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Abstract:  

The ongoing COVID-19 pandemic has placed an unprecedented burden on global health. 

Crucial for managing this burden, the existing SARS-CoV-2 vaccines have substantially 

reduced the risk of severe disease and death up to this point. The induction of neutralizing 

antibodies (nAbs) by these vaccines leads to protection against both infection and severe 

disease. However, pharmacokinetic (PK) waning and rapid viral evolution degrade 

neutralizing antibody binding titers, leading to a rapid loss of vaccinal protection against 

infection occurring on the order of months after vaccination. Additionally, inter-individual 

heterogeneity in the strength and durability of the vaccine-induced neutralizing response to 

SARS-CoV-2 can create a further public-health risk by placing a subset of the population at 

risk. Here we incorporate the heterogeneity in inter-individual response into a 

pharmacokinetic/ pharmacodynamic (PK/PD) model to project the degree of heterogeneity in 

immune protection. We extend our model-based approach to examine the impact of 

evolutionary immune evasion on vaccinal protection. Our findings suggest that viral 

evolution can be expected to impact the effectiveness of vaccinal protection against severe 

disease, particularly for individuals with a shorter duration of immune response. One possible 

solution to immune heterogeneity may be more frequent boosting for individuals with a 

weaker immune response. We demonstrate a model-based approach to targeted boosting that 

involves the use of the ECLIA RBD assay to identify individuals whose immune response is 

insufficient for protection against severe disease. Our work suggests that vaccinal protection 

against severe disease is not assured and provides a path forward to reducing the risk to 

immunologically vulnerable individuals. 
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Introduction 

The rapid development of SARS-CoV-2 vaccines was an unprecedented achievement of 

modern science. Early reports suggested a high degree of vaccinal efficacy in preventing 

symptomatic disease [1–3], implying that the vaccines were effective at limiting 

transmission. This high level of vaccinal efficacy against infection raised the hope that the 

vaccines could be used to achieve herd immunity. However, this hope was soon undermined 

by waning antibody titers [4–7] and viral immune evasion [8–11], which predictably [12,13] 

led to rapid declines in vaccinal efficacy against infection [14,15]. 

At this point, a substantial body of evidence points to neutralizing antibody titers as a 

correlate of immune protection [16–18]. In a definitive meta-analysis, neutralizing antibody 

titers normalized to the mean convalescent titer (from the same study) demonstrated a strong 

nonlinear relationship that was predictive of reported vaccinal protection across a range of 

different vaccines [19]. The authors found a neutralizing antibody dose-response relationship 

between nAb titers and protection against infection, and a second dose-response relationship 

linking nAb titers to protection against severe COVID-19 outcomes. This relationship has 

held up across a range of studies [20,21], retaining strong predictive power even in the face 

of newly emerging variants [22–26]. Concomitant with waning neutralizing antibody titers 

and viral immune evasion, a number of studies have demonstrated a loss of vaccinal efficacy 

against severe disease (VEs) [27–30], contradicting a commonly held perception [31,32] that 

the observed durability of T-cell responses [33–35] would lead to prolonged vaccinal 

protection against severe disease. 

In addition to population-level waning in nAb titers, there is significant inter-

individual variation in the strength and durability of the nAb response [36–38]. In previous 
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work, we have quantified this inter-individual heterogeneity by applying a mixed-effects 

modeling approach to published data characterizing SARS-CoV-2 nAb titers after time 

following infection [39]. Our results found a wide range of half-lives, with a 95% population 

interval ranging from 33-320 days. This wide range has significant implications for public-

health strategy, as the existence of a subset of individuals who potentially lose 

immunological protection within a short span of time after infection also raises questions 

about the breadth and durability of vaccinal protection.  

To explore this question in more depth, we use a population PK modeling approach to 

quantify the population heterogeneity in the durability of the nAb response as a result of 

vaccination. We then coupled this with the PK/PD dose-response relationships linking nAb 

titers to protection from mild and severe disease, in order to project the population-level 

heterogeneity. We examine population heterogeneity in vaccinal protection over time and in 

response to viral immune evasion. We further formulate and then evaluate a potential 

strategy for limiting risk for the vulnerable population based on the use of a personalized 

vaccine booster strategy.  

