7)</td>
<td>1.6 (SD=1.0)</td>
<td>1.6 (SD=1.2)</td>
</tr>
<tr>
<td></td>
<td>1.9 (IQR=2.1)</td>
<td>1.8 (IQR=2.0)</td>
<td>1.4 (IQR=1.3)</td>
<td>1.3 (IQR=1.6)</td>
</tr>
</tbody>
</table>

SD = standard deviation, IQR = interquartile range, AL/CR = axial length/corneal-curvature ratio, AL = axial length
**Cox proportional hazards model of myopic shift during follow-up**

Table 2 (Initial Model) summarizes the initial Cox regression model with a full list of predictors. AL/CR was the only independent predictor of the risk of myopic shift, age was almost statistically significant. After performing the method of backward elimination, the final model, given in Table 2 (Final Model), included AL/CR and age as predictors for myopic shift.

Table 2. Summary of the Cox proportional hazards regression, at the top the initial model and the bottom the final model. The event modulated was “myopic shift” and multiple events were possible per subject. The null hypothesis was that all regression coefficients in the model are equal to zero. When the p-value (Pr>ChiSq) was less than 0.05 the parameters in the model were considered different from zero, that is, independent predictors of the myopic shift.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>Chi-Square</th>
<th>Pr &gt; ChiSq</th>
<th>Hazard Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Initial Model</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AL*</td>
<td>1</td>
<td>-0.10770</td>
<td>0.29841</td>
<td>0.1303</td>
<td>0.7182</td>
<td>0.898</td>
</tr>
<tr>
<td>AL/CR*</td>
<td>1</td>
<td>8.56039</td>
<td>2.91571</td>
<td>8.6198</td>
<td>0.0033</td>
<td>5220.735</td>
</tr>
<tr>
<td>Age*</td>
<td>1</td>
<td>-0.16173</td>
<td>0.08690</td>
<td>3.4638</td>
<td>0.0627</td>
<td>0.851</td>
</tr>
<tr>
<td>Near work*</td>
<td>1</td>
<td>0.00129</td>
<td>0.09554</td>
<td>0.0002</td>
<td>0.9892</td>
<td>1.001</td>
</tr>
<tr>
<td>Outdoor time*</td>
<td>1</td>
<td>-0.11138</td>
<td>0.17256</td>
<td>0.4166</td>
<td>0.5186</td>
<td>0.895</td>
</tr>
<tr>
<td>Parental myopia**</td>
<td>0</td>
<td>-0.85186</td>
<td>0.57567</td>
<td>2.1897</td>
<td>0.1389</td>
<td>0.427</td>
</tr>
<tr>
<td>Parental myopia**</td>
<td>1</td>
<td>0.05503</td>
<td>0.43181</td>
<td>0.0162</td>
<td>0.8986</td>
<td>1.057</td>
</tr>
<tr>
<td>Sex**</td>
<td></td>
<td>-0.19994</td>
<td>0.42042</td>
<td>0.2262</td>
<td>0.6344</td>
<td>0.819</td>
</tr>
</tbody>
</table>

| **Final Model**  |    |                    |                |            |            |              |
| AL/CR            | 1  | 8.32555            | 2.04577        | 16.5620    | <.0001     | 4128.009     |
| Age              | 1  | -0.19816           | 0.07839        | 6.3903     | 0.0115     | 0.820        |

* time-dependent covariates; ** time-invariant covariates

According to the final model in Table 2, “AL/CR” and Age had a statistically significant effect on the hazard of the event. For each additional unit in age, the hazard of myopic shift decreased by 100*(0.82-1) = 18.0%. Hazard increased by 4128 for every 1 unit in AL/CR. In other words, for each additional 0.01 unit in AL/CR ratio, the hazard of having an event of myopic shift increased by: (e^{8.3255/100}) -1= 8.7%. Figure 1 shows a survival function for three age category groups.
Figure 1. Kaplan-Meier graph assuming AL/CR ratio of a mean value of 2.98 for different age categories. On the y-axis is the probability of having a myopic shift and on the x-axis is the time in months since the start of the study. This graph shows different age categories only to illustrate the effect of age; although, in the Cox regression age was used as a continuous time-dependent covariate.

**Longitudinal changes in SER and associated factors**

There was a statistically significant effect of time on SER (F (3, 250) =16.3, p<0.001). Table 3 summarizes pairwise comparisons with adjusted p-values of SER between different time points.
Table 3. Summary of pairwise comparisons of SER between time points: baseline (0), 0.5, 1, and 2 years. The mean difference (M) was computed by subtracting SER at baseline in the column from SER in the row. SE= standard errors (SE) and p-values were adjusted with Bonferroni correction for multiple comparisons.

