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Abstract 27 

Frequent assessment of the severity of illness for hospitalized patients is essential in 28 

clinical settings to prevent outcomes such as in-hospital mortality and unplanned ICU 29 

admission. Classical severity scores have been developed typically using relatively few 30 

patient features, especially for intensive care. Recently, deep learning-based models 31 

demonstrated better individualized risk assessments compared to classic risk scores 32 

such as SOFA and NEWS, thanks to the use of aggregated and more heterogeneous 33 

data sources for dynamic risk prediction. We investigated to what extent deep learning 34 

methods can capture patterns of longitudinal change in health status using time-35 

stamped data from electronic health records. We used medical history data, 36 

biochemical measurements, and the clinical notes from all patients admitted to non-37 

intensive care units in 12 hospitals in Denmark’s Capital Region and Region Zealand 38 

during 2011-2016. Data from a total of 852,620 patients and 2,241,849 admissions were 39 

used to predict the composite outcome of unplanned ICU transfer and in-hospital 40 

death at different time points after admission to general departments. We subsequently 41 

examined feature interpretations of the models.  The best model used all data 42 

modalities with an assessment rate of 6 hours and a prediction window of 14 days, 43 

with an AUPRC of 0.287 and AUROC of 0.898. These performances are comparable to 44 

the current state of the art and make the model suitable for further prospective 45 

validation as a risk assessment tool in a clinical setting. 46 

   47 
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Introduction 48 

Early warning scores (EWS) are used in the clinic to assess the health status of 49 

hospitalized patients. The first EWS were based solely on five physiological parameters 50 

followed by many adaptations and improvements (1), (2). VitalPAC was one such early 51 

warning score (ViEWS), which introduced modifications to the parameters 52 

contributing to the score (3). These modifications were based on clinicians' knowledge 53 

about the relationship between physiological data and adverse clinical outcomes. 54 

Further modifications were implemented in the national early warning score, NEWS 55 

(4).  56 

These scores are used extensively because their simplicity makes them applicable and 57 

easily comparable across different departments and countries. They specifically 58 

provide estimates for the risk of adverse outcomes (5) such as cardiac arrest, ICU 59 

transfer, and in-hospital mortality. However, they suffer from some limitations. The 60 

relatively few data types used limit their predictive power. Relevant features like 61 

biochemical measurements, the order of temporality in the data, or non-linear feature 62 

interactions are ignored. These risk calculations are made without exploiting all the 63 

information that current EHR systems provide (6). Moreover, the scores mostly rely on 64 

data that are manually collected by the staff. This often entails a higher number of 65 

missing and incorrect data items, as compared to a fully automated approach. Recently 66 

it was shown in population-wide data from inpatients of the Capital Region of 67 

Denmark, that around 10% of the NEWS records were incomplete and 0.2% had 68 

implausible features (7).  69 

To improve prediction accuracy and reduce alarm fatigue, new applications using 70 

more data and more sophisticated methodologies have been developed (8). Given the 71 

heterogeneous nature of EHR data and the rarity of events such as clinical 72 

deterioration, machine learning methods seem well-suited for addressing this task. 73 

Deep learning, in particular, has performed well for many similar clinical tasks. For 74 

example, Shamout et al. (9) developed a deep learning model that uses vital signs to 75 

predict the composite outcome of ICU transfer, cardiac arrest and mortality. Cho et al.  76 

(10) developed a deep learning model to predict the composite outcome of cardiac 77 

arrest and ICU transfer, while da Silva et al. (11) developed a long-short term memory 78 

neural network (LSTM) to predict the worsening of the vital signs using prognostic 79 

indexes.   A recurrent deep neural network has also been used by Tóth et al. (12) to 80 

predict stability of vital signs to avoid unnecessary measurements at nighttime. 81 

Similarly, dynamic deep learning models using multiple data sources have been 82 

developed for different tasks; Thorsen-Meyer et al. (13) constructed one to predict 90-83 

days mortality after ICU admission, Rajkomar et al. (14) to predict in-hospital death, 84 

30-day unplanned readmission, prolonged length of stay and patient’s final discharge 85 
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diagnoses; Tomašev et al. (15) to predict kidney failure; Lauritsen et al. to predict risk 86 

of sepsis and acute critical illness (16) (17). 87 

Although deviating vital signs often precipitate clinical deterioration, their recognition 88 

in the general ward requires continuous engagement by health care personnel, which 89 

can delay or even preclude their recording. Therefore, we investigated using data 90 

collected less frequently in early detection of deterioration, building an end-to-end 91 

machine learning pipeline that integrates heterogeneous clinical data to predict the risk 92 

of imminent serious clinical deterioration at regular intervals.  93 

To this end, we combined natural language processing algorithms and recurrent neural 94 

networks to leverage latent patterns in the data. We subsequently assessed the impact 95 

of the single data sources and the so-called tokens extracted from each of them to 96 

improve the understanding of the model.  97 

 98 

Figure1: General structure of the prediction framework. Given a specific 99 

assessment rate (time between two consecutive risk assessments) and 100 

prediction window (time window within which the outcome is observed), the 101 

risk of clinical deterioration was assessed continuously during each general 102 
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admission. All the data up to the time of assessment was used to train the 103 

model, which was then evaluated and interpreted on the holdout test data. 104 

Methods 105 

This paper adheres to relevant items in the Transparent Reporting of a multivariable 106 

prediction model for Individual Prognosis or Diagnosis statement (TRIPOD) (18).  107 