 

Results 

Population pharmacokinetic modeling of SARS-CoV-2 vaccinal immunity 

We fitted a two-stage population mixed-effects model to nAb expansion and decay after 

vaccination. The selected model provides a good fit to nAb kinetics after the second vaccine 

dose based on the consistency of the observed data with the prediction intervals obtained 

from the model (Figure 1A). The model provides adequate estimation of population median 

and variation in all parameters (Table 1). We determined that there is a moderate correlation 
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between Tin and kp. No significant correlations are observed between the initial nAb titer 

upon administration of the second vaccine dose and any of the model parameters. 

Additionally, there is no significant correlation between model parameters and age group 

either (Figure S1).  

The model was further validated by verifying agreement between the fitted parameter 

distributions and individual estimates and performing normality checks for random effects 

and residuals (Figures S2 - S4).  We also note that the median half-life of nAbs significantly 

exceeds the median half-life of IgG antibodies (64 days vs 45 days, p = 0.005, Figure S5), 

which is consistent with affinity maturation occurring following vaccination. 

 

Peak nAb titer and half-life are heterogeneous in the general population 

The population PK model reveals broad population heterogeneity in peak nAb titer and nAb 

half-life within the general (non-immunocompromised) population. The mean half-life for 

nAbs is 75 days (Figure 2A). For the mean, this translates to 29-fold waning of nAb titer one 

year after vaccination. In the upper 90th percentile, the half-life is 127 days, implying 7.3-fold 

waning per year. However, the lower 10th percentile has only a 36-day nAb half-life and 

experiences 1100-fold waning yearly. The mean peak nAb titer after vaccination is 469 

(IC50), which is 4.4-fold of the mean convalescent plasma titer after infection (Figure 2B). 

The 90th percentile for peak titer is 787 (IC50) (7.4-fold convalescent titer), and the 10th 

percentile is 193 (IC50) (1.8-fold convalescent titer). 

 

Anti-SARS-CoV-2 nAbs wane after vaccination, with broad interindividual variability  
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In a model-simulated population, the heterogeneity in individual nAb PK parameters results 

in differences in nAb titers and persistence over time since infection (Figure 3). For 

individuals in the 50th percentile, nAb titers are maintained above the peak convalescent level 

for about 4 months after vaccination. For the 10th percentile, peak vaccine titers exceed the 

peak convalescent titer for 2 months, while for the 90th percentile, vaccine titers remain 

above this threshold for approximately 10 months.  

 

Variability in antibody persistence translates to functional differences in protection 

Based on the simulated nAb kinetics, we estimated vaccine protection over time against 

COVID-19. As shown in Figure 4, vaccine protection over time varies based on differences 

in nAb PK. Protection from wild-type (WT) symptomatic (mild) disease (VEm) ranges from 

near-complete at the 90th percentile to 90% in the 10th percentile immediately after 

vaccination. As time progresses after vaccination, the variation increases – six months after 

the second dose, the 10th percentile receives only 30% WT VEm, while the 90th percentile 

retains 90% protection. Over this time interval, the population mean WT VEm wanes from 

94% to 67%. Across the board, protection from WT severe disease (VEs) is higher and more 

persistent than VEm (Figure 4A). VEs is near-complete across the population immediately 

after vaccination, and wanes to 75% after 6-months in the 10th percentile. However, the mean 

VEs for the population against WT remains 90% at 6 months. Thus, clinically significant 

differences in long-term vaccine efficacy are expected in the immunocompetent population, 

with potentially deadly consequences for those with poor nAb persistence. 

