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ABSTRACT 

Background and Aims: Early diagnosis of aortic stenosis (AS) is critical to prevent morbidity 

and mortality but requires skilled examination with Doppler imaging. This study reports the 

development and validation of a novel deep learning model that relies on 2-dimensional 

parasternal long axis (PLAX) videos from transthoracic echocardiography (TTE) without 

Doppler imaging to identify severe AS, suitable for point-of-care ultrasonography. 

Methods: In a training set of 5,257 studies (17,570 videos) from 2016-2020 (Yale-New Haven 

Hospital [YNHH], Connecticut), an ensemble of 3-dimensional convolutional neural networks 

was developed to detect severe AS, leveraging self-supervised contrastive pretraining for label-

efficient model development. This deep learning model was validated in a temporally distinct set 

of 2,040 consecutive studies from 2021 from YNHH as well as two geographically distinct 

cohorts of 5,572 and 865 studies, from California and other hospitals in New England, 

respectively. 

Results: The deep learning model achieved an AUROC of 0.978 (95% CI: 0.966, 0.988) for 

detecting severe AS with 95.4% specificity and 90% sensitivity in the temporally distinct test set, 

maintaining its diagnostic performance in both geographically distinct cohorts (AUROC 0.972 

[95% CI: 0.969, 0.975] in California and 0.915 [95% CI: 0.896, 0.933] in New England, 

respectively). The model was interpretable with saliency maps identifying the aortic valve as the 

predictive region. Among non-severe AS cases, predicted probabilities were associated with 

worse quantitative metrics of AS suggesting association with various stages of AS severity. 

Conclusions: This study developed and externally validated an automated approach for severe 

AS detection using single-view 2D echocardiography, with implications for point-of-care 

screening. 
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STRUCTURED GRAPHICAL ABSTRACT  

 

Key Question: Is it feasible to automatically screen for the presence of severe aortic stenosis 

(AS) using single-view echocardiographic videos without the use of Doppler imaging? 

Key Finding: Using self-supervised pretraining and ensemble learning, we trained a deep 

learning model to detect severe AS using single-view echocardiography without Doppler 

imaging. The model maintained its high performance in multiple geographically and temporally 

distinct cohorts. 

Take-home Message: We present an automated method to detect severe AS using single-view 

TTE videos, with implications for point-of-care ultrasound screening as part of routine clinic 

visits and in limited resource settings by individuals with minimal training. 

 

 

 

An automated deep learning approach for severe aortic stenosis detection from single-view 

echocardiography evaluated across geographically and temporally distinct cohorts.
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INTRODUCTION 1 

Aortic stenosis (AS) is a chronic, progressive disease, and associated with morbidity and 2 

mortality.1,2 With advances in both surgical and transcatheter aortic valve replacement,3 there has 3 

been an increasing focus on early detection and management.4,5,6 The non-invasive diagnosis of 4 

AS can be made with hemodynamic measurements using Doppler echocardiography,2,7,8 but that 5 

requires dedicated equipment and skilled acquisition and interpretation. On the other hand, even 6 

though two-dimensional (2D) cardiac ultrasonography is increasingly available with handheld 7 

devices that can visualize the heart,9 it has not been validated for the diagnosis or longitudinal 8 

monitoring of AS. With an estimated prevalence of 5% among individuals aged 65 years or 9 

older,8 there is a growing need for user-friendly screening tools which can be used in everyday 10 

practice by people with minimal training to screen for severe AS. This need for timely screening 11 

is further supported by evidence suggesting improved outcomes with early intervention even in 12 

the absence of symptomatic disease.5 13 

 Machine learning offers opportunities to standardize the acquisition and interpretation of 14 

medical images.10 Deep learning algorithms have successfully been applied in echocardiograms, 15 

where they have shown promise in detecting left ventricular dysfunction,11 and left ventricular 16 

hypertrophy.12 With the expanded use of point-of-care ultrasonography,9 developing user-17 

friendly screening algorithms relying on single 2D echocardiographic views would provide an 18 

opportunity to improve AS screening by operators with minimal experience through time-19 

efficient protocols. This is often limited by the lack of carefully curated, labelled datasets, as well 20 

as efficient ways to utilize the often noisy real-world data for model development.13 21 

 In the present study, we hypothesized that a deep learning model trained on 2D 22 

echocardiographic views of parasternal long axis (PLAX) videos can reliably predict the 23 
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presence of severe AS without requiring Doppler input. The approach leverages self-supervised 1 

learning of PLAX videos along with two other neural network initialization methods to form a 2 

diverse ensemble model capable of identifying severe AS from raw 2D echocardiograms. The 3 

model is trained based on a dataset from different operators and machines, with its external 4 

performance assessed both in geographically and temporally distinct cohorts. Combined with 5 

automated view classification, our approach serves as an end-to-end automated solution for deep 6 

learning applications in the field of point-of-care echocardiography. 7 

 8 

METHODS 9 

Study population & data source 10 

New England cohort (Yale-New Haven Health network): A total of 12,500 studies were queried 11 

from all TTE exams performed between 2016 and 2021 across the Yale New Haven Health 12 

System (YNHHS, including Connecticut and Rhode Island), and were used for model derivation 13 

& testing across different hospitals and time periods. For internal model development and 14 

evaluation, 10,000 studies from 2016-2020 were randomly queried with AS oversampled to 15 

mitigate class imbalance during model training. Specifically, this query sampled normal studies 16 

uniformly (including “no AS” and “sclerosis without stenosis”), oversampled non-severe AS 17 

studies by 5-fold (including “mild AS”, “mild-moderate AS”, “moderate-severe AS”, “low 18 

gradient AS”, and “paradoxical AS”), and oversampled severe AS by 50-fold. This strategy was 19 

designed to ensure that the model encounters sufficient examples of severe AS to learn the 20 

signatures of the disorder. The 10,000 studies were then split at the patient level into a derivation 21 

set (consisting of all patients scanned in the Yale-New Haven Hospital, Connecticut, USA, 22 

including satellite locations) and a geographically distinct, external testing set from New 23 
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England (consisting of patients scanned at four other hospitals – namely Bridgeport Hospital, 1 