Patients and outcome 108 

The data comprise all inpatient admissions, from 2011 to 2016, to 12 public hospitals in 109 

the Capital Region of Denmark and Region Zealand. The admissions were pieced 110 

together by concatenating consecutive inpatient visits 24 hours apart so that the 111 

department transfers were not considered two separate events.  112 

Direct ICU admissions, outpatients and emergency admissions were excluded, as were 113 

individuals with disconnected medical record history (either because these patients 114 

moved to another country or lacked a stable residence) and minors (age <16 years).  115 

The outcome clinical deterioration was defined as unplanned ICU transfer or in-hospital 116 

mortality within the so-called prediction window. Unplanned ICU transfer was 117 

defined as any acute admission to an ICU (filtering by the codes NABE and NABB 118 

from the Sundhedsvæsenets Klassifikations System (SKS) - the Danish Health Service 119 

Classification System) within 24 hours after discharge from a non-ICU ward. 120 

Model  121 

The model architecture (Figure2) was designed as a scalable network that can be 122 

adapted to different data modalities by using one sub-model per data domain; each 123 

sub-model consists of an embedding layer (which transforms the categorical variables 124 

into vectors), a recurrent neural network (which learns from the sequence of 125 

embedding vectors) and a pooling layer (which reduces the vectors’ dimensionality).  126 

The network uses tokens, i.e. sequences of characters grouped together based on their 127 

semantics, as input. We chose the entity embedding approach to exploit the 128 

heterogeneity and sparseness of the input data, thus mapping the tokens constructed 129 

from the categorical features to embeddings in a Euclidean space (i.e. the embedding 130 

space) (19). For each sub-model, the vocabulary size V (i.e. the number of unique 131 

tokens for the specific data source) was directly used to calculate the size of the 132 

embedding representation according to 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔𝑆𝑖𝑧𝑒 = 6 ⋅ 𝛼 ⋅ √𝑉
4

, where the 133 

embedding coefficient α was estimated by hyperparameter search (14). 134 
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 135 

Figure2: Structure of the deep learning model, exemplified by two admissions. 136 

For each sample (i.e. admission at a specific time point) a 2D tensor (matrix) 137 

comprises the sequence of embedded tokens until the time of assessment. Each 138 

tensor was given as input to a recurrent block (GRU or LSTM, part of the 139 

hyperparameters search) and the time dimension was pooled through an 140 

attention pooling layer. The flattened tensors were then concatenated and fed 141 

to a linear layer with a standard logistic activation function.  142 

We explored two types of recurrent neural networks, Gated Recurrent Unit (GRU) (20) 143 

and Long Short-Term Memory (LSTM) networks (21). Rather than max or average 144 

pooling – which retains neither positional nor intensity information – we used an 145 

attention-based pooling (22) which employs a weighted mechanism to retain the most 146 

relevant parts of a sequence. The attention-based pooling layer was used to aggregate 147 

the temporal dimension of the recurrent layer output, which was then concatenated 148 

across the different data sources. The final layer was a linear (= dense) layer with a 149 

standard logistic activation function hence mapping the output into the interval [0, 1] 150 

to yield valid predicted probabilities. The features without temporal components (age, 151 

number of previous hospital admissions and sex) were fed into the model by 152 

concatenating them to the output of the pooling layer.  153 

Data sources and processing 154 

The input data comprised medical disease history, biochemical measurements, clinical 155 

notes and demographics (age, sex and number of previous admissions). The medical 156 

disease history prior to the start of the EHR data was also used (as well as after to 157 

handle false negative outcomes not covered after the EHR data period). A schematic of 158 

the time spans for the different data modalities is depicted in FigureS1. The disease 159 

history was extracted from the Danish National Patient Registry (DNPR) for the period 160 

between 1977 and 2018 (23). DNPR is nation-wide registry which covers essentially all 161 

the hospital encounters in Denmark. The disease codes use Danish adaptations from 162 

SKS of the International Classification of Diseases (ICD) version 8 up to 1993, and ICD-163 
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10 from 1994 and onwards. Only diagnosis codes recorded prior to the admission date 164 

were included in the predictive schemes. 165 

Biochemical values were extracted from the Clinical Laboratory Information System 166 

(LABKA) and the Clinical Chemistry Laboratory System (BCC) databases (24) for the 167 

period overlapping the hospital admissions (2011-2016). These databases collect all the 168 

biochemical tests performed by the Danish hospital laboratories in the Capital Region 169 

and Region Zealand, respectively. The biochemistry tokens were constructed using the 170 

name of the biochemical component, the specimen (blood, plasma etc.), the unit and 171 

the quantile of the value of the measurement (to yield a vocabulary with a reasonable 172 

size); for example, HEMOGLOBIN_B_mmol/L@8-8.5. The quantile binning was included 173 

as a hyperparameter.  174 

The clinical notes were extracted from the EHR data for the admissions from 2011 to 175 

2016. The free text required some preprocessing before tokenization, such as removing 176 

punctuation, names, stop words (25), negations and signatures of the clinicians. Due to 177 

the large number of terms coming from the medical notes, the embedding of this 178 

specific data source was trained separately on the full corpus using fastText (26), to 179 

reduce the number of parameters to update during training. 180 

 181 

 182 

Attrition diagram: Study profile. 183 

 184 

Table1. Summary statistics for the Development and Test sets. Statistics are calculated at the 185 

admission level.  186 

 Development Set Test Set 

 
Number of Patients 
 

 
682041  

 
170579 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

mailto:HEMOGLOBIN_B_mmol/L@8-8.5
https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