<table>
<thead>
<tr>
<th>Time</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>M= 0.004 D (SE=0.04), p=0.063</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>M= -0.16 D (SE= 0.05), p=0.005</td>
<td>M= -0.15 D (SE= 0.05), p=0.006</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>M= -0.27 D (SE= 0.04), p&lt;0.001</td>
<td>M= -0.26 D (SE= 0.04), p&lt;0.001</td>
<td>M= -0.11 D (SE= 0.04), p=0.063</td>
</tr>
</tbody>
</table>

There was a significant interaction ametropia × time (F (2, 122) = 6.36, p=0.002), these results are summarized in Table 4 and Figure 2-A. There was a significant interaction time × parental myopia (F (2, 122) = 6.16, p=0.003), these results are summarized in Table 4 and Figure 2-B.

Figure 2. Multiple line graph showing results of the linear mixed model analysis. On the y-axis is the predicted change in SER and on the x-axis is the time in years with measurements performed at: baseline (0 years), 0.5 years, 1 year, 2 years. A) Progression of SER according to ametropia at baseline. B) Progression of SER according to parental myopia (none, one, or two myopic parents). Means in graphs are the estimated means (mean response for each factor, adjusted for any other variables in the model) and error bars are standard error of the mean.
Table 4. Summary of pairwise comparisons of SER changes between categories of ametropia on the left-hand side and parental myopia on the right-hand side at different time points: baseline (0), 0.5, 1, and 2 years. The mean difference (M) was computed by subtracting SER for the time in the first column from SER for the time in the first row. SE= standard errors (SE) and p-values were adjusted for multiple comparisons.

<table>
<thead>
<tr>
<th>Ametropia</th>
<th>Time</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>Myopic parents</th>
<th>Time</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myopia</td>
<td>0.5</td>
<td>M = -0.10 D (SE = 0.10), p=0.286</td>
<td>-</td>
<td>-</td>
<td>none</td>
<td>0.5</td>
<td>M = -0.03 D (SE = 0.07), p=1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>M = -0.30 D (SE = 0.12), p=0.011</td>
<td>M = -0.20 D (SE = 0.12), p=0.085</td>
<td>-</td>
<td></td>
<td>1</td>
<td>M = 0.02 D (SE = 0.10), p=1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>M = -0.56 D (SE = 0.11), p&lt;0.001</td>
<td>M = -0.46 D (SE = 0.10), p&lt;0.001</td>
<td>M = -0.26 D (SE = 0.11), p=0.365</td>
<td>2</td>
<td>M = -0.11 D (SE = 0.08), p=0.967</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperopia</td>
<td>0.5</td>
<td>M = 0.004 D (SE = 0.05), p=0.947</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.5</td>
<td>M = 0.11 D (SE = 0.06), p=0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>M = -0.10 D (SE = 0.06), p=0.931</td>
<td>M = -0.10 D (SE = 0.06), p=0.946</td>
<td>-</td>
<td></td>
<td>1</td>
<td>M = -0.14 D (SE = 0.07), p=0.746</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>M = -0.16 D (SE = 0.06), p=0.240</td>
<td>M = -0.16 D (SE = 0.05), p=0.153</td>
<td>M = -0.07 D (SE = 0.06), p=0.989</td>
<td>2</td>
<td>M = -0.23 D (SE = 0.07), p=0.075</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emmetropia</td>
<td>0.5</td>
<td>M = 0.09 D (SE = 0.05), p=0.046</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.5</td>
<td>M = -0.10 D (SE = 0.08), p=0.991</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>M = -0.08 D (SE = 0.05), p=0.941</td>
<td>M = -0.18 D (SE = 0.05), p=0.001</td>
<td>-</td>
<td></td>
<td>1</td>
<td>M = -0.37 D (SE = 0.10), p=0.006</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>M = -0.08 D (SE = 0.05), p=0.956</td>
<td>M = -0.17 D (SE = 0.05), p=0.020</td>
<td>M = -0.01 D (SE = 0.05), p=1.00</td>
<td>2</td>
<td>M = -0.47 D (SE = 0.09), p&lt;0.001</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license. This version was posted September 2, 2022. The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
Discussion

The current study investigated the incidence of myopia and the incidence of myopic shift in a sample of Swedish schoolchildren. The study also investigated factors associated with myopia development and progression. Age and AL/CR showed to be independent predictors of the risk of myopic shift. Ametropia at baseline and parental myopia showed to be factors affecting progression of SER over time.

The two-year cumulative incidence of myopia and the incidence rate of myopia in the current study was consistent with the low baseline prevalence of myopia. The findings of this study are consistent with studies from other Scandinavian countries. A study from Denmark compared the myopia prevalence in 29 Danish studies between the years 1882 and 2018 and found no evidence of an increase in myopia numbers over the years. The prevalence of myopia in Danish children aged 4.5-7 years ranged from 0.0% in year 2015-2016 to 8.9% in schoolchildren aged 7-10 years in year 1882. The same study showed that the prevalence of myopia was 7.2% in Danish children aged 10-14 years in year 1961-1962 and was 24.0% among children aged 11-14 years in year 1882. In contrast with our findings, in East Asian countries the cumulative incidence of myopia ranges between 33.6% and 54%, and the annual incidence rate of myopia varies from 30 cases per 100-person years to 31.7 cases per 100-person years. The incidence of myopia tends to be higher in East Asians than in European Caucasians, a possible explanation for this is ethnicity. It is known that, for example, the prevalence of myopia is higher amongst British South Asian children than Caucasian children living in the UK despite their exposure to the same environment.