Lawrence & Memorial Hospital, and Greenwich Hospital, all in Connecticut, USA – as well as 2 

the Westerly hospital in Rhode Island, USA). The remaining 2,500 studies of the query were all 3 

conducted across the previously mentioned centers a year later in 2021 with no oversampling to 4 

serve as a challenging temporally distinct testing set, where severe AS represents approximately 5 

1% of all cases. The study population is summarized in Figure 1. 6 

 7 

Cedars-Sinai cohort: For further testing in an additional geographically distinct cohort, all 8 

transthoracic echocardiograms performed at the Cedars-Sinai Medical Center (Los Angeles, 9 

California, USA) between January 1st 2018 and December 31st 2019 were retrieved. AS severity 10 

was determined from finalized TTE reports. After excluding studies with prosthetic aortic valves, 11 

3,867 TTEs without severe aortic stenosis were sampled at random and combined with 1,705 12 

TTEs with severe AS to create an enriched 5,572-study cohort.   13 

 14 

Consent: The study was reviewed by the Yale and Cedars-Sinai Institutional Review Boards, 15 

which approved the study protocol and waived the need for informed consent as the study 16 

represents secondary analysis of existing data. 17 

 18 

Echocardiogram interpretation: All studies were performed by trained echocardiographers or 19 

cardiologists and reported by board-certified cardiologists with specific training cardiac 20 

echocardiography. These reports were a part of routine clinical care, in accordance with the 21 

recommendations of the American Society of Echocardiography (ASE).14,15 The presence of AS 22 
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severity was adjudicated based on the original echocardiographic report. Further details on the 1 

measurements obtained are presented in the Supplement.  2 

 3 

Model training & development 4 

Data pre-processing: All studies underwent de-identification, view classification, and 5 

preprocessing to curate a dataset of PLAX videos for deep-learned severe AS prediction. The full 6 

process describing the extraction of the echocardiographic videos, loading of image data, 7 

masking of identifying information, conversion to Audio Video Interleave format (AVI), and 8 

downsampling for further processing and automated view classification are described in the 9 

Supplement. Briefly, after excluding studies that were not properly extracted or contained no 10 

pixel data, 9,710 studies with 447,653 videos underwent automated view classification based on 11 

a pretrained TTE view classifier.16 We retained videos where the automated view classifier most 12 

confidently predicted the presence of a PLAX view. After excluding cases of low-flow, low-13 

gradient, and paradoxical AS (determined based on the final clinical report), the final Yale-New 14 

Haven Health system dataset consisted of 30,136 videos in 9,173 studies. This included 2,040 15 

studies from 2021, which were set aside to form a temporally distinct testing set, while the 16 

remaining 7,082 studies (with AS oversampled as described above) were split into a derivation 17 

set (Yale-New Haven Hospital and satellite centers) and a geographically distinct testing set (see 18 

Study population & data source, Figure 1). To ensure no patient overlap between derivation and 19 

testing sets, 199 studies corresponding to patients in the derivation set were not included in the 20 

testing set. Finally, the derivation set was randomly split into training and validation sets at an 21 

85%/15% ratio, leaving 5,257 studies for training, 928 studies for internal validation during 22 

training, and 864 studies for external validation.  23 
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 1 

Self-supervised learning (SSL): We used our previously described novel approach of self-2 

supervised contrastive pretraining for echocardiogram videos.17 This approach demonstrated that 3 

classification tasks could be performed in a more data-efficient manner through “in-domain” 4 

pretraining on echocardiograms,17 as opposed to other standard approaches such as random 5 

initialization of weights and transfer learning.11,18,19 Briefly, this self-supervised learning was 6 

performed on the training set videos with a novel combination of (i) a multi-instance contrastive 7 

learning task and (ii) a frame re-ordering pretext task, both explained in detail in the Supplement 8 

and summarized in Figure 2. For this, we adopted “multi-instance” contrastive learning, where 9 

the model was trained to learn similar representations of different videos from the same patient, 10 

which allowed the model to learn the latent space of PLAX-view echocardiographic videos. To 11 

additionally encourage temporal coherence of our model, we included a frame re-ordering 12 

“pretext” task to our self-supervised learning method, where we randomly permuted the frames 13 

of each input echo, then trained the model to predict the original order of frames.22   14 

Self-supervised pretraining was performed on randomly sampled video clips of 4 15 

consecutive frames from each of the training set echocardiogram videos for 300 epochs. A 3D-16 

ResNet1823 architecture was used as the encoder (see the Supplement for full architecture 17 

details). The model was trained for 300 epochs on all unique pairs of different PLAX videos 18 

from the same patient with the Adam optimizer,24 a learning rate of 0.1, a batch size of 392 (196 19 

per GPU), and NT-Xent temperature hyperparameter of 0.5. The following augmentations were 20 

applied to each frame in a temporally consistent manner (same transformations for each frame of 21 

a given video clip): random zero padding by up to 8 pixels in each spatial dimension, a random 22 
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horizontal flip with probability 0.5, and a random rotation within -10 and 10 degrees with 1 

probability 0.5. 2 

 3 

Deep neural network training for severe AS prediction: The 3D-ResNet18 architecture 4 

described above was also leveraged to detect severe AS. Three different methods were used to 5 

initialize the parameters of this network: an SSL initialization, a Kinetics-400 initialization, and a 6 

random initialization (see Supplement, and Figure 2). All fine-tuning models were trained on 7 

randomly sampled video clips of 16 consecutive frames from training set echocardiograms. 8 

Models were trained for a maximum of 30 epochs with early stopping if validation AUROC did 9 

not improve for 5 consecutive epochs. Severe AS models were trained on a single NVIDIA RTX 10 