 
Number of Admissions  
 

 
1791705 

 
450144 

 
Age at prediction 

- Discharge 
- ICU Transfer 
- In-hospital Death 

 
 
60 [40-73] 
67 [56-75] 
78 [68-86] 

 
 
60 [40-73] 
67 [56-75] 
78 [69-86] 

Sex: 

- Male 

- Female 

 
798185 (45%) 
993520 (55%) 

 
199732 (44%) 
250412 (56%) 

Outcome 
- Discharge 
- ICU Transfer 
- In-hospital Death 

 
1752329 (97.8%) 
13129 (0.7%) 
26247 (1.5%) 

 
440221 (97.8%) 
3305 (0.7%) 
6618 (1.5%) 

 
Number of previous  
Admissions 

- Discharge 
- ICU Transfer 
- In-hospital Death 

 
 
 
1 [0-4] 
2 [0-6] 
3 [1-7] 

 
 
 
1 [0-4] 
2 [0-6] 
3 [1-6] 

Length of stay before 
outcome (Hours): 

- Discharge 
- ICU Transfer 
- In-hospital Death 

 
 
31 [9-98] 

35 [8-121] 
126 [43-285] 

 
 
31 [9-97] 

35 [8-132] 

122 [43-279] 

Type ICU Transfer 
- Surgical 
- Medical 

 
2358 (0.18%) 
10771 (0.82%) 

 
639 (0.20%) 
2666 (0.80%) 

 187 

Training and Evaluation 188 

We randomly split the dataset into a development set (80%) for model creation and an 189 

independent holdout test set (20%) for model evaluation. The split of the dataset was 190 

done at the patient level and assigned admissions of the same patient to the same set to 191 

avoid leaking information between the sets (27). The development set was further split 192 

into a training set (80%, 64% of total) and validation set (20%, 16% of total) to counter 193 

overfitting and to calibrate the model before testing it on the holdout set. 194 

Three submodels were trained separately to find the best submodel-specific 195 

hyperparameters; we used Optuna's multivariate TPEsampler, based on the Three-196 

structured Parzen Estimator (TPE) algorithm to search the hyperparameter spaces 197 

(28,29). While searching the hyperparameter space, we fixed the prediction window at 198 

24 hours and the assessment rate at 12 hours, to facilitate the comparison across the 199 
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different data types. TableS1 shows the hyperparameters explored for each submodel; 200 

FiguresS2-S4 illustrate the hyperparameter searches. For each experiment, the loss on 201 

the validation set was used as training metric to select the model at the best epoch. The 202 

performance metric used to select the best model for each search was the area under 203 

the precision-recall curve (AUPRC). Although the area under the receiver operating 204 

curve (AUROC) score is a more common metric for classification tasks, in this case it 205 

would not be sufficient to appreciate the real ability of the model to discriminate 206 

between the two classes due to their considerable imbalance (30). AUPRC on the other 207 

hand is much more robust to class imbalances. We used 200 bootstraps samples (31) to 208 

construct the 95% confidence interval for the metrics shown in figures and tables.  209 

Using the best submodel architectures, we trained and evaluated an ensemble model 210 

for different prediction windows (1, 2, 7, 14 days) and assessment rates (every 6, 12 and 211 

24 hours). Finally, we applied post-hoc isotonic calibration to align the final predicted 212 

risk with the actual outcome incidence, using the data in the validation set (32). The 213 

model re-calibration was achieved by fitting an isotonic regression using the output of 214 

the model prior to calibration as regressor and the actual label of the samples as 215 

response variable. We used the validation set to fit the isotonic regression and kept the 216 

test set untouched. The fitted isotonic model was used to adjust the output of the 217 

uncalibrated model to get calibrated predictions.   218 

All the results reported are generated using the re-calibrated model on the test set. To 219 

control for biases driven by age or sex, performances were also evaluated at each time 220 

of assessment for the different subgroups. 221 

Interpretation 222 

The impact of the different tokens on the model outcome was calculated using the 223 

GradientShap algorithm (33) from the Captum library (34). Given an input feature of a 224 

single risk assessment, its Shap value is correlated to how much (and in what direction) 225 

that feature pulls the individual-level prediction away from the population-level mean 226 

risk. Importantly, Shap values do not represent the effect of a single feature on the 227 

model outcome but rather the effect of that feature in the context of a coalition of 228 

features. Shap values were calculated for the best model after isotonic re-calibration. 229 

Results 230 

The model was trained on 682,041 unique patients and 1,791,705 admissions and 231 

evaluated on 170,579 patients and 450,144 admissions as described in Methods. In both 232 

parts, 1.5% of the admissions resulted in in-hospital mortality and 0.7% in ICU transfer. 233 

2,583 tokens from the ICD code data type (medical history), 2,421 tokens from the 234 

biochemical measurements and 403,869 tokens from the medical notes were used as 235 
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input. We investigated the inclusion of each data type separately as well as jointly in 236 

the same model.  237 

When we explored how the prediction window and assessment rate affect the 238 

performances, the most performant model was the one trained on all the data sources 239 

using a prediction window of 14 days and an assessment rate of 6 hours with an 240 

AUROC of 0.904 [0.903-0.905] and AUPRC 0.285 [0.283-0.287] over all the predictions 241 