 

Immune evasion reduces vaccinal protection from severe disease 
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Although protection from severe disease remains relatively high throughout the population in 

the first 6 months after vaccination, immune-evading variants erode this protection, posing 

the risk of a rapidly-changing vaccinal immunity landscape as viral evolution continues. In 

Figure 4B, we demonstrate the challenge for vaccines when the more transmissible and 

modestly immune-evading delta variant emerged [40]. The mean VEm disease immediately 

after vaccination dropped from about 94% to just over 80%. Although mean protection from 

delta severe disease is greater than 95% on average shortly after vaccination, it wanes more 

quickly than WT protection, reaching 80% after 6 months. Individuals with weaker vaccinal 

immunity are most impacted, with the 10th percentile experiencing less than 50% delta VEm 6 

months after vaccination.  

The strongly immune-evading omicron variant has had an even greater impact on 

vaccine efficacy (Figure 4C). On average, recently vaccinated individuals are conferred less 

than 30% protection from symptomatic omicron infections and 70% protection from severe 

disease. For the 10th percentile, however, protection from omicron is minimal even shortly 

after vaccination – less than 20% against mild disease and approximately 55% against severe 

disease. Six months after vaccination, protection is poor across most of the population: 

virtually no one is expected to retain more than 30% protection from symptomatic omicron, 

while the mean and median levels of protection from severe omicron dip below 40%.  

 

Immune evasion erodes vaccine protection across the population 

In Figure 5, we explore the relationship between degree of immune evasion – the fold-loss of 

nAb titer against an immune evading variant compared to the WT virus – and vaccine 

efficacy. Although mild disease is most impacted by immune evasion, severe disease 
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protection is also predicted to be eroded, especially for strongly immune-evading variants. 

For example, a 7.5-fold loss of titer is expected to drop VEm to 50% at three months post-

vaccination, while a 50.8-fold loss of titer would reduce the median VEs to 50% at three 

months. 

 

Model-based optimization of targeted booster doses 

This analysis suggests that nAb waning and potency loss due to immune evasion contribute 

to substantial losses of protection over time, both from mild and severe disease. This waning 

is compounded by poorly persistent vaccinal immunity in a significant proportion of the 

immunocompetent population. Frequent revaccination resulting in boosting of titers is a 

potential solution to waning immunity and potentially immune evasion. Our results suggest 

that the optimal revaccination frequency may vary among individuals based on nAb PK. As 

nAb titer must be assessed by a live viral or pseudoviral assay, it is challenging to evaluate in 

a healthcare setting. In Figure 6, we demonstrate that RBD-binding IgG titer is a strong 

predictor of nAb titer above the level required for 90% protection from severe disease. For 

example, an optimized RBD-binding IgG titer can predict 90% protection from severe 

disease with 93% sensitivity and 72% specificity (Figure 6A). Thus, this more readily 

assessed metric could be used to identify patients with poor vaccinal protection who are good 

candidates for early revaccination. 

 
Discussion 

In this work, we have used a population PK/PD modeling approach to interrogate the impact 

of inter-individual heterogeneity on the degree and duration of vaccinal protection against 

both mild and severe disease. Our population model fit provided a good description of the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.22279397doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279397
http://creativecommons.org/licenses/by/4.0/


9 

 

data, as assessed by quality control metrics. The model showed broad heterogeneity in the 

degree and durability of nAb protection, with the 90% population interval (90% pi) for nAb 

half-life spanning 30 – 153 days, while the peak nAb level 90% pi spans 169 – 989 ID50.  

 The dataset used for this analysis was taken from a Moderna Phase 1 trial enrolling 

34 participants, with immunocompromised status being an exclusion criterion for the trial. 

Thus, the broad heterogeneity observed is reflective of the diversity of outcomes that may be 

expected in the general population upon vaccination. Of particular concern, even though 

immunocompromised patients were specifically excluded from the underlying study, the 

outcomes for the 25th percentile of the population and below are poor.. For example, omicron 

BA.1 VEm and VEs are both estimated to be less than 10% in this population at the six-month 

mark.  

There are several limitations to our work, namely the small size of the Moderna study 

may not reflect all segments of the population and limits the power of the covariate analyses. 

The study excludes immunocompromised individuals, and thus our results reflect only the 

immunocompetent population. The Moderna study only covers the first three months after 

vaccination, which limits our ability to predict long-term nAb kinetics such as the possibility 

of biphasic decay. For this reason, we restricted our predictions to the first six months after 

vaccination and focused on variability in nAb kinetics during this timeframe.  