3090 GPU with the Adam optimizer, a learning rate of 1 � 10
�� (except the SSL-pretrained 11 

model, which used a learning rate of 0.1) and a batch size of 88 using a sigmoid cross-entropy 12 

loss. We additionally used class weights computed with the method provided by scikit-learn25 to 13 

accommodate class imbalance in addition to label smoothing26,27 with �=0.1, a method to 14 

improve model calibration and generalization. Learning curves depicting loss throughout training 15 

can be found in Figure S1. 16 

 17 

Ensemble learning: Since models were trained on 16-frame video clips, we averaged clip-level 18 

predictions to obtain video-level predictions of severe AS. After repeating the process for all 19 

videos, severe AS probabilities for all videos were then averaged to obtain study-level AS 20 

predictions. The final ensemble model is then formed by averaging the study-level output 21 

probabilities of the SSL-pretrained model, the Kinetics-400-pretrained model, and the randomly 22 

initialized model after fine-tuning each ensemble member to detect severe AS. Since no quality 23 
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control is applied when selecting PLAX videos for this work, averaging results over multiple 1 

videos in the same study has a stabilizing effect that boosts predictive performance.28 2 

 3 

Assessing diagnostic performance in the testing sets: We evaluate the model’s performance on 4 

both area under the receiver operating characteristic curve (AUROC) and the area under the 5 

precision-recall curve (AUPRC), with the latter being specifically informative when class 6 

imbalance is present.29 We additionally reported metrics that assess performance at specific 7 

decision thresholds such as F1 score, positive predictive value (PPV), specificity at 90% 8 

sensitivity, and PPV at 90% sensitivity. For these metrics, we proceed with the threshold that 9 

maximizes F1 score, the harmonic mean of precision and recall, on the given evaluation set. The 10 

latter two metrics – specificity and PPV at 90% sensitivity – were included to provide a clinically 11 

relevant assessment of the model’s performance at the minimum sensitivity required for real-12 

world deployment. 13 

 14 

Model explainability: We evaluated the predictive focus of the models using saliency maps. 15 

These were generated using the Grad-CAM method30 for obtaining visual explanations from 16 

deep neural networks (see Supplement). This method was used to produce a frame-by-frame 17 

“visual explanation” of where the model is focusing to make its prediction. To generate a single 18 

2-dimensional heatmap for a given echo clip, the pixelwise maximum along the temporal axis 19 

was taken to capture the most salient regions for severe AS predictions across all timepoints. 20 

These spatial attention maps were visualized based on the randomly initialized, Kinetics-400-21 

pretrained, and SSL-pretrained AS models for five true positives, a true negative, and a false 22 

positive.  23 
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 1 

Statistical analysis 2 

All 95% confidence intervals for model performance metrics were computed by bootstrapping. 3 

Specifically, 10,000 bootstrap samples (samples with replacement having equal sample size to 4 

the original evaluation set) of the evaluation set were drawn, metrics were computed on this set 5 

of studies, and nonparametric confidence intervals were constructed with the percentile method. 6 

Bootstrapping was performed at the study level since the severe AS labels are provided for each 7 

echocardiographic study. For analysis of correlation between model outputs and quantitative 8 

measures of AS, categorical variables were summarized as percentages, whereas continuous 9 

variables are reported as mean values with standard deviation and visualized using violin plots. 10 

Continuous variables between two groups were compared using the Student’s t-test. Pearson’s r 11 

was used to assess the pairwise correlation between continuous variables. Spearman’s rank-order 12 

correlation test was used to analyze the relationship between model outputs and AS severity, 13 

which was represented ordinally (0=none, 1=mild-moderate, 2=severe). All statistical tests were 14 

two-sided with a significance level of 0.05, unless specified otherwise. Analyses were performed 15 

using Python (version 3.8.5).  16 

 17 

RESULTS 18 

Study Population 19 

In the New England cohort, after removing studies with no pixel data, de-identifying video 20 

frames, and using an automated view classifier to determine the PLAX view, our final derivation 21 

set consisted of 6,019 studies with 20,542 videos (1,294,197 frames) (mean age 69.6 ± 15.7 22 

years, n=2,992 [48.4%] women), with mild, moderate, and severe AS in 13.8% (n=780), 8.8% 23 
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(n=495), and 19.2% (n=1,588) of studies, respectively. To evaluate generalization across local 1 

hospital sites, we curated a test set of 864 studies (2,787 videos) from separate New England 2 

hospitals in the YNHHS network that were not present in the derivation set. The temporally 3 

distinct test set consisted of 2,040 randomly selected scans with a total of 6,530 videos 4 

performed between January 1st 2021 and December 15th 2021 across YNHHS (mean age 65.7 ± 5 

16.4 years, n=997 (48.9%) women) were used for time-dependent model validation. This 6 

temporally distinct set was not oversampled, with mild, moderate, and severe AS estimated in 7 

4.1% (n=83), 2.9% (n=59), and 1.0% (n=20) of the studies, respectively. Finally, a set of 5,572 8 

studies performed at the Cedars-Sinai Medical Center between 2018 and 2019, with 9 

oversampling for severe AS (1,705 studies with severe AS out of 5,572, 30.6%) (mean age 68.5 10 

± 17.1 years, n=2,370 [42.5%] women), was also used for further external testing (Figure 1). 11 

Further information on patient characteristics is presented in the Methods and Table 1. 12 

 13 

Performance of a deep learning model for severe AS detection based on PLAX videos 14 

The ensemble model was able to reliably detect the presence of severe AS using single-view, 15 

two-dimensional PLAX videos, demonstrating an AUROC of 0.915 (95% CI: 0.896, 0.933) and 16 

82.4% sensitivity at 90% specificity (95% CI: 72.5%, 85.7%) on the geographically distinct 17 

testing set of New England hospitals not included in the derivation set. The model also 18 

demonstrated consistent performance across time in the same hospital system, maintaining its 19 

discriminatory performance with an AUROC of 0.978 (95% CI: 0.966, 0.988) and 95.4% 20 

sensitivity at 90% specificity (95% CI: 88.0%, 97.1%) on the temporally distinct testing set from 21 