(Table2). This model was after isotonic recalibration well-calibrated (FigureS5) with a 242 

calibration slope of 0.964 [0.951, 0.98], an intercept of 0.002 [0.001-0.003] and an upper 243 

bound risk of 79%.  244 

The performances were similar across sexes, with AUPRCs of 0.288 [0.285-0.290] and 245 

0.280 [0.277-0.283] for males and females, respectively. The performances for the 246 

different age groups varied more, with a trend of AUPRC increasing with age (age 16-247 

37: 0.168 [0.157-0.180], age 37-58: 0.252 [0.246-0.257], age 58-79: 0.277 [0.274-0.280], age 248 

79-100: 0.310 [0.307-0.313]).  249 

We observed an increased AUPRC for risk estimates further into the hospital stay with 250 

a peak at 7 days into the admission FigureS6-S7.  251 

 252 

Table2. Performance on the test set for models using all data types. 253 

Frequency of 

assessment 
Prediction 

window AUROC AUPRC 
Calibration 

Slope Intercept 

6h 

1d 0.925 [0.923-0.926 0.152 [0.149-0.155] 1.042 [1.02-1.064] -0.001 [-0.001-0.0] 

2d 0.922 [0.921-0.923] 0.180 [0.177-0.184] 0.988 [0.966-1.007] 0.002 [0.001-0.003] 

7d 0.913 [0.912-0.914] 0.269 [0.267-0.271] 0.996 [0.985-1.008] 0.002 [0.001-0.003] 

14d 0.904 [0.903-0.904] 0.285 [0.283-0.286] 0.964 [0.951-0.98] 0.004 [0.003-0.005] 

12h 

1d 0.918 [0.916-0.920] 0.129 [0.125-0.134] 0.998 [0.96-1.045] 0.001 [0.0-0.002] 

2d 0.916 [0.914-0.917] 0.187 [0.183-0.191] 0.996 [0.977-1.021] 0.002 [0.0-0.003] 

7d 0.898 [0.897-0.899] 0.233 [0.231-0.236] 1.045 [1.026-1.067] -0.001 [-0.002-0.0] 
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14d 0.901 [0.900-0.902] 0.278 [0.275-0.282] 0.952 [0.912-0.997] 0.005 [0.001-0.007] 

24h 

1d 0.905 [0.901-0.908] 0.135 [0.130-0.140] 1.038 [0.992-1.078] 0.0 [-0.001-0.001] 

2d 0.901 [0.899-0.903] 0.163 [0.157-0.169] 1.017 [0.969-1.059] 0.0 [-0.001-0.002] 

7d 0.896 [0.894-0.897] 0.232 [0.227-0.236] 1.014 [0.969-1.05] 0.001 [-0.001-0.003] 

14d 0.893 [0.892-0.894] 0.250 [0.246-0.254] 0.974 [0.951-1.006] 0.003 [0.001-0.005] 

 254 

Figure3. Performance of the model for prediction of unplanned ICU transfer or 255 

in-hospital death. Panel A: precision recall curves for the six models. Panel B: 256 

receiver operating characteristic (ROC) curves show the values of true positive 257 

rate (= recall = sensitivity) and false positive rate (= 1-specificity) at different 258 

thresholds for the six models. Model A: age, sex, number of admissions. Model 259 

B: model A + medical history data. Model C: model A + biochemical data. Model 260 

D: model A + clinical notes. Models E and F: model A + medical history data, 261 

biochemical data and clinical notes. Models A–E use a 24-hour prediction 262 

window and a 12-hour assessment rate. Model F uses a 14-day prediction 263 

window and a 6-hour assessment rate. 264 

 265 

Among the models trained separately using a 24-hour prediction window and 12 hours 266 

assessment rate, the most performant was the one trained on the clinical notes with an 267 
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AUPRC of 0.125 [0.120-0.130]; this value improved to AUPRC of 0.131 [0.127-0.135] 268 

when the model was trained on all the data using the same prediction window and 269 

assessment rate. 270 

The best encoding of disease diagnoses was rolling diagnoses up to the third ICD level 271 

(e.g. C341M to C34) and a padding size of 9 (FigureS2). The optimal quantile resolution 272 

for the biochemical data was deciles (i.e. 10 bins) and a padding size of 28 was the 273 

optimal number of lab values to include before time of prediction (FigureS3). The 274 

optimal padding size for medical notes was 299, reflecting the larger amount of 275 

information usually held by the clinical notes (FigureS4). The complete list of the 276 

optimal parameters for each search can be found in the supplementary TableS1.   277 

Feature importance 278 

The importance of the tokens from the different vocabularies can be sorted according 279 

to their attributed Shap values (Figure4). Higher age and male sex were associated 280 

with elevated risk of deterioration. The opposite was the case for the number of 281 

previous admissions: a higher number of previous admissions was associated with 282 

lower risk of deterioration (Figure4.A-C). 283 

The diagnosis tokens associated with clinical deterioration were often those of acute 284 

illnesses such as respiratory failure, neoplasm and pneumonia (Figure4.D). In contrast, 285 

diagnosis codes related to pregnancy, chronic conditions and orthopedics were 286 

associated with lower risk.  287 

Low levels of albumin, lymphocytes and sodium were associated with elevated risk of 288 

clinical deterioration; the same were high levels of C-reactive protein, leukocytes, 289 

sodium, lactate dehydrogenase, potassium and carbamide (Figure4.E). In contrast, 290 

normal levels of leucocytes, hemoglobin, C-reactive protein, sodium and potassium 291 

were all associated with low risk of deterioration.  292 

The tokens from clinical notes most strongly associated with clinical deterioration were 293 

severely, intensive, respiratory and chronic. Pain, leukocytes, control, normal, home, 294 

discharge(d) and on the other hand, were all associated with low risk (Figure4.F).  295 
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 296 