Overall, the incidence of myopia in the current study is lower than in East Asia and is in line with the expectations for Scandinavian populations.

In this study we report for the first time the incidence of the myopic shift in Swedish or Scandinavian children. Given the originality of our findings we can only compare our findings with other parts of the globe. Studies from East Asia have investigated the one-year cumulative incidence of myopic shift which varied between 51% and 74.6%. These figures are considerably higher than in the current study. The incidence for myopia and myopic shift in our study were remarkable low compared with parts of the global where myopia is also more prevalent. It remains to be
understood which factors explain these differences, but ethnicity, environmental factors
and their interaction are expected to be relevant\textsuperscript{16}.

Survival analysis showed that age and AL/CR were independent predictors of
myopic shift. The results indicated that age is expected to reduce the probability of
myopic shift, that is, younger children were at a greater risk of having a myopic shift.
These findings are in line with other studies showing that younger age is associated with
a faster progression of myopia when compared to older ages\textsuperscript{17-19}. Studies show a decline
in progression speed with increasing age in young myopes of both European and Asian
ethnicity\textsuperscript{20,21}. An increase in the AL/CR ratio increased the probability of myopic shift.
The AL/CR ratio has a typical value of 3.0 in emmetropic eyes and more than 3.0 in
myopic eyes\textsuperscript{22-25}. Our results are in line with other studies showing that increasing
AL/CR ratio is associated with a more myopic refractive error\textsuperscript{25-28}. Recent studies have
shown that AL/CR ratio explains the total variance in refractive error better than AL
alone and is an influential variable for myopia detection in children\textsuperscript{27,29}. Our results for
age give further evidence that is important to delay the onset of myopia\textsuperscript{30} and our
findings for AL/CR are consistent with the often-successful results of orthokeratology
for myopia management\textsuperscript{31}.

The longitudinal analysis of changes in SER showed the expected trend in children,
that is, a change towards negative values. The progression was influenced by ametropia
and parental myopia. In the current study the mean change in SER was -0.30 D, that is
approximately -0.15 D per year. Reports from East Asia show a typical progression -
0.60 D per year\textsuperscript{32,33} and that is 4-times our progression. These results explain the low
incidence of myopia in our study when compared to East Asia. Our findings showed
that participants with myopia at the baseline had a significant faster SER change during
the study. This results are in line with a recent study reporting myopia progression in
European children with myopia\textsuperscript{5}. Another independent factor associated with
progression of SER was parental myopia. Children with two myopic parents had a faster
change towards myopia than the other two categories. Several studies have reported
similar results, showing that parental myopia is associated with a faster rate of myopia
progression\textsuperscript{9,17,34}.

The current study has two major strengths, the first strength was its longitudinal
design and the second was the low dropout rate. A possible limitation was the poor
recall of the information reported in the questionnaire. Even though, some studies have
shown that key answers tend to be reasonably accurate\textsuperscript{35,36}. Another possible limitation was the sampling method. Since the participants had to travel to the facilities of the faculty where the study was based, it is unlikely that the sample was a random selection of the population. This might have attracted overly concerned children and parents only, but given the low myopia prevalence, this limitation seems to have had limited impact on the findings. Further, the sample size limits the statistical power to find associations between environmental factors and myopia. However, our findings are in line with the most recent suggestions that environmental conditions such as educational stress at a very young age may impact myopia onset and progression\textsuperscript{37}. In the Swedish school system children start formal school at 7 years of age which means less near work pressure at very young age when compared to some parts of the world – this might be the answer to the low incidence and prevalence of myopia reported in this study. Further studies are warranted for investigating the effect of educational pressure on refractive error development amongst Swedish children.

\section*{Conclusion}

In this longitudinal study with a cohort formed mostly by Caucasian children living in Sweden, the incidence of myopia and myopic shift was low when compared with other parts of the globe. Younger children were at a greater risk of having a myopic shift. Myopic children at the baseline and children with two myopic parents showed a significant faster-paced refractive error change over time. Our results show that parental myopia remains a critical confounder to consider when planning clinical trials for myopia control interventions. Further studies are necessary involving children from different ethnicities living in Sweden under the same environmental conditions to investigate myopia prevalence and myopia progression patterns.

\section*{Acknowledgments}

This study was supported by Specsavers Sweden AB, the faculty of Health and Life Sciences, Linnaeus University, and Brien Holden Vision Institute.