2021. Finally, in further geographically distinct testing using scans performed at Cedars-Sinai, 22 

the model generalized well across institutions, reaching 0.972 AUROC (95% CI: 0.969, 0.975) 23 
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and 93.2% specificity at 90% sensitivity (95% CI: 92.4%, 94.0%). Since the prevalence of severe 1 

AS varied among the external testing populations, the AUPR varied from 0.414 (95% CI: 0.231, 2 

0.594) in the temporally distinct test set (New England, 2021) to 0.932 (95% CI: 0.921, 0.941) in 3 

the external testing set from Cedars-Sinai. Receiver operating characteristic (ROC) and 4 

precision-recall (PR) curves, as well as the distribution of model probabilities across disease 5 

groups (no AS, mild-moderate AS, severe AS) showing a graded relationship across severity 6 

groups, are shown in Figure 3; see Supplemental Table S1 for full detailed results. Furthermore, 7 

in sensitivity analyses without averaging predictions from multiple videos in the same study we 8 

observed overall consistent results, as summarized in Supplemental Table S2.  9 

 10 

Explainable predictions through saliency maps 11 

We used Gradient-weighted Class Activation Mapping (Grad-CAM) to identify the regions in 12 

each video frame that contributed the most to the predicted label. In the examples shown in 13 

Figure 4, the first five columns represent the five most confident severe AS predictions, the sixth 14 

column represents the most confident “normal” (no severe AS) prediction, and the seventh 15 

column represents the most confident incorrect severe AS prediction. The saliency maps from 16 

our SSL approach demonstrated overall consistent and specific localization of the activation 17 

signal in the pixels corresponding to the aortic valve and annulus (bottom row).  18 

 19 

Model identification of features of AS severity 20 

In the temporally distinct testing set from 2021 (reflecting the normal prevalence of severe AS in 21 

an echocardiographic cohort), we observed that the predictions of the ensemble model correlated 22 

with continuous metrics of AS severity, including the peak aortic valve velocity (r=0.59, 23 
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P<0.001), trans-valvular mean gradient (r=0.66, P<0.001) and the mean aortic valve area (r=-1 

0.53, P<0.001). On the other hand, the model predictions were independent of the left ventricular 2 

ejection fraction (LVEF) (r=-0.02, P=0.37), a negative control. In further sensitivity analysis, we 3 

stratified cases without AS or mild/moderate AS based on the predictions of our model as true 4 

negatives (TN) or false positives (FP). Compared to true negatives, false positive cases had 5 

significantly higher peak aortic velocities (FP: 3.4 [25th-75th percentile: 2.9-3.7] m/sec; TN: 1.6 6 

[1.3-2.3] m/sec, P<0.001), trans-valvular mean gradients (FP: 26.0 [25th-75th percentile: 20.5-7 

31.8] mmHg; TN: 5.0 [3.8-9.0] m/sec, P<0.001), and mean aortic valve area (FP: 1.04 [25th-75th 8 

percentile: 0.86-1.28] cm2; TN: 1.99 [1.49-2.67] cm2, P<0.001), but no significant difference in 9 

the LVEF (FP: 65.4% [55.0%-67.8%]; TN: 60.0% [55.0-65.0%], P=0.19) (Figure 5). 10 

 11 

DISCUSSION 12 

We have developed and validated an automated algorithm that can efficiently screen for and 13 

detect the presence of severe AS based on a single-view two-dimensional transthoracic 14 

echocardiographic video. The algorithm demonstrates excellent performance (AUROC of 0.91 to 15 

0.97), with high sensitivity (>93%) at high specificity (90%), maintaining its robustness and 16 

discriminatory performance across several geographically and temporally distinct cohorts with 17 

varying prevalence of severe AS. We also present a novel self-supervised step leveraging multi-18 

instance contrastive learning, which allowed our algorithm to learn key representations that 19 

define each patient’s unique phenotype through contrastive pre-training, independent of the 20 

expected technical variation in image acquisition, including differences in probe orientation, 21 

beam angulation and depth. Visualization of saliency maps introduces explainability to our 22 

algorithms and confirms the key areas of the PLAX view, including the aortic valve and annulus, 23 
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that contributed the most to our predictions. Furthermore, features learned by the model 1 

generalize to lower severity cases, highlighting the potential value of our model in the 2 

longitudinal monitoring of AS, a disease with a well-defined, progressive course.2 Our approach 3 

has the potential to expand the use of echocardiographic screening for suspected AS, shifting the 4 

burden away from dedicated echocardiographic laboratories to point-of-care screening in 5 

primary care offices, or low-resource settings. It may also enable operators with minimal 6 

echocardiographic experience to screen for the condition by obtaining simple two-dimension 7 

PLAX views without the need for comprehensive Doppler assessment, which can then be 8 

reserved for confirmatory assessment.  9 

In the recent years a number of artificial intelligence applications have been described in 10 

the field of echocardiography,31 ranging from automated classification of echocardiographic 11 

views,32 video-based beat-to-beat assessment of left ventricular systolic dysfunction,11 detection 12 

of left ventricular hypertrophy and its various subtypes,12 diastolic dysfunction,33 to expert-level 13 

prenatal detection of complex congenital heart disease.34 Of note, machine learning methods 14 

further enable individuals without prior ultrasonography experience to obtain diagnostic TTE 15 

studies for limited diagnostic use.35  Despite this and even though the diagnosis and grading of 16 

AS remains dependent on echocardiography,2,14 most artificial intelligence solutions for timely 17 

AS screening have focused on alternative data types, such as audio files of cardiac auscultation,36 18 

12-lead electrocardiograms,37–39 cardio-mechanical signals using non-invasive wearable inertial 19 

sensors,40 as well as chest radiographs.41  For 12-lead electrocardiograms, AUC were consistently 20 

<0.90,37–39 whereas for alternative data types, analyses were limited to small datasets without 21 

external validation.36,40 Other studies have explored the value of structured data derived from 22 

comprehensive TTE studies in defining phenotypes with varying disease trajectories.42 More 23 
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recently the focus has shifted to AI-assisted AS detection through automated TTE interpretation. 1 