Figure4: Contribution of the different tokens to the outcome of clinical 297 

deterioration. Shap values were estimated using the best model (model using 298 

age, sex, number of admissions, medical history data, biochemical data and 299 

clinical notes with a 14-day prediction window and 6-hours assessment rate). 300 

Panels A-C: the distribution of Shap values for each feature without temporal 301 

components, with the color scale representing the feature value. Panels D-F: the 302 

distribution of Shap values for top-15 tokens (in up- and downward directions, 303 

respectively). Overlain boxes-and-whiskers show medians, quartiles and 1.5 x 304 

quartiles. 305 

 306 
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Discussion 307 

The main aim of this study was to explore whether data types registered routinely in 308 

general departments are predictive of clinical deterioration, ultimately to assess if these 309 

suffice for this task. A solution based on data collected routinely might circumvent a 310 

common weakness of EWS, i.e. they depend on data that require clinical engagement 311 

(e.g., vital signs). Consequently, offering a viable alternative for risk stratification with 312 

minimum additional manual data collection effort is preferable. 313 

Exploiting the combined power of entity embedding of tokens from electronic health 314 

records and the ability of recurrent neural networks to learn temporal patterns from 315 

such data, we built a performant (AUROC and AUPRC up to 0.90 and 0.28, 316 

respectively) and well-calibrated deep learning model for predicting the risk of clinical 317 

deterioration. Specifically, leveraging medical history data (up to 40 years) from a 318 

national register along with in-hospital biochemical data and clinical notes, we trained 319 

the model dynamically, meaning that the same model can handle different time points 320 

for the same admission. 321 

Direct comparison of our model to the performances of h is not possible, since the vital 322 

signs used for the calculation of such scores are not collected in our EHR dataset. 323 

Comparison of the performance of our model to other work is also non-trivial: AUROC 324 

is the most common metric for risk stratification and usually the one used to compare 325 

performance across studies. Nevertheless, it is unsuited for imbalanced prediction 326 

problems (such as the one defined here) because it disregards the prevalence of the 327 

outcome of interest (30). Although AUPRC does account for prevalence, it is not 328 

always reported in the classic studies on EWS scores. Moreover, direct comparison of 329 

the AUPRCs requires equal (or at least similar) prevalence of the outcome across 330 

studies; this is problematic because the prevalence tends to vary between cohorts, and, 331 

more importantly, so do the criteria used to define it. For example, Watkinson et al. 332 

(35) defined the outcome as the composite of ICU transfer, in-hospital death and 333 

cardiac arrest with a prediction window of 24 hours (AUROC of 0.868 [0.864-0.872]). 334 

Dziadzko et al. (36) defined the outcome as in-hospital death or respiratory failure, 335 

with a prediction window of 48 hours (AUROC 0.87 [0.85–0.88] and 0.90 [0.84–0.95] in 336 

2013 and 2017, respectively). Malycha et al. (37) defined the outcome as in-hospital 337 

death and ICU transfer within 24 h following assessment from patients admitted 338 

longer than 24 hours (AUROC 0.823 [0.819–0.824]). Cho et al. (10) instead defined the 339 

outcome as cardiac arrest and unexpected ICU admission, occurring within 0.5-25 340 

hours from the assessment (AUROC 0.865 [CI not reported]). The performance 341 

difference of models A-E (Figure3) is driven by information learnt from different data 342 

types. The performance does not increase linearly with the addition of new data types, 343 

suggesting substantial overlap in the latent information of diagnosis codes, 344 
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biochemical data and clinical notes. This corresponds well to what one would expect, 345 

e.g. a clinical note may very well cite lab values (and likely those of greatest clinical 346 

interest) and summarize anamnestic information such as comorbidities also registered 347 

in the diagnosis code data.  348 

On the other hand, the change in performance from model E to model F (AUPRC from 349 

0.131 [0.127-0.137] to 0.287 [0.284-0.289]) is likely driven by the different incidence of 350 

the outcome when using longer prediction windows, essentially making the prediction 351 

task easier because there are more examples to learn from. Also, it is much more 352 

difficult to discriminate between patients having a severe outcome in the subsequent 353 

24 or 48 hours, because drivers of short-term mortality/ICU transfer depend not only 354 

on the physiological status of the patient but also on many factors beyond what is 355 

captured in clinical data, e.g. the coordination of the resources within and between 356 

hospital departments. The assessment rates employed are consistent with how often 357 

new observations and information are recorded in patient files: new clinical notes and 358 

biochemical measurements are usually recorded a couple of times every day and 359 

normally at least once.  The change in AUPRC and AUROC during the admissions 360 

reflects the increasing availability of new records when the patients proceed further 361 

into the hospitalization (FigureS6-S7), and that patients tend to deteriorate either early 362 

or late in the admission and less in between. 363 

We decided to keep the outcome definition broad rather than predicting specific severe 364 

conditions such as sepsis or organ failure, notoriously difficult to operationalize for 365 

prediction tasks (38). In contrast, using a general definition of clinical deterioration 366 

allowed us to keep the feature space more generic and less dependent on specific 367 