Additionally, the results of the ROC analysis likely depend on a match between the 

circulating variant and the variant used to assess neutralizing titer and RBD-binding titer. 

Previous studies have shown that immune evading variants reduce the neutralizing potency 

of post-vaccination sera and that the relationship between binding and neutralizing titer 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.22279397doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279397
http://creativecommons.org/licenses/by/4.0/


10 

 

varies [41]. Thus, as new variants emerge and sweep to dominance, this analysis will require 

repetition with pseudoviruses matched to the novel variants. 

 In the early days of the pandemic, there was much optimism expressed about the 

potential of vaccines to permit a return to normalcy, both in the popular press [42,43] and 

among public health authorities [44–46]. Much of this optimism was based on the persistence 

of the T-cell response in vaccinated individuals [35,47,48]. While T-cells remain durable 

even in the face of the newer immune-evading variants [35,49,50], this durability has not 

translated into lasting protection against infection or severe disease. At a mechanistic level, it 

is now known that T-cells are in fact infected by SARS-CoV-2 [51], and they undergo frank 

apoptosis during viral infection [51–53].  

To the extent that neutralizing antibodies are the primary correlate of immune 

protection against SARS-CoV-2, our work makes several crucial points for public-health 

strategy. First, repeat annual dosing (at a minimum) of a SARS-CoV-2 vaccine may be 

required to provide population-level protection against severe disease. At present, the 

consequences of such a boosting strategy have not been fully explored in clinical trials- our 

work suggests that this is an urgent unmet medical need, and failure to keep providing 

boosters may lead to the loss of vaccinal protection against severe disease in the population. 

Understanding the impact of repeated boosting on nAb production as well as vaccinal side-

effect profiles is crucial for enabling better use of the existing vaccines, which at present 

represent our only option for disease control.  

 Our work also points out a second unmet medical need, as many revaccination 

strategies may leave a significant portion of the immunocompetent population unprotected 

against severe disease. In the face of logistical constraints in vaccine production, a rational 
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strategy would require a method to efficiently identify the subpopulation most in need of 

additional doses of vaccines. Our work further provides a basis for this prioritization. We 

have demonstrated an approach (based on previously published data [54]) that can be used to 

convert the ECLIA RBD-binding assay (which is commercially available and in broad use) 

into a personalized biomarker to determine the SARS-CoV-2 vaccine boosting interval for 

individuals in high-risk populations. The optimal threshold from our decision analysis 

provided 93% sensitivity and 72% specificity for predicting 90% protection from severe 

disease. Such an analysis would best be repeated in a larger prospective study to optimize the 

threshold for relevant variants and other experimental systems, but our findings here provide 

a clear basis for designing such a trial.  

We recognize that repeated boosting with mRNA vaccines may present tremendous 

logistical hurdles on a global basis. However, the first step in solving a problem is to 

acknowledge its existence. Our work delineates the reality of the current situation- the path 

that we have chosen for attempting to coexist with SARS-CoV-2 will require us to either 

keep boosting the population at regular and frequent intervals, or risk losing vaccinal 

protection altogether. While manufacturing, tolerability, and compliance constraints may 

make this hard to achieve with the current vaccines, next-generation vaccines should be 

designed with this target product profile in mind. For example, room temperature-stable, 

nasally administered vaccines based on low-cost technologies would make it easier for us to 

achieve the goal of widespread and repeated vaccinal coverage.  

 A recurrent failing of the public-health strategy over the past two years has been to 

start with overly optimistic assumptions about the course of the pandemic, and to be slow to 

react to deviations from those assumptions. In fact, it was easy to predict that rapid viral 
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immune evasion would be a problem [12], and it was easy to predict that the current vaccines 

alone would not bring the pandemic to an end [55]. At this point, our work suggests that we 

need to move quickly to bolster the protection provided by vaccines- by exploring dose and 

schedule effects of existing vaccines thoroughly, as well as by deploying next-generation 

vaccines. A failure to anticipate and hedge against waning vaccinal efficacy against severe 

COVID-19 outcomes could have grave consequences. 
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Figures                

 

 

Figure 1: Visual predictive check (VPC) of nAb kinetics model fit with the 90% prediction 

intervals. The blue dots represent the observed clinical nAb kinetics data [4]. The red line 

represents the empirical 50th percentile and the blue lines represent the empirical 10th and 90th

percentiles. The shaded regions represent the model’s 90% prediction intervals for the 50th 
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percentile (pink) and 10th and 90th percentiles (blue). The empirical percentiles fall within the 

model’s prediction intervals, indicating good model agreement with the data. 