In a recent study, investigators employed a form of self-supervised learning to automate the 2 

detection of AS, with their method however discarding temporal information by only including 3 

the first frame of each video loop, while also relying on the acquisition of images from several 4 

different views.43 The approach that relies on ultrasonography is also safer than the alternative 5 

screening strategies, such as those using chest computed tomography and aortic valve calcium 6 

scoring,42,44 which expose patients to radiation. 7 

 In this context, our work represents an advance both in the clinical and methodological 8 

space. First, we describe a method that can efficiently screen for a condition associated with 9 

significant morbidity and mortality,2,7 with increasing prevalence in the setting of an aging 10 

population.45 Our method has the potential to shift the initial burden away from trained 11 

echocardiographers and specialized core laboratories, as part of a more cost-effective screening 12 

and diagnostic cascade that can detect the condition at its earliest stages.9,35 In this regard, major 13 

strengths of our model include its reliance on a single echocardiographic view that can be 14 

obtained by individuals with limited experience and minimal training,35 and its ability to process 15 

temporal information through analysis of videos rather than isolated frames. The overarching 16 

goal is to develop screening tools that can be deployed in a cost-effective manner, gatekeeping 17 

access to comprehensive TTE assessment, which can be used as a confirmatory test to establish 18 

the suspected diagnosis. 19 

 Second, our work describes an end-to-end framework to boost artificial intelligence 20 

applications in echocardiography. We present an algorithm that automatically detects 21 

echocardiographic views, then performs self-supervised representation learning of PLAX videos 22 

with a multi-instance, contrastive learning approach. This novel approach further enables our 23 
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algorithm to learn key representations of a patient’s cardiac phenotype that generalize and 1 

remain consistent across different clips and variations of the same echocardiographic views. By 2 

optimizing the detection of an echocardiographic fingerprint for each patient, this important 3 

pretraining step has the potential to boost AI-based echocardiographic assessment across a range 4 

of conditions. Furthermore, unlike previous approaches,43 our method benefits from multi-5 

instance contrastive learning, which learns key representations using different videos from the 6 

same patient, a method that has been shown to improve predictive performance in the 7 

classification of dermatology images.21 8 

 Further to detecting severe AS, our algorithm learns features of aortic valvular pathology 9 

that generalize across different stages of the condition. Saliency maps demonstrate that the model 10 

focuses on the aortic valve with notable variation throughout the cardiac cycle, possibly learning 11 

features such as aortic valve calcification and restricted leaflet mobility.14 When restricting our 12 

analysis to patients without severe AS, the model’s predictions strongly correlated with Doppler-13 

derived, quantitative features of stenosis severity. This is in accordance with the known natural 14 

history of AS, a progressive, degenerative condition, the hallmarks of which are aortic valve 15 

calcification, restricted mobility, functional stenosis and eventual ventricular decompensation.2,7 16 

As such, our algorithm’s predictions also carry significant value as quantitative predictors of the 17 

stage of AV severity and could theoretically be used to monitor the rate of AS progression. 18 

Limitations of our study include the lack of prospective validation of our findings. To this 19 

end, we are working on deploying this method in a prospective cohort of patients referred for 20 

routine TTE assessment to understand its real-world implications as a screening tool. Second, 21 

our model is limited to the use of PLAX views, which often represent the first step of TTE or 22 

POCUS protocols in cardiovascular assessment. Though there is no technical restriction to 23 
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expanding these methods to alternative views, increasing the complexity of the screening 1 

protocol is likely to negatively impact its adoption in busy clinical settings. Finally, this study 2 

used data from formal TTEs, which generally produce higher-quality images than machines in 3 

POCUS settings. Though videos were downsampled for model development, further validation is 4 

needed to ensure robustness across acquisition technologies. 5 

 6 

CONCLUSION 7 

In summary, we propose an efficient method to screen for severe AS using single-view (PLAX) 8 

TTE videos without the need for Doppler signals. More importantly, we describe an end-to-end 9 

approach for the deployment of artificial intelligence solutions in echocardiography, starting 10 

from automated view classification to self-supervised representation learning to accurate and 11 

explainable detection of severe AS. Our findings have significant implications for point-of-care 12 

ultrasound screening of AS as part of routine clinic visits and in limited resource settings and for 13 

individuals with minimal training. 14 

 15 

FUNDING 16 

The study was supported by the National Heart, Lung, and Blood Institute of the National 17 

Institutes of Health (under award K23HL153775 to R.K.).  18 

 19 

CONFLICTS OF INTEREST 20 

E.K.O is a co-inventor of the U.S. Provisional Patent Application 63/177,117, a co-founder of 21 

Evidence2Health, and reports a consultancy and stock option agreement with Caristo Diagnostics 22 

Ltd (Oxford, U.K.), all unrelated to the current work. B.J.M. reported receiving grants from the 23 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

20 

 

National Institute of Biomedical Imaging and Bioengineering, National Heart, Lung, and Blood 1 

Institute, US Food and Drug Administration, and the US Department of Defense Advanced 2 

Research Projects Agency outside the submitted work. In addition, B.J.M. has a pending patent 3 

on predictive models using electronic health records (US20180315507A1). A.H.R. is supported 4 

in part by CNPq (310679/2016-8 and 465518/2014-1) and FAPEMIG (PPM-00428-17 and RED-5 

00081-16) and is funded by Kjell och Märta Beijer Foundation. J.K.F. has received grant 6 

support/research contracts and consultant fees/honoraria/Speakers Bureau fees from Edwards 7 

Lifesciences and Medtronic. H.M.K. works under contract with the Centers for Medicare & 8 

Medicaid Services to support quality measurement programs, was a recipient of a research grant 9 

from Johnson & Johnson, through Yale University, to support clinical trial data sharing; was a 10 

recipient of a research agreement, through Yale University, from the Shenzhen Center for Health 11 