illnesses. Indeed, our model seeks not to advice on interventions but to flag patients at 368 

risk of (more of less imminent) clinical deterioration so health care staff can intervene 369 

in a manner appropriate for the patient in question, hopefully translating into 370 

improved prognosis for that patient.  371 

An ensemble structure of the network was preferred over a structure in which the 372 

different data types contributed to the creation of the same embedding space. Separate 373 

submodels (embedding + recurrent linear layer + pooling) allowed us to tune their 374 

architectures; optimal padding sizes and embedding coefficients, for example, differ 375 

for diagnosis codes and biochemical data. Its ensemble nature also renders the model 376 

scalable for incorporating new data types/domains.  377 

To obtain a reasonably well-defined training cohort, we only included in-patient 378 

admissions to general departments, excluding out-patients and acute admissions to the 379 

emergency department. The former groups were excluded because they are more 380 

unlikely to experience the outcome, the latter because the rapid course of events and 381 
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acute physiology recorded in the emergency department would necessitate a different 382 

experimental setup. 383 

Interpretation 384 

Although ranking the features that drive the predicted risks up or down is useful as a 385 

sanity check of the signals picked up by the model, these estimates are not causal. 386 

Indeed, the attribution of each token is determined by its context therefore the same 387 

token could be associated with both elevated and diminished risk depending on the 388 

other tokens with which it co-occurs. For example, a lab value outside the 389 

physiological range (e.g., low creatinine), which would normally drive the risk up, may 390 

not affect the predicted risk when co-occurring diagnosis codes counter its contribution 391 

(e.g., pregnancy codes).  392 

This is more evident for the free text, where the semantics of a word is always 393 

dependent on its context. Overall, the feature attribution does not contain any 394 

counterintuitive explanation and the few seemingly questionable interpretations have 395 

plausible explanations. For example, we find low eosinophil counts among the lab 396 

values associated with elevated risk of clinical deterioration. Clinically, this seems 397 

counterintuitive since low values of eosinophils represent the standard and high 398 

eosinophil counts are indicative of infections (especially parasitic) and allergic 399 

disorders. Eosinophils, however, are part of standard panels for blood differential 400 

counts (a count for the different types of white blood cells) and, as such, the very 401 

presence of (any) eosinophil count probably reflects a clinical suspicion of infection 402 

which caused additional analysis to investigate on the infectious agent. Interpretation 403 

of tokens from the clinical notes also provides some examples that at first seem odd but 404 

probably do have some contextual bearing. For example, the tokens wife (hustru) and 405 

relatives (pårørende) are strongly associated with clinical deterioration. This is likely 406 

because doctors document in the patient file when relatives have been informed or 407 

consulted, and this may well be on poor prognoses or even no-resuscitation orders in 408 

which case clinical deterioration is almost certain to ensue.    409 

Numerical features like the number of previous admissions should also be 410 

contextualized. While higher age is indeed associated with clinical deterioration, 411 

having a lot of admissions prior to the one of the assessments does not. This seeming 412 

paradoxical result can be probably explained by the ability of the model to integrate 413 

data from different EHR domains to recognize patients with chronic conditions who 414 

will have more frequent hospital visits but perhaps be less likely to suddenly fall 415 

critically ill.  416 

Strengths 417 
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This study has some important strengths. First, it is one of the largest of its kind, with a 418 

total of 852,620 patients and 2,241,849 admissions taking place over 6 years. Second, we 419 

provided a dynamic risk assessment, showing how prediction performance changes 420 

over the course of an admission for different prediction windows. This supersedes 421 

early warning scores, based on static metrics that do not take sequential information 422 

into account but use just a snapshot of the patient’s current status. Third, thanks to the 423 

model’s architecture, adding new data sources is relatively easy. New features can be 424 

added and removed from the model, adapting the tool to the available resources. 425 

However, as expected, the model performs best with as many data as possible 426 

included. Finally, while classic EWS depend on complete data to be calculated, missing 427 

data in this setup is not a problem since the model has been designed to handle it 428 

thanks to the entity embeddings. 429 

Limitations 430 

Like any study this has limitations. First, although we tried to define the outcome 431 

robustly, there are some pitfalls to consider for ICU transfer and in-hospital mortality. 432 

Patients in very severe conditions may still be discharged by the hospital if the latter is 433 

not able to provide any support to the patient. These patients will probably experience 434 

clinical deterioration within the prediction window but not within their hospital stay, 435 

hence they are labelled as negative but potentially still flagged by the model as high-436 

risk patients; this could inflate the number of false positive patients detected by the 437 

model. Second, unplanned ICU transfer was captured only for the patients who were 438 

admitted in one of the ICUs in our catchment area. It cannot be excluded that some 439 

patients admitted to a general department of one of the hospitals in our catchment area 440 

are transferred to ICUs of other Danish regions than included here, even if it is 441 

uncommon. Third, model performance may improve with additional data such as 442 

genetic data, vital signs and other biomarkers. Thanks to ensemble nature, adding such 443 

data in setting where they are available is simple. Finally, the model was trained on 444 

data from the Danish healthcare system and the model (due to the entity embeddings) 445 

would need to be trained anew if deployed in other geographical or healthcare 446 

systems. 447 

Conclusion 448 

Combining entity embeddings and recurrent neural networks we built a highly 449 

performant model for flagging patients at risk of clinical deterioration. The model was 450 

developed and evaluated in a controlled in-silicon setting. Although the data used 451 

were collected prospectively, a proper prospective evaluation would be needed to 452 

establish whether its deployment can produce real-world benefits to patients on hard 453 

endpoints. 454 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

References 455 

1.  Smith MEB, Chiovaro JC, O’Neil M, Kansagara D, Quiñones AR, Freeman M, et 456 

al. Early warning system scores for clinical deterioration in hospitalized patients: 457 