 

Table 1. Parameter values for fitted nAb kinetics model with standard errors (SE) and 

relative standard error (RSE). 

Parameter Value Units Standard error Relative standard 
error (%) 

Fixed effects (median) 

kp, pop 44.98 IC50/days 5.74 12.8 

kel, pop 0.011 1/days 0.0011 10.3 

Tin, pop 8.88 days 1.24 14.0 

Standard deviation of the random effects 

ωk 0.61 IC50/days 0.093 15.3 

ωkel 0.47 1/days 0.082 17.4 

ωTin 0.66 days 0.12 18.8 

Correlations 

corrk,Tin -0.6  0.15 24.2 

Error model parameters 

b 0.17  0.014 7.85 

where corrk,Tin is the correlation between kp and Tin, and b is the coefficient of proportional 

error.  
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      A.                                                           B. 
 

   

 

Figure 2: A. Distribution of model-fitted individual nAb half-lives in the study population 

after vaccination. B. Distribution of peak neutralizing titers after vaccination. 

  

5 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.08.30.22279397doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279397
http://creativecommons.org/licenses/by/4.0/


16

 

  

Figure 3: Pseudovirus neutralization titer over time by percentile. Titer is normalized to the 

mean peak convalescent level after SARS-CoV-2 infection. 
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A. Wild-type                

B. Delta                

C. Omicron                 

Figure 4: Protection from mild (left) and severe (right) COVID-19 by percentile over time 

since the second dose of the two-dose Moderna vaccination primary series. Protection is 

assessed for A. Wild type, B. Delta, C. Omicron. 
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Figure 5. Protection from mild and severe disease at 3-months post vaccination as a function 

of immune evasion. Immune evasion is expressed as the fold-loss of vaccine serum titer 

against an immune-evading variant compared to WT pseudovirus. 
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A.  

 
 

B.  

 

Figure 6: A. Scatter plot demonstrating correlation between RBD-binding titer and 

neutralizing titer. The red horizontal line represents the threshold for 90% protection from 

WT severe disease; vertical line represents a chosen threshold for targeted revaccination 

screening based on RBD-binding titer. B. ROC analysis on the dataset in panel A 

demonstrates that ECLIA RBD binding can predict whether vaccine protection is sufficient 

to provide 90% protection from severe disease. Red point represents the chosen threshold 

with 93% sensitivity and 72% specificity. 
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Methods 

Population mixed effects model fit for neutralization potency and IgG levels 

We use mixed-effect modeling to determine the population variability in kinetics of binding 

IgG and neutralizing antibodies generated by anti-SARS-CoV-2 vaccination. The clinical 

data is derived from a phase 1 trial of Moderna mRNA-1273 vaccine in 34 healthy adult 

participants who received two injections of vaccine at 100 μg [4]. We fitted the model to data 

collected starting on the administration date of the second dose in the two-dose vaccination 

series (day 0). The model’s initial concentration is set as the concentration on day 0. 

To examine the rise and decay of longitudinal immune responses, we applied a two-

stage model structure to the neutralizing potency and IgG level dataset. This model contains 

two phases: antibody production and memory phases. Exponential decay occurs in the whole 

process, while antibody production only occurs in the production phase. Zero-order or first-

order production terms and possible correlation models were selected based on the Akaike 

information criterion and good parameter estimation (low standard error). Based on these 

criteria, the zero-order production model was selected for neutralizing potency and 1st-order 

production model was selected for IgG (See Table S2).  