Information for work to advance intelligent disease prevention and health promotion; 12 

collaborates with the National Center for Cardiovascular Diseases in Beijing; receives payment 13 

from the Arnold & Porter Law Firm for work related to the Sanofi clopidogrel litigation, from 14 

the Martin Baughman Law Firm for work related to the Cook Celect IVC filter litigation, and 15 

from the Siegfried and Jensen Law Firm for work related to Vioxx litigation; chairs a Cardiac 16 

Scientific Advisory Board for UnitedHealth; was a member of the IBM Watson Health Life 17 

Sciences Board; is a member of the Advisory Board for Element Science, the Advisory Board for 18 

Facebook, and the Physician Advisory Board for Aetna; and is the co-founder of Hugo Health, a 19 

personal health information platform, and co-founder of Refactor Health, a healthcare AI-20 

augmented data management company. D.O. is supported by NIH K99 HL157421-01 and has 21 

provisional patents in AI and echocardiography. R.K. received support from the National Heart, 22 

Lung, and Blood Institute of the National Institutes of Health (under award K23HL153775) and 23 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

21 

 

the Doris Duke Charitable Foundation (under award, 2022060). R.K. further receives research 1 

support, through Yale, from Bristol-Myers Squibb. He is also a coinventor of U.S. Pending 2 

Patent Applications. 63/177,117, and 63/346,610, unrelated to the current work. He is also a 3 

founder of Evidence2Health, a precision health platform to improve evidence-based 4 

cardiovascular care. The remaining authors have no competing interests to disclose. 5 

 6 

DATA AVAILABILITY 7 

The data are not available for public sharing given the restrictions in our institutional review 8 

board approval. The deidentified test set may be available to researchers under a data use 9 

agreement after the study has been published in a peer-reviewed journal. 10 

 11 

CODE AVAILABILITY 12 

The code repository for this work can be found at https://github.com/CarDS-Yale/echo-severe-13 

AS. 14 

 15 

AUTHOR CONTRIBUTIONS 16 

G.H. and E.K.O. performed the analyses, G.H., E.K.O. and R.K. drafted the manuscript, and all 17 

other authors provided critical revisions. A.C., N.Y., A.G., and D.O. facilitated cross-institution 18 

validation on data from Cedars-Sinai Hospital. R.K. supervised the study and is the guarantor. 19 

 20 

REFERENCES 21 

1.  Eugène Marc, Duchnowski Piotr, Prendergast Bernard, et al. Contemporary Management of Severe 22 

Symptomatic Aortic Stenosis. J Am Coll Cardiol 2021; 78: 2131–2143. 23 

2.  Otto CM, Prendergast B. Aortic-valve stenosis--from patients at risk to severe valve obstruction. N 24 

Engl J Med 2014; 371: 744–756. 25 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

22 

 

3.  Smith CR, Leon MB, Mack MJ, et al. Transcatheter versus surgical aortic-valve replacement in 1 

high-risk patients. N Engl J Med 2011; 364: 2187–2198. 2 

4.  Reardon MJ, Van Mieghem NM, Popma JJ, et al. Surgical or Transcatheter Aortic-Valve 3 

Replacement in Intermediate-Risk Patients. N Engl J Med 2017; 376: 1321–1331. 4 

5.  Kang D-H, Park S-J, Lee S-A, et al. Early Surgery or Conservative Care for Asymptomatic Aortic 5 

Stenosis. N Engl J Med 2020; 382: 111–119. 6 

6.  The Early Valve Replacement in Severe Asymptomatic Aortic Stenosis Study, 7 

https://clinicaltrials.gov/ct2/show/NCT04204915 (accessed June 2, 2022). 8 

7.  Otto CM, Nishimura RA, Bonow RO, et al. 2020 ACC/AHA Guideline for the Management of 9 

Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American 10 

Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021; 143: e72–11 

e227. 12 

8.  Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular 13 

heart disease. Eur Heart J 2017; 38: 2739–2791. 14 

9.  Narula J, Chandrashekhar Y, Braunwald E. Time to Add a Fifth Pillar to Bedside Physical 15 

Examination: Inspection, Palpation, Percussion, Auscultation, and Insonation. JAMA Cardiol 2018; 16 

3: 346–350. 17 

10.  Dey D, Slomka PJ, Leeson P, et al. Artificial intelligence in cardiovascular imaging: JACC state-of-18 

the-art review. J Am Coll Cardiol 2019; 73: 1317–1335. 19 

11.  Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function. 20 

Nature 2020; 580: 252–256. 21 

12.  Duffy G, Cheng PP, Yuan N, et al. High-Throughput Precision Phenotyping of Left Ventricular 22 

Hypertrophy With Cardiovascular Deep Learning. JAMA Cardiol 2022; 7: 386–395. 23 

13.  Newgard CD, Lewis RJ. Missing data: How to best account for what is not known. JAMA: the 24 

journal of the American Medical Association 2015; 314: 940–941. 25 

14.  Baumgartner H, Hung J, Bermejo J, et al. Echocardiographic assessment of valve stenosis: 26 

EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 2009; 22: 1–23; quiz 101–27 

2. 28 

15.  Mitchell C, Rahko PS, Blauwet LA, et al. Guidelines for performing a comprehensive transthoracic 29 

echocardiographic examination in adults: Recommendations from the American society of 30 

echocardiography. J Am Soc Echocardiogr 2019; 32: 1–64. 31 

16.  Zhang J, Gajjala S, Agrawal P, et al. Fully Automated Echocardiogram Interpretation in Clinical 32 

Practice. Circulation 2018; 138: 1623–1635. 33 

17.  Holste G, Oikonomou EK, Mortazavi B, et al. Self-supervised learning of echocardiogram videos 34 

enables data-efficient clinical diagnosis. arXiv [cs.CV], http://arxiv.org/abs/2207.11581 (2022). 35 

18.  Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-36 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

23 

 

Rays with Deep Learning. arXiv [cs.CV], http://arxiv.org/abs/1711.05225 (2017). 1 