A systematic review. Vol. 11, Annals of the American Thoracic Society. 458 

American Thoracic Society; 2014. p. 1454–65.  459 

2.  Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early 460 

Warning Score in medical admissions. QJM: An International Journal of 461 

Medicine. 2001 Oct 1;94(10):521–6.  462 

3.  Prytherch DR, Smith GB, Schmidt PE, Featherstone PI. ViEWS—Towards a 463 

national early warning score for detecting adult inpatient deterioration. 464 

Resuscitation. 2010 Aug 1;81(8):932–7.  465 

4.  Jones M. NEWSDIG: The National Early Warning Score Development and 466 

Implementation Group. Clinical Medicine. 2012 Dec 1;12(6):501.  467 

5.  Churpek MM, Yuen TC, Edelson DP. Predicting clinical deterioration in the 468 

hospital: The impact of outcome selection. Resuscitation. 2013 May 1;84(5):564–8.  469 

6.  Downey CL, Tahir W, Randell R, Brown JM, Jayne DG. Strengths and limitations 470 

of early warning scores: A systematic review and narrative synthesis. Vol. 76, 471 

International Journal of Nursing Studies. Elsevier Ltd; 2017. p. 106–19.  472 

7.  Pedersen NE, Lars ·, Rasmussen S, John ·, Petersen A, Thomas ·, et al. A critical 473 

assessment of early warning score records in 168,000 patients. J Clin Monit 474 

Comput. 2018;32:109–16.  475 

8.  Al-Shwaheen TI, Moghbel M, Hau YW, Ooi CY. Use of learning approaches to 476 

predict clinical deterioration in patients based on various variables: a review of 477 

the literature. Artificial Intelligence Review 2021. 2021 Mar 13;1–30.  478 

9.  Shamout FE, Zhu T, Sharma P, Watkinson PJ, Clifton DA. Deep Interpretable 479 

Early Warning System for the Detection of Clinical Deterioration. IEEE J Biomed 480 

Health Inform. 2020 Feb 1;24(2):437–46.  481 

10.  Cho KJ, Kwon O, Kwon JM, Lee Y, Park H, Jeon KH, et al. Detecting patient 482 

deterioration using artificial intelligence in a rapid response system. Crit Care 483 

Med. 2020;E285–9.  484 

11.  da Silva DB, Schmidt D, da Costa CA, da Rosa Righi R, Eskofier B. DeepSigns: A 485 

predictive model based on Deep Learning for the early detection of patient 486 

health deterioration. Expert Syst Appl. 2021 Mar 1;165:113905with.  487 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

12.  Tóth V, Meytlis M, Barnaby DP, Bock KR, Oppenheim MI, Al-Abed Y, et al. Let 488 

Sleeping Patients Lie, avoiding unnecessary overnight vitals monitoring using a 489 

clinically based deep-learning model. npj Digital Medicine 2020 3:1. 2020 Nov 490 

13;3(1):1–9.  491 

13.  Thorsen-Meyer HC, Nielsen AB, Nielsen AP, Kaas-Hansen BS, Toft P, 492 

Schierbeck J, et al. Dynamic and explainable machine learning prediction of 493 

mortality in patients in the intensive care unit: a retrospective study of high-494 

frequency data in electronic patient records. Lancet Digit Health. 2020 Apr 495 

1;2(4):e179–91.  496 

14.  Rajkomar A, Oren E, Chen K, Dai AM, Hajaj N, Hardt M, et al. Scalable and 497 

accurate deep learning with electronic health records. npj Digital Medicine 2018 498 

1:1 [Internet]. 2018 May 8 [cited 2021 Sep 20];1(1):1–10. Available from: 499 

https://www.nature.com/articles/s41746-018-0029-1 500 

15.  Tomašev N, Glorot X, Rae JW, Zielinski M, Askham H, Saraiva A, et al. A 501 

clinically applicable approach to continuous prediction of future acute kidney 502 

injury. Nature 2019 572:7767. 2019 Jul 31;572(7767):116–9.  503 

16.  Lauritsen SM, Kalør ME, Kongsgaard EL, Lauritsen KM, Jørgensen MJ, Lange J, 504 

et al. Early detection of sepsis utilizing deep learning on electronic health record 505 

event sequences. Artif Intell Med. 2020 Apr 1;104:101820.  506 

17.  Lauritsen SM, Kristensen M, Olsen MV, Larsen MS, Lauritsen KM, Jørgensen 507 

MJ, et al. Explainable artificial intelligence model to predict acute critical illness 508 

from electronic health records. Nature Communications 2020 11:1. 2020 Jul 509 

31;11(1):1–11.  510 

18.  Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a 511 

multivariable prediction model for individual prognosis or diagnosis (TRIPOD): 512 

The TRIPOD Statement. BMC Med. 2015 Jan 6;13(1):1–10.  513 

19.  Guo C, Berkhahn F. Entity Embeddings of Categorical Variables. 2016 Apr 22; 514 

Available from: https://arxiv.org/abs/1604.06737v1 515 

20.  Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the Properties of Neural 516 