Zero-order production model: 
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� 

 

��

��
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First-order production phase: 
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Where A is the antibody titer, kp is the antibody production rate, kel is the antibody 

elimination rate, and T is the duration of antibody production. 

The population analysis was implemented in MonolixSuite. The residual error model 

is determined by whether PWRES (population weighted residuals), IWRES (individual 

weighted residuals) and NPDE (normalized prediction distribution errors) behave as 

independent standardized normal random variables. All parameters are lognormally 

distributed based on the default model structure. For lognormal distributed parameters, the 

predicted value (p)  is represented by the following equation: 

log(�)=log(����) +ωp 

where ���� represents the fixed effect value, which is the median of the distribution in this 

case  and ω the standard deviation of random effects, which is interpreted as the inter-

individual variability. These specifications were evaluated using Monolix’s standard 

goodness of fit metrics including normality checks for distributions of random effects, scatter 

plots of population and individual weighted residuals, and distributions of individual values 

for model parameters (see Figures S2 - S4).   

 

Correlation and covariate analysis 

Correlation and covariate analyses were implemented in Monolix to test the presence of 

correlations between model parameters and between model parameters and covariates. Age 

and initial conditions were assessed as potential covariates. 

 

Half-life and peak calculation  
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Both half-life and peak antibody titer for individuals in the two studies can be calculated 

directly from the structural model. Antibody half-life was calculated from individual decay 

rate as ln(2)/kel. The probability density functions of half-life were visualized for IgG and 

neutralizing potency from both datasets. Then, we compared the distribution of neutralizing 

potency and IgG to assess whether there is an affinity maturation. The peak antibody titer for 

individuals can be calculated by integrating the rate of increase of concentration (
��

��
) over the 

antibody production phase Tin. The variability in individual half-life and peak titer values 

from the study population were visualized as distributions. 

 

Population variability in nAb titer over time 

To visualize the population variability in nAb kinetics, we calculated the percentiles of nAb 

potencies over time in a bootstrapped synthetic population, considering both uncertainty of 

the population parameters and inter-individual variability in Simulx. Firstly, we formed a 

synthetic set of individuals by duplicating the study population 10 times. Parameters for these 

synthetic individuals were drawn from the uncertainty distributions computed by Monolix for 

each individual. Thus, the synthetic population reflects the uncertainty of the population 

parameters. The synthetic population was randomly drawn with resampling to generate a 

bootstrap population of 340 synthetic individuals. We used Simulx to simulate nAb titers 

over six months in this population and evaluated the percentile distribution of nAb titer at 

each day. 

 

Predicting vaccinal protection in the population based on nAb protection model 
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Based on the relationship between nAb titer and protection from mild or severe COVID-19 

established by Davenport et al [19], we translated nAb kinetics in our simulated patient 

population to an expected level of protection over time. The simulated pseudovirus 

neutralization titers are normalized to COVID-19 convalescent plasma titers from a relevant 

dataset using the same assay and methodology [56]. We used the logistic titer-protection 

model to predict the level of protection based on our kinetic model’s simulated nAb titer 

normalized to convalescent plasma titer. This analysis reveals changes in risk of mild or 

severe COVID-19 over time by percentile in the population.   

 

Predicting vaccinal protection against SARS-CoV-2 variants 

To estimate protection against SARS-CoV-2 delta and omicron variants, we assumed that 

these variants increase the nAb titer required for protection from mild and severe disease by a 

fixed multiple. The fixed multiple is the reduction in nAb potency against the variant 

compared to WT, as measured in a pseudovirus neutralization assay. According to the 

literature, delta reduced nAb potency after the Moderna two-dose vaccine series by 3.2-fold 

relative to WT, whereas omicron reduced potency 43-fold [40]. 

 

Assessing IgG titer as a predictor of protective nAb titer 

To determine whether IgG titer could be used to predict nAb titers above the EC90 for 

protection from severe WT disease (27 ID50), we performed a receiver operating 

characteristic (ROC) analysis. The ROC curve is formed by calculating the sensitivity and 

specificity of various IgG titer thresholds for predicting nAb titer above 27 ID50. The dataset 

for this analysis is sourced from Pegu et al [54], which was also produced by Moderna. 
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Supplement 

      A.                                                           B. 

Figure S1.  Diagnostic plot assessing correlations between individual parameters and 

possible covariates. A. The initial condition, the nAb titer at day 0, and B. age were assessed 

as potential covariates. No significant correlations were found. 
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      A.                                                           B. 