19.  Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning Algorithm for 2 

Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA 2016; 316: 2402–2410. 3 

20.  Jiao J, Droste R, Drukker L, et al. Self-Supervised Representation Learning for Ultrasound Video. 4 

Proc IEEE Int Symp Biomed Imaging 2020; 2020: 1847–1850. 5 

21.  Tran, Wang, Torresani, et al. A closer look at spatiotemporal convolutions for action recognition. 6 

Proc Estonian Acad Sci Biol Ecol, 7 

http://openaccess.thecvf.com/content_cvpr_2018/html/Tran_A_Closer_Look_CVPR_2018_paper.ht8 

ml (2018). 9 

22.  Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. arXiv [cs.LG], 10 

http://arxiv.org/abs/1412.6980 (2014). 11 

23.  Pedregosa, Varoquaux, Gramfort. Scikit-learn: Machine learning in Python. the Journal of machine, 12 

https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf?ref=https://githubhelp.com 13 

(2011). 14 

24.  Müller, Kornblith, Hinton. When does label smoothing help? Adv Neural Inf Process Syst, 15 

https://proceedings.neurips.cc/paper/2019/hash/f1748d6b0fd9d439f71450117eba2725-Abstract.html 16 

(2019). 17 

25.  Szegedy, Vanhoucke, Ioffe. Rethinking the inception architecture for computer vision. Proc 18 

Estonian Acad Sci Biol Ecol, https://www.cv-19 

foundation.org/openaccess/content_cvpr_2016/html/Szegedy_Rethinking_the_Inception_CVPR_2020 

16_paper.html (2016). 21 

26.  Dietterich TG. Ensemble Methods in Machine Learning. In: Multiple Classifier Systems. Springer 22 

Berlin Heidelberg, 2000, pp. 1–15. 23 

27.  Saito T, Rehmsmeier M. The precision-recall plot is more informative than the ROC plot when 24 

evaluating binary classifiers on imbalanced datasets. PLoS One 2015; 10: e0118432. 25 

28.  Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual Explanations from Deep Networks via 26 

Gradient-based Localization. arXiv [cs.CV], http://arxiv.org/abs/1610.02391 (2016). 27 

29.  Ghorbani A, Ouyang D, Abid A, et al. Deep learning interpretation of echocardiograms. NPJ Digit 28 

Med 2020; 3: 10. 29 

30.  Madani A, Arnaout R, Mofrad M, et al. Fast and accurate view classification of echocardiograms 30 

using deep learning. NPJ Digit Med; 1. Epub ahead of print March 21, 2018. DOI: 10.1038/s41746-31 

017-0013-1. 32 

31.  Chiou Y-A, Hung C-L, Lin S-F. AI-assisted echocardiographic prescreening of heart failure with 33 

preserved ejection fraction on the basis of intrabeat dynamics. JACC Cardiovasc Imaging 2021; 14: 34 

2091–2104. 35 

32.  Arnaout R, Curran L, Zhao Y, et al. An ensemble of neural networks provides expert-level prenatal 36 

detection of complex congenital heart disease. Nat Med 2021; 27: 882–891. 37 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

24 

 

33.  Narang A, Bae R, Hong H, et al. Utility of a Deep-Learning Algorithm to Guide Novices to Acquire 1 

Echocardiograms for Limited Diagnostic Use. JAMA Cardiol 2021; 6: 624–632. 2 

34.  Voigt I, Boeckmann M, Bruder O, et al. A deep neural network using audio files for detection of 3 

aortic stenosis. Clin Cardiol. Epub ahead of print April 19, 2022. DOI: 10.1002/clc.23826. 4 

35.  Kwon J-M, Lee SY, Jeon K-H, et al. Deep learning-based algorithm for detecting aortic stenosis 5 

using electrocardiography. J Am Heart Assoc 2020; 9: e014717. 6 

36.  Cohen-Shelly M, Attia ZI, Friedman PA, et al. Electrocardiogram screening for aortic valve stenosis 7 

using artificial intelligence. Eur Heart J 2021; 42: 2885–2896. 8 

37.  Hata E, Seo C, Nakayama M, et al. Classification of Aortic Stenosis Using ECG by Deep Learning 9 

and its Analysis Using Grad-CAM. In: 2020 42nd Annual International Conference of the IEEE 10 

Engineering in Medicine & Biology Society (EMBC). 2020, pp. 1548–1551. 11 

38.  Yang C, Ojha BD, Aranoff ND, et al. Classification of aortic stenosis using conventional machine 12 

learning and deep learning methods based on multi-dimensional cardio-mechanical signals. Sci Rep 13 

2020; 10: 17521. 14 

39.  Ueda D, Yamamoto A, Ehara S, et al. Artificial intelligence-based detection of aortic stenosis from 15 

chest radiographs. Eur Heart J Digit Health 2022; 3: 20–28. 16 

40.  Sengupta PP, Shrestha S, Kagiyama N, et al. A machine-learning framework to identify distinct 17 

phenotypes of aortic stenosis severity. JACC Cardiovasc Imaging 2021; 14: 1707–1720. 18 

41.  Huang Z, Long G, Wessler B, et al. A New Semi-supervised Learning Benchmark for Classifying 19 

View and Diagnosing Aortic Stenosis from Echocardiograms. In: Jung K, Yeung S, Sendak M, et al. 20 

(eds) Proceedings of the 6th Machine Learning for Healthcare Conference. PMLR, 06--07 Aug 21 

2021, pp. 614–647. 22 

42.  Pawade T, Clavel M-A, Tribouilloy C, et al. Computed Tomography Aortic Valve Calcium Scoring 23 

in Patients With Aortic Stenosis. Circ Cardiovasc Imaging 2018; 11: e007146. 24 

43.  Bonow RO, Greenland P. Population-wide trends in aortic stenosis incidence and outcomes. 25 

Circulation 2015; 131: 969–971. 26 

44.  Azizi S, Mustafa B, Ryan F, et al. Big self-supervised models advance medical image classification. 27 

In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV). IEEE. Epub ahead of 28 

print October 2021. DOI: 10.1109/iccv48922.2021.00346. 29 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2022. ; https://doi.org/10.1101/2022.08.30.22279413doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279413
http://creativecommons.org/licenses/by-nc/4.0/


Main manuscript 

25 

 

DISPLAY ITEMS 
 
Table 1 | Table of baseline demographic and echocardiographic characteristics. 
 