Machine Translation: Encoder-Decoder Approaches.  517 

21.  Gers FA, Schmidhuber J, Cummins F. Learning to forget: Continual prediction 518 

with LSTM. IEE Conference Publication. 1999;2(470):850–5.  519 

22.  Lin Z, Feng M, dos Santos CN, Yu M, Xiang B, Zhou B, et al. A Structured Self-520 

attentive Sentence Embedding. 5th International Conference on Learning 521 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

Representations, ICLR 2017 - Conference Track Proceedings [Internet]. 2017 Mar 522 

9 [cited 2022 Aug 25]; Available from: https://arxiv.org/abs/1703.03130v1 523 

23.  Schmidt M, Schmidt SAJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen 524 

HT. The Danish National Patient Registry: a review of content, data quality, and 525 

research potential. Clin Epidemiol. 2015 Nov 17;7:449.  526 

24.  Grann A, Erichsen R, Nielsen A, Frøslev T, Thomsen R. Existing data sources for 527 

clinical epidemiology: The clinical laboratory information system (LABKA) 528 

research database at Aarhus University, Denmark. Clin Epidemiol [Internet]. 529 

2011 Apr [cited 2022 Aug 25];3:133. Available from: 530 

https://pubmed.ncbi.nlm.nih.gov/21487452/ 531 

25.  Perkins J. Python Text Processing with NLTK 2.0 Cookbook. 2010.  532 

26.  Joulin A, Grave E, Bojanowski P, Mikolov T. Bag of Tricks for Efficient Text 533 

Classification. 2016;  534 

27.  François Chollet. Deep Learning with Python. 2017. 384 p.  535 

28.  Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation 536 

Hyperparameter Optimization Framework. In: Proceedings of the ACM 537 

SIGKDD International Conference on Knowledge Discovery and Data Mining. 538 

New York, NY, USA: Association for Computing Machinery; 2019. p. 2623–31.  539 

29.  Falkner S, Klein A, Hutter F. BOHB: Robust and Efficient Hyperparameter 540 

Optimization at Scale. 2018;  541 

30.  Pinker E. Reporting accuracy of rare event classifiers. NPJ Digit Med. 2018 542 

Dec;1(1).  543 

31.  Tomašev N, Harris N, Baur S, Mottram A, Glorot X, Rae JW, et al. Use of deep 544 

learning to develop continuous-risk models for adverse event prediction from 545 

electronic health records. Nat Protoc. 2021 May 5;1–23.  546 

32.  Niculescu-Mizil A, Caruana R. Predicting Good Probabilities With Supervised 547 

Learning. 2005;  548 

33.  Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. 549 

Adv Neural Inf Process Syst [Internet]. 2017 May 22 [cited 2022 Aug 25];2017-550 

December:4766–75. Available from: https://arxiv.org/abs/1705.07874v2 551 

34.  Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, et al. 552 

Captum: A unified and generic model interpretability library for PyTorch. 2020 553 

Sep 16;  554 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

35.  Watkinson PJ, Pimentel MAF, Clifton DA, Tarassenko L. Manual centile-based 555 

early warning scores derived from statistical distributions of observational vital-556 

sign data. Resuscitation. 2018 Aug 1;129:55–60.  557 

36.  Dziadzko MA, Novotny PJ, Sloan J, Gajic O, Herasevich V, Mirhaji P, et al. 558 

Multicenter derivation and validation of an early warning score for acute 559 

respiratory failure or death in the hospital. Crit Care. 2018 Oct 30;22(1):1–12.  560 

37.  Malycha J, Farajidavar N, Pimentel MAF, Redfern O, Clifton DA, Tarassenko L, 561 

et al. The effect of fractional inspired oxygen concentration on early warning 562 

score performance: A database analysis. Resuscitation. 2019 Jun 1;139:192–9.  563 

38.  Joynes E. More challenges around sepsis: definitions and diagnosis. J Thorac Dis. 564 

2016;8(11):E1467.  565 

  566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 

 574 

  575 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/


   

 

   

 

Data and software statement 576 

The software used in the study is based on python v3.8 and pytorch. The software is 577 

available online at https://gitfront.io/r/daplaci/uA6jdq4FtTJQ/ClinicalDeterioration/. 578 

The authors do not have permission to share data; access to the original data can be 579 

obtained from the Danish health authorities.   580 

Funding and permission statement 581 

This study was approved by the Danish Patient Safety Authority (3-3013-1731 and 3–582 

3013–1723), the Danish Data Protection Agency (DT SUND 2016–48, 2016–50, 2017–57 583 

and UCPH 514-0255/18-3000:) and the Danish Health Data Authority (FSEID 00003092, 584 

FSEID 00003724, FSEID 00004758 and FSEID 00005191). The Novo Nordisk Foundation 585 

(grants NNF17OC0027594 and NNF14CC0001) and the Danish Innovation Found 586 

(5184-00102B) supported this study. 587 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted August 31, 2022. ; https://doi.org/10.1101/2022.08.30.22279381doi: medRxiv preprint 

https://doi.org/10.1101/2022.08.30.22279381
http://creativecommons.org/licenses/by/4.0/

	Affiliations
	ORCID id's
	Abstract
	Introduction
	Methods
	Patients and outcome
	Model
	Data sources and processing

	Training and Evaluation
	Interpretation

	Results
	Discussion
	Interpretation
	Limitations
	Conclusion

	References
	Data and software statement
	Funding and permission statement