Figure S2: Probability distribution of individual parameter estimates and random effects for 

the nAb kinetics model. A) Probability distribution of individual parameters. The histogram 

plots represent the empirical distribution. The black line represents the theoretical 

distribution defined in the statistical model, which is a log-normal distribution for each 

parameter. B) Probability distribution of standardized random effects. The histogram plots 

represent the empirical distribution. The black line represents the theoretical distribution 

defined in the statistical model, which is a normal distribution for each random effect. 
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      A.                                                           B. 

Figure S3. Goodness-of-fit analysis for nAb kinetics model residuals. A. Scatter plot of the 

residuals. These plots display the PWRES (population weighted residuals), the IWRES 

(individual weighted residuals), and the NPDEs (normalized prediction distribution errors) as 

scatter plots with respect to time and prediction. Residuals should be randomly scattered 

around the x-axis, which confirms suitability of the proportional error model. B. 

Distributions of the residuals. Empirical and theoretical probability density function (PDF) of 

the PWRES, IWRES and NPDE are shown in the top of the panel. Empirical and theoretical 

cumulative distribution function (CDF) are at the bottom. This normality check confirms 

suitability of the error model.  
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Figure S4. Correlation between parameters. There is a moderate correlation between Tin and 

kp. 
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Figure S5: Probability distribution of half-lives for vaccine-induced IgG for individuals in 

the study population.  
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Figure S6. VPC of IgG kinetics model fit with 90% prediction intervals. Blue dots represent 

published data characterizing SARS-CoV-2 IgG titers following vaccination. The red line 

represents the empirical 50th percentile and the blue lines represent the empirical 10th and 90th

percentiles. The shaded regions represent the model’s 90% prediction intervals for the 50th 

percentile (pink) and 10th and 90th percentiles (blue).  
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Table S1. Parameter values for fitted IgG kinetics model with standard errors (SE) and 

relative standard error (RSE). 

Parameter Value Units Standard error Relative standard 
error (%) 

Fixed effects 

kp, pop 0.57 1/days 0.053 9.32 

kel, pop 0.012 1/days 0.0025 20.3 

Tin, pop 4.54 days 0.61 13.5 

Standard deviation of the random effects 

ωkp 0.15 1/days 0.043 27.8 

ωkel 0.28 1/days 0.064 22.8 

ωTin 0.15 days 0.061 39.9 

Correlations 

corrkel,Tin 0.9  0.2 22.6 

βkel, age 56-70 0.95  0.23 23.9 

βkel, age >70 0.54  0.2 38.0 

βkel, initial -0.0000026  0.0000022 83.8 

βTin, age 56-70 0.52  0.1 20.1 

βkel, age >70 0.29  0.098 33.4 

βTin, initial -0.0000038  0.0000062 16.5 

Error model parameters 

b 0.3  0.021 6.99 

b is the coefficient of proportional error. β coefficients represent the degree of change in the 

kinetics parameter for every change of covariate variable.   
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Table S2. AIC values for prospective model structures. 

Antibody type Model AIC 

nAbs 0-order production 1842.04 

nAbs 1st-order production 1894.46 

IgG 0-order production 4278.69 

IgG 1st-order production 4261.57 

 

Table S3. Comparison of model-predicted vaccine efficacy over time with clinical data. 

Variant Time since second 
dose (days) 

VEm, model 
estimate (%) 

VEm, clinical (%, 
95% CI) [40] 

Delta 14-90 76.4 82.8 (69.6, 90.3) 

Delta 90-180 57.2 63.6 (51.8, 72.5) 

Omicron 14-90 22.6 30.4 (5.0, 49.0) 

Omicron 90-180 11.9 15.2 (0.0, 30.7) 
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