  New England (Yale-New Haven Health System) California 

  Missing Overall Derivation  
Geographically 

distinct testing #1 
Temporally 

distinct testing 
Geographically 

distinct testing #2 

n   9089 6185 864 2040 5572 

Location   - YNHH BH, GH, LMH, WH 
YNHH, BH, GH, 

LMH, WH 
CSMC 

Year of study   - 2016-2020 2016-2020 2021 2018-2019 

Age (years), mean (SD)  6 69.1 (16.0) 69.9 (15.7) 70.9 (16.3) 65.7 (16.4) 68.5 (17.1)  

Gender, n (%) 
Female 0 4453 (49.0) 2992 (48.4) 464 (53.7) 997 (48.9) 2370 (42.5) 

Male  4636 (51.0) 3193 (51.6) 400 (46.3) 1043 (51.1) 3202 (57.5) 

Race & Ethnicity  
(per echo reports),  

n (%) 

Asian 6770 32 (1.4) 21 (1.2) 2 (1.6) 9 (2.0) 404 (7.3)  
Black  268 (11.6) 188 (10.8) 16 (12.9) 64 (14.2) 651 (11.8)  

Hispanic  118 (5.1) 84 (4.8) 10 (8.1) 24 (5.3) 556 (10.0)  
Other  37 (1.6) 27 (1.5) 4 (3.2) 6 (1.3) 451 (8.1) 

Unknown  18 (0.8) 12 (0.7) 2 (1.6) 4 (0.9) 101 (1.8)  
White  1846 (79.6) 1411 (81.0) 90 (72.6) 345 (76.3) 3409 (61.6)  

LVIDd Index (cm/m2), mean (SD)  1111 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 2.4 (0.4) 2.4 (0.6)  

RVSP (mmHg), mean (SD)  2500 32.3 (13.5) 32.5 (13.3) 35.7 (16.5) 29.8 (12.0) 32.8 (14.4)  

EF (%), mean (SD)  108 59.4 (10.8) 59.5 (10.8) 58.5 (12.0) 59.1 (10.2) 57.8 (14.8)  

AVA by VTI (cm2), mean (SD)  4713 1.4 (0.8) 1.3 (0.8) 1.5 (0.9) 2.1 (0.9) 1.4 (1.2)  

AV mean gradient (mmHg), mean (SD)  3649 20.5 (17.8) 23.2 (18.2) 18.4 (17.2) 9.0 (9.4) 23.8 (19.8)  

AV peak velocity (m/s), mean (SD)  441 2.2 (1.2) 2.4 (1.3) 2.2 (1.2) 1.6 (0.6) 2.3 (1.4)  

AV: aortic valve; BH: Bridgeport hospital; BP: blood pressure; CSMC: Cedars-Sinai Medical Center; EF: ejection fraction; GH: Greenwich hospital; LAD: left atrium; LMH: 
Lawrence & Memorial hospital; LVIDd: left ventricular internal diastolic diameter; RVSP: right ventricular systolic pressure; SD: standard deviation; VTI: velocity time integral, 
WH: Westerly hospital; YNHH: Yale-New Havel Hospital. 
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Figure 1 | Inclusion-exclusion flowchart for the New England study population. Exclusion 

criteria for transthoracic echocardiogram (TTE) studies and videos included in this study from 

the Yale-New Haven Health network. Studies with valid pixel data were de-identified frame by 

frame, and the parasternal long axis (PLAX) view was determined by an automated view 

classifier. A sample of 10,000 studies from 2016-2020 (with AS oversampled) were split into a 

derivation set and external test set, which comprised studies from hospital sites not encountered 

during model training. An independent random sample of 2,500 studies from 2021 (with no 

oversampling) was used as an additional test set to evaluate robustness to temporal shift. 
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Figure 2 | Overview of proposed approach. We first perform self-supervised pretraining on 

parasternal long axis (PLAX) echocardiogram videos, selecting different PLAX videos from the 

same patient as “positive samples” for contrastive learning. After this representation learning 

step, we then use these learned weights as the initialization for a model that is fine-tuned to 

predict severe aortic stenosis (AS) in a supervised fashion.
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Figure 3 | Model performance in the external validation sets. Receiver operating 

characteristic curves (first column), precision-recall curves (second column), and violin plots 

showing relationship of model output with aortic stenosis severity (third column) for the external 

Cedars-Sinai cohort (first row), temporally distinct New England cohort (second row), and 

external New England cohort (third row). 
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Figure 4 | Saliency map visualization. Spatial attention maps for the randomly initialized model

(top row), Kinetics-pretrained model (middle row) and self-supervised learning (SSL) approach 

(bottom row) for five true positives (first five columns), a true negative (sixth column), and a 

false positive (last column). As determined by the Kinetics-pretrained model, the first five 

columns represent the five most confident severe AS predictions, the sixth column represents the 

most confident “normal” (no severe AS) prediction, and the seventh column represents the most 

confident incorrect severe AS prediction. Saliency maps were computed with the GradCAM 

method and reduced to a single 2D heatmap by maximum intensity projection along the temporal 

axis.
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Figure 5 | Comparison between model predictions and echocardiographic left ventricular 

and aortic valve assessment among patients without severe aortic stenosis. Violin plots 

demonstrating the distribution of LVEF (left ventricular ejection fraction, A) peak aortic valve 

velocity (B), mean aortic valve gradient (C) and mean aortic valve area (D) for patients without 

severe AS, stratified based on the predicted class based on the final ensemble model. These 

results are based on the temporally distinct cohort of patients scanned in 2021, without 

oversampling for severe aortic stenosis cases. 
